
Recent Advances of Statistical Reinforcement Learning
Part 2

Gergely Neu (Universitat Pompeu Fabra)
Sattar Vakili (MediaTek Research)

Tutorial, UAI 2024

1

Part 2

1. Introduction to structural complexity

2. Linear Function Approximation

3. Non-linear Function Approximation

2

Tabular Setting

Recall results for the tabular setting:

• Q-learning with UCB: [Jin et al., 2018]

Regret(T) = O(
√

H3SAT)

• Sample complexity:

Õ(poly(H)SA
ϵ2)

These are only meaningful if T ≪ S or ϵ ≫ 1/
√

S!

3

Tabular Setting

Recall results for the tabular setting:

• Q-learning with UCB: [Jin et al., 2018]

Regret(T) = O(
√

H3SAT)

• Sample complexity:

Õ(poly(H)SA
ϵ2)

These are only meaningful if T ≪ S or ϵ ≫ 1/
√

S!

3

Why “Tabular”?

• Small size of state-action space

• Q(s, a) can be represented as a table

4

Why Function Approximation?

Number of states S is enormous in real-world problems!

• Game of Go: 10170 states
• Atari: 10100 states
• Physical systems:

continuum of states

5

Why Function Approximation?

Two types of challenges:

▶ Computational: Q and π cannot even be stored in memory, and
Bellman equations are intractable to solve even if P and r were known

▶ Statistical: Most states are not visited even once! How could we
expect to learn about P or r like that?

We need to find a way to generalize knowledge from visited states to
unvisited states by leveraging structure

6

Why Function Approximation?

Two types of challenges:

▶ Computational: Q and π cannot even be stored in memory, and
Bellman equations are intractable to solve even if P and r were known

▶ Statistical: Most states are not visited even once! How could we
expect to learn about P or r like that?

We need to find a way to generalize knowledge from visited states to
unvisited states by leveraging structure

6

RL with Function Approximation

▶ Approximate value function Q(s, a) (or policy) in a class F .

▶ Hope that F captures the MDP structure appropriately and
leverage the information in structure of F to learn faster if possible.

▶ Typical function classes: Linear, Kernel-based, NN-based

Tabular → Linear → Nonlinear

7

Setting

▶ Generative oracle, Offline, Online

▶ Episodic, Infinite horizon (discounted)

▶ Model-based, Model-free

In this part we focus on:

Tabular → Linear → Nonlinear

8

Setting

▶ Generative oracle, Offline, Online

▶ Episodic, Infinite horizon (discounted)

▶ Model-based, Model-free

In this part we focus on:

Tabular → Linear → Nonlinear

8

Setting

For a clear and sharp presentation we focus on episodic MDPs

For simplicity, we assume r is known and deterministic

We focus on the structural complexity of P (s′|s, a)

9

Episodic MDP

Episode 1:
s1,1 s2,1 · · · sH,1

a1,1 aH−1,1

10

Episodic MDP

Episode 2:

Episode 1:

s1,2 s2,2 · · · sH,2

a1,2 aH−1,2

s1,1 s2,1 · · · sH,1

a1,1 aH−1,1

11

Episodic MDP

Episode k:

...

Episode 2:

Episode 1:

s1,k s2,k · · · sH,k

a1,k aH−1,k

s1,2 s2,2 · · · sH,2

a1,2 aH−1,2

s1,1 s2,1 · · · sH,1

a1,1 aH−1,1

12

Part 2

1. Introduction to structural complexity

2. Linear Function Approximation

3. Non-linear Function Approximation

13

Linear Function Approximation

IDEA: approximate the Q-functions as linear functions of a given
d-dimensional feature map ϕ : S × A → Rd.

Let Φ ∈ R(S×A)×d be the “matrix” of stacked feature vectors
[ϕ(s1, a1) . . .ϕ(sN , aN)]⊤ (where N = |S × A|).

We need to find a parameter vector θ⋆ such that Q⋆ ≈ Φθ⋆.
(Meaning that Q⋆(s, a) ≈ ⟨θ⋆,ϕ(s, a)⟩.)

QUESTION: When can we learn θ⋆ efficiently?

14

Linear Function Approximation

IDEA: approximate the Q-functions as linear functions of a given
d-dimensional feature map ϕ : S × A → Rd.

Let Φ ∈ R(S×A)×d be the “matrix” of stacked feature vectors
[ϕ(s1, a1) . . .ϕ(sN , aN)]⊤ (where N = |S × A|).

We need to find a parameter vector θ⋆ such that Q⋆ ≈ Φθ⋆.
(Meaning that Q⋆(s, a) ≈ ⟨θ⋆,ϕ(s, a)⟩.)

QUESTION: When can we learn θ⋆ efficiently?

14

Linear Function Approximation

IDEA: approximate the Q-functions as linear functions of a given
d-dimensional feature map ϕ : S × A → Rd.

Let Φ ∈ R(S×A)×d be the “matrix” of stacked feature vectors
[ϕ(s1, a1) . . .ϕ(sN , aN)]⊤ (where N = |S × A|).

We need to find a parameter vector θ⋆ such that Q⋆ ≈ Φθ⋆.
(Meaning that Q⋆(s, a) ≈ ⟨θ⋆,ϕ(s, a)⟩.)

QUESTION: When can we learn θ⋆ efficiently?

14

Linear Function Approximation

Various conditions on the feature map Φ have been studied:
• Linear Q⋆: there exists a θ⋆ such that Q⋆ = Φθ⋆.
• Linear Qπ: for every policy π, there exists a θπ such that

Qπ = Φθπ.
• Closure under Bellman operator: for any Qθ = Φθ,

T Qθ ∈ span(Φ).
• Linear MDP: The transition and reward functions are linear in

the features. This implies all of the above conditions.

A number of more refined conditions have been also studied, such as assuming
linearity of V ⋆ in some feature map, or other types of factorized transition models.
We refer to Du et al. [2021], Jin et al. [2021] for more details on such extensions.

15

What can we hope for?

WANT: find an ϵ-optimal policy with a computational and sample
complexity polynomial in d, 1/ϵ and H, independently of S and A.

• This is impossible when only requiring linear Q⋆-realizability!
[Weisz et al., 2021]

• Polynomial sample complexity is possible when relaxing the
condition to linear Qπ-realizability, but no practical algorithms
are known [Weisz et al., 2022, 2023].

• Situation is similar when only assuming closure under Bellman
operator / Bellman completeness [Zanette et al., 2020b, Du
et al., 2021].

• Linear MDP condition enables both statistical and computational
efficiency!!! [Jin et al., 2023]

16

What can we hope for?

WANT: find an ϵ-optimal policy with a computational and sample
complexity polynomial in d, 1/ϵ and H, independently of S and A.

• This is impossible when only requiring linear Q⋆-realizability!
[Weisz et al., 2021]

• Polynomial sample complexity is possible when relaxing the
condition to linear Qπ-realizability, but no practical algorithms
are known [Weisz et al., 2022, 2023].

• Situation is similar when only assuming closure under Bellman
operator / Bellman completeness [Zanette et al., 2020b, Du
et al., 2021].

• Linear MDP condition enables both statistical and computational
efficiency!!! [Jin et al., 2023]

16

What can we hope for?

WANT: find an ϵ-optimal policy with a computational and sample
complexity polynomial in d, 1/ϵ and H, independently of S and A.

• This is impossible when only requiring linear Q⋆-realizability!
[Weisz et al., 2021]

• Polynomial sample complexity is possible when relaxing the
condition to linear Qπ-realizability, but no practical algorithms
are known [Weisz et al., 2022, 2023].

• Situation is similar when only assuming closure under Bellman
operator / Bellman completeness [Zanette et al., 2020b, Du
et al., 2021].

• Linear MDP condition enables both statistical and computational
efficiency!!! [Jin et al., 2023]

16

What can we hope for?

WANT: find an ϵ-optimal policy with a computational and sample
complexity polynomial in d, 1/ϵ and H, independently of S and A.

• This is impossible when only requiring linear Q⋆-realizability!
[Weisz et al., 2021]

• Polynomial sample complexity is possible when relaxing the
condition to linear Qπ-realizability, but no practical algorithms
are known [Weisz et al., 2022, 2023].

• Situation is similar when only assuming closure under Bellman
operator / Bellman completeness [Zanette et al., 2020b, Du
et al., 2021].

• Linear MDP condition enables both statistical and computational
efficiency!!! [Jin et al., 2023]

16

What can we hope for?

WANT: find an ϵ-optimal policy with a computational and sample
complexity polynomial in d, 1/ϵ and H, independently of S and A.

• This is impossible when only requiring linear Q⋆-realizability!
[Weisz et al., 2021]

• Polynomial sample complexity is possible when relaxing the
condition to linear Qπ-realizability, but no practical algorithms
are known [Weisz et al., 2022, 2023].

• Situation is similar when only assuming closure under Bellman
operator / Bellman completeness [Zanette et al., 2020b, Du
et al., 2021].

• Linear MDP condition enables both statistical and computational
efficiency!!! [Jin et al., 2023]

16

Linear MDPs

Linear transition function:

Ph(·|s, a) = ⟨ϕ(s, a),µh(·)⟩,

where µh(·) = [µ1
h(·), · · · , µd

h(·)] is a d-dimensional signed measure.

Linear rewards: rh(s, a) = ⟨ϕ(s, a),ϑh⟩.

In matrix notation:
• Transition operator Ph ∈ R(S×A)×S can be written as

Ph = ΦMh for some “matrix” Mh ∈ RS×d.
• Reward function can be written as rh = Φϑh for some ϑh ∈ Rd.

17

Linear MDPs

Linear transition function:

Ph(·|s, a) = ⟨ϕ(s, a),µh(·)⟩,

where µh(·) = [µ1
h(·), · · · , µd

h(·)] is a d-dimensional signed measure.

Linear rewards: rh(s, a) = ⟨ϕ(s, a),ϑh⟩.

In matrix notation:
• Transition operator Ph ∈ R(S×A)×S can be written as

Ph = ΦMh for some “matrix” Mh ∈ RS×d.
• Reward function can be written as rh = Φϑh for some ϑh ∈ Rd.

17

Tabular MDPs are linear

Tabular setting is a special case with
dimension d = SA:

• Let ϕ(s, a) = e(s,a) be the
canonical basis in Rd

• Ph(·|s, a) = e⊤
s,aµh(·)

18

A magical property of linear MDPs

In a linear MDP, the Q-functions of all policies are linear in Φ:

Qπ
h = rh + PhV π

h+1 = Φϑh + ΦMhV π
h+1

= Φ
(
ϑh + MhV π

h+1
)

= Φθh,

with θh = ϑh + MhV π
h+1.

This implies linear Q⋆-realizability, linear Qπ-realizability, Bellman
compleness, and many more useful properties for analysis! E.g., note
that for any function u ∈ RS , Phu = ΦMhu is linear in Φ.

The structure of linear MDPs allows us to import tools from linear
bandit literature [Abbasi-Yadkori et al., 2011, Lattimore and
Szepesvári, 2020].

19

A magical property of linear MDPs

In a linear MDP, the Q-functions of all policies are linear in Φ:

Qπ
h = rh + PhV π

h+1 = Φϑh + ΦMhV π
h+1

= Φ
(
ϑh + MhV π

h+1
)

= Φθh,

with θh = ϑh + MhV π
h+1.

This implies linear Q⋆-realizability, linear Qπ-realizability, Bellman
compleness, and many more useful properties for analysis! E.g., note
that for any function u ∈ RS , Phu = ΦMhu is linear in Φ.

The structure of linear MDPs allows us to import tools from linear
bandit literature [Abbasi-Yadkori et al., 2011, Lattimore and
Szepesvári, 2020].

19

A magical property of linear MDPs

In a linear MDP, the Q-functions of all policies are linear in Φ:

Qπ
h = rh + PhV π

h+1 = Φϑh + ΦMhV π
h+1

= Φ
(
ϑh + MhV π

h+1
)

= Φθh,

with θh = ϑh + MhV π
h+1.

This implies linear Q⋆-realizability, linear Qπ-realizability, Bellman
compleness, and many more useful properties for analysis! E.g., note
that for any function u ∈ RS , Phu = ΦMhu is linear in Φ.

The structure of linear MDPs allows us to import tools from linear
bandit literature [Abbasi-Yadkori et al., 2011, Lattimore and
Szepesvári, 2020].

19

Optimistic approximate dynamic programming

IDEA: Combine the techniques for tabular MDPs with exploration
bonuses borrowed from the linear bandit literature!

UCB-VI [Azar et al., 2017]:
1 Backtrack h = H, H − 1, . . . , 1: run optimistic value iteration

Qh = rh + P̂h︸︷︷︸
model estimate

Vh+1 + bh︸︷︷︸
exploration bonus

and set Vh(s) = maxa Qh(s, a) for all s, a.
2 Forward h = 1, 2, . . . , H: take actions according to greedy policy

πh(s) = arg max
a

Qh(s, a).

But how do we define P̂h and bh?

20

Optimistic approximate dynamic programming

IDEA: Combine the techniques for tabular MDPs with exploration
bonuses borrowed from the linear bandit literature!

UCB-VI [Azar et al., 2017]:
1 Backtrack h = H, H − 1, . . . , 1: run optimistic value iteration

Qh = rh + P̂h︸︷︷︸
model estimate

Vh+1 + bh︸︷︷︸
exploration bonus

and set Vh(s) = maxa Qh(s, a) for all s, a.
2 Forward h = 1, 2, . . . , H: take actions according to greedy policy

πh(s) = arg max
a

Qh(s, a).

But how do we define P̂h and bh?

20

Optimistic approximate dynamic programming

IDEA: Combine the techniques for tabular MDPs with exploration
bonuses borrowed from the linear bandit literature!

UCB-VI [Azar et al., 2017]:
1 Backtrack h = H, H − 1, . . . , 1: run optimistic value iteration

Qh = rh + P̂h︸︷︷︸
model estimate

Vh+1 + bh︸︷︷︸
exploration bonus

and set Vh(s) = maxa Qh(s, a) for all s, a.
2 Forward h = 1, 2, . . . , H: take actions according to greedy policy

πh(s) = arg max
a

Qh(s, a).

But how do we define P̂h and bh?
20

Least Squares Value Iteration (LSVI)

Transition model P̂h can be defined implicitly via least-squares:

▶ Solve the regularized linear regression problem

ŵh,k = arg minw

∑k
t=1(Vh+1,k(sh+1,t) − ⟨ϕ(sh,t, ah,t),w⟩)2 + λ2∥w∥2

▶ That provides a prediction

̂[PhVh+1,k](s, a) = ⟨ϕ(s, a), ŵh,k⟩

▶ Also, an uncertainty quantification (variance)

σ2
h,k(s, a) = ∥ϕ(s, a)∥2

(λI+Σh,k)−1

Σh,k =
k∑

t=1
ϕ⊤(sh,t, ah,t)ϕ(sh,t, ah,t)

21

LSVI-UCB

The prediction and variance give us an upper confidence bound on Q⋆:

Qh,k(s, a) = rh(s, a) + ̂[PhVh+1](s, a) + β(δ)σh,k(s, a)

This is then used to compute an UCB on V ⋆ as

Vh,k(s) = maxa Qh,k(s, a)

22

Performance guarantees

Theorem [Jin et al., 2023] The regret of LSVI-UCB satisfies
Regret(K) = Õ(H2

√
d3K).

This implies a sample complexity guarantee of Õ(poly(H)d3

ϵ2).

Proof ideas:
• Prove confidence bounds

| ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)| ≤ β(δ)σh,k(s, a).

• Using standard techniques (e.g., Azar et al., 2017), show

Regret(K) ≲
∑

h,k β(δ)σh,k(sh,k, ah,k).

• Use elliptical potential lemma (e.g., Abbasi-Yadkori et al., 2011) to
show ∑

h,k σh,k(sh,k, ah,k) ≲ H
√

Kd log(K).

23

Performance guarantees

Theorem [Jin et al., 2023] The regret of LSVI-UCB satisfies
Regret(K) = Õ(H2

√
d3K).

This implies a sample complexity guarantee of Õ(poly(H)d3

ϵ2).

Proof ideas:
• Prove confidence bounds

| ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)| ≤ β(δ)σh,k(s, a).

• Using standard techniques (e.g., Azar et al., 2017), show

Regret(K) ≲
∑

h,k β(δ)σh,k(sh,k, ah,k).

• Use elliptical potential lemma (e.g., Abbasi-Yadkori et al., 2011) to
show ∑

h,k σh,k(sh,k, ah,k) ≲ H
√

Kd log(K).

23

Proving the confidence bounds

By standard results on least-squares estimators (e.g., Abbasi-Yadkori
et al., 2011), one can prove the following confidence bound for any
fixed u ∈ RS that holds with probability at least 1 − δ:∣∣∣[̂Phu](s, a) − [Phu](s, a)

∣∣∣ ≤ β(δ)σh,k(s, a)

for some
β(δ) ≈ λ

1
2 ∥Mhu∥ + H

√
d log(K

δ)

Challenge: u = Vh+1,k is not fixed, but depends on all past data!

Solution: Covering number argument

24

Proving the confidence bounds

By standard results on least-squares estimators (e.g., Abbasi-Yadkori
et al., 2011), one can prove the following confidence bound for any
fixed u ∈ RS that holds with probability at least 1 − δ:∣∣∣[̂Phu](s, a) − [Phu](s, a)

∣∣∣ ≤ β(δ)σh,k(s, a)

for some
β(δ) ≈ λ

1
2 ∥Mhu∥ + H

√
d log(K

δ)

Challenge: u = Vh+1,k is not fixed, but depends on all past data!

Solution: Covering number argument

24

Proving the confidence bounds

By standard results on least-squares estimators (e.g., Abbasi-Yadkori
et al., 2011), one can prove the following confidence bound for any
fixed u ∈ RS that holds with probability at least 1 − δ:∣∣∣[̂Phu](s, a) − [Phu](s, a)

∣∣∣ ≤ β(δ)σh,k(s, a)

for some
β(δ) ≈ λ

1
2 ∥Mhu∥ + H

√
d log(K

δ)

Challenge: u = Vh+1,k is not fixed, but depends on all past data!

Solution: Covering number argument

24

Covering Number Argument
▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa ϕ
⊤(s, a)ŵ + β∥ϕ(s, a)∥(λI+Σ)−1}

}
.

▶ Idea: cover the space of functions V such that we can rewrite∣∣∣ ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)
∣∣∣ ≤ ϵ + sup

u∈V

∣∣∣[̂Phu](s, a) − [Phu](s, a)
∣∣∣ .

▶ How many functions u are required to cover V up to ϵ error?

Nϵ = Õ(d2)

25

Covering Number Argument
▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa ϕ
⊤(s, a)ŵ + β∥ϕ(s, a)∥(λI+Σ)−1}

}
.

▶ Idea: cover the space of functions V such that we can rewrite∣∣∣ ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)
∣∣∣ ≤ ϵ + sup

u∈V

∣∣∣[̂Phu](s, a) − [Phu](s, a)
∣∣∣ .

▶ How many functions u are required to cover V up to ϵ error?

Nϵ = Õ(d2)

25

Covering Number Argument
▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa ϕ
⊤(s, a)ŵ + β∥ϕ(s, a)∥(λI+Σ)−1}

}
.

▶ Idea: cover the space of functions V such that we can rewrite∣∣∣ ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)
∣∣∣ ≤ ϵ + sup

u∈V

∣∣∣[̂Phu](s, a) − [Phu](s, a)
∣∣∣ .

▶ How many functions u are required to cover V up to ϵ error?

Nϵ = Õ(d2)

25

Covering Number Argument

▶ We can now use a union-bound argument to show that

sup
u∈V

∣∣∣[̂Phu](s, a) − [Phu](s, a)
∣∣∣ ≤ ϵ + β(δ/Nϵ)σh,k(s, a)

holds with probability at least 1 − δ.

▶ Choosing ϵ ≈ 1/T , we get

β(δ) = β(δ/Nϵ) ≈ λ
1
2 ∥MVh,k∥ + H

√
d log(KNϵ

δ) = Õ(Hd)

26

Alternative linear models

Linear MDP model factorizes P = ΦM with some known
Φ ∈ R(S×A)×d and some unknown M ∈ Rd×S .

Some alternative factorizations are:
• Linear mixture MDPs [Zhou et al., 2021]: P = Φθ with some known

Φ ∈ R(S×A×S)×d and unknown θ ∈ Rd. Analysis is simpler but the
model doesn’t allow simple and explicit Q-function approximation and
leads to impractical algorithms.

• “MatrixRL” [Yang and Wang, 2020]: P = ΦMΨ with some known
Φ ∈ R(S×A)×m, another known Ψ ∈ Rn×S , and an unknown
M ∈ Rm×n. Can be shown to be a special case of linear mixture
MDPs, and suffers from the same limitations.

• Low-rank MDPs [Modi et al., 2024]: Same as linear MDPs except both
Φ and M are unknown and belong to finite model class. Requires much
more sophisticated techniques, but algorithms are kind of tractable.

27

Some References

• Linear MDPs: Jin et al. [2020, 2023], Yang and Wang [2019,
2020], Neu and Pike-Burke [2020]

• Linear Bellman complete models: Zanette et al. [2020a]
• Linear mixture MDPs: Yang and Wang [2020], Ayoub et al.

[2020], Zhou et al. [2021], Moulin and Neu [2023]
• Other model classes with hidden finite-dimensional linear

structure: Du et al. [2021], Jin et al. [2021]

28

Part 2

1. Introduction to structural complexity

2. Linear Function Approximation

3. Non-linear Function Approximation

29

Limitations of the Linear Setting

Directly reachable states:

• Ss,a := {s′ ∈ S : P (s′|s, a) > 0}

• U := max(s,a)∈S×A |Ss,a|

Theorem Lee and Oh [2024] For an MDP with a finite
state space, the feature dimension d is lower bounded by

d ≥ ⌊|S|
U

⌋

30

Limitations of the Linear Setting

Directly reachable states:

• Ss,a := {s′ ∈ S : P (s′|s, a) > 0}

• U := max(s,a)∈S×A |Ss,a|

Theorem Lee and Oh [2024] For an MDP with a finite
state space, the feature dimension d is lower bounded by

d ≥ ⌊|S|
U

⌋

30

Limitations of the Linear Setting

High dimensional problems

Nonlinear problems

31

Kernel-Based Setting

32

Kernel-Based Setting
• Kernel-based models are natural extensions of linear models to

infinite dimensional feature maps

• Allow for versatile and powerful non-linear function
approximation

• Lend themselves to analysis

• Serve as an intermediate step towards analysis of NN-based
models

Tabular → Linear → Kernel-Based → NN-Based

...

33

Kernel-Based Setting
• Kernel-based models are natural extensions of linear models to

infinite dimensional feature maps

• Allow for versatile and powerful non-linear function
approximation

• Lend themselves to analysis

• Serve as an intermediate step towards analysis of NN-based
models

Tabular → Linear → Kernel-Based → NN-Based

...

33

Kernel-Based Setting
• Kernel-based models are natural extensions of linear models to

infinite dimensional feature maps

• Allow for versatile and powerful non-linear function
approximation

• Lend themselves to analysis

• Serve as an intermediate step towards analysis of NN-based
models

Tabular → Linear → Kernel-Based → NN-Based

...

33

Kernel-Based Setting
• Kernel-based models are natural extensions of linear models to

infinite dimensional feature maps

• Allow for versatile and powerful non-linear function
approximation

• Lend themselves to analysis

• Serve as an intermediate step towards analysis of NN-based
models

Tabular → Linear → Kernel-Based → NN-Based

...

33

Kernel-Based Setting
• Kernel-based models are natural extensions of linear models to

infinite dimensional feature maps

• Allow for versatile and powerful non-linear function
approximation

• Lend themselves to analysis

• Serve as an intermediate step towards analysis of NN-based
models

Tabular → Linear → Kernel-Based → NN-Based

...

33

Kernel-Based Setting

Function class:

F =
{

f : Rd → R, f(·) =
∑∞

m=1 wmϕm(·)
}

An extension of linear models to infinite dimensions in the feature
space ϕ

Nonlinear functions in Rd

34

Kernel-Based Setting

Function class:

F =
{

f : Rd → R, f(·) =
∑∞

m=1 wmϕm(·)
}

An extension of linear models to infinite dimensions in the feature
space ϕ

Nonlinear functions in Rd

34

Kernel-Based Setting

Function class:

F =
{

f : Rd → R, f(·) =
∑∞

m=1 wmϕm(·)
}

An extension of linear models to infinite dimensions in the feature
space ϕ

Nonlinear functions in Rd

34

Mercer Theorem

A positive definite kernel κ : Z × Z → R

Theorem Any positive definite kernel can be written as

κ(z, z′) = ∑∞
m=1 λmφm(z)φm(z′)

• The feature map ϕm(·) = λ
1
2
mφm(·) corresponding to κ

• λm are referred to as eigenvalues

• φm are referred to as eigenfunctions

35

Mercer Theorem

A positive definite kernel κ : Z × Z → R

Theorem Any positive definite kernel can be written as

κ(z, z′) = ∑∞
m=1 λmφm(z)φm(z′)

• The feature map ϕm(·) = λ
1
2
mφm(·) corresponding to κ

• λm are referred to as eigenvalues

• φm are referred to as eigenfunctions

35

Kernels

Squared Exponential kernel

κ(z, z′) = exp
(
−∥z−z′∥2

2ℓ2

)
Matérn-ν kernel

κ(z, z′) = 21−ν

Γ(ν)

(√
2ν
ℓ ∥z − z′∥

)ν
Kν

(√
2ν
l ∥z − z′∥

)

36

Kernels

... ...

37

Reproducing Kernel Hilbert Space

RKHS:

Hκ = {f(·) =
∑∞

m=1 wmϕm(·)}

• Inner product ⟨f, g⟩k = w⊤
f wg

• ∥f∥Hκ = ∥w∥

• ϕm =
√

λmφm form an orthonormal basis

38

Kernel Based Regression
Provided a dataset of t observation:{

(zj , Y (zj))
}t

j=1
, Y (zj) = f(zj) + εj

Regularized Least Squares Error:

f̂ = arg ming∈Hκ

∑t
j=1(Y (zj) − g(zj)) + λ∥g∥2

Hκ

39

Kernel-Based Regression

Predictor:

f̂(z) = κ⊤
t (z)(Kt + λI)−1yt

• κt(z) = [k(z1, z), k(z2, z), · · · , k(zt, z)]
• Kt = [k(zi, zj)]ti,j=1
• yt = [Y (z1), Y (z2), · · · , Y (zt)]

40

Kernel-Based Regression
Uncertainty estimator:

(σt(z))2 = κ(z, z) − κ⊤
t (z)(Kt + λI)−1κt(z)

Closed from expressions for prediction and uncertainty quan-
tification!

41

Kernel-Based Regression
Uncertainty estimator:

(σt(z))2 = κ(z, z) − κ⊤
t (z)(Kt + λI)−1κt(z)

Closed from expressions for prediction and uncertainty quan-
tification!

41

RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.

42

RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.

42

RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.

42

RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.

42

RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.

Sample complexity: Õ
(

(1
ϵ)2

)

42

RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.

Sample complexity: Õ
(

(1
ϵ)?

)

42

RL with kernel-based function approximation

43

RL with kernel-based function approximation

Effective Dimension:[
ϕ1, ϕ2, · · · , ϕD︸ ︷︷ ︸

Ddimension

, ϕD+1, · · ·
]

D ≈ 1
2 log det(I + 1

λKt)

• In the linear setting: D ≈ d

• For Squared Exponential kernel:
D ≈ poly log(T)

• For Matérn kernel:
D ≈ T

d
d+ν [Vakili et al., 2021]

43

RL with Kernel-based FA

Kernel-based transition assumption

For all s′: P (s′|s, a) ∈ Hκ

• A significant generalization of linear models

• Linear model is a special case with linear kernel:
κ(s, a, s′, a′) = ϕ⊤(s, a)ϕ(s′, a′)

• RKHS of common kernels can approximate almost all continuous
functions

For integrable V : S → R, [PV] =
∫

s′ P (s′|s, a)V (s′) ∈ Hk

44

RL with Kernel-based FA

Kernel-based transition assumption

For all s′: P (s′|s, a) ∈ Hκ

• A significant generalization of linear models

• Linear model is a special case with linear kernel:
κ(s, a, s′, a′) = ϕ⊤(s, a)ϕ(s′, a′)

• RKHS of common kernels can approximate almost all continuous
functions

For integrable V : S → R, [PV] =
∫

s′ P (s′|s, a)V (s′) ∈ Hk

44

RL with Kernel-based FA

Kernel-based transition assumption

For all s′: P (s′|s, a) ∈ Hκ

• A significant generalization of linear models

• Linear model is a special case with linear kernel:
κ(s, a, s′, a′) = ϕ⊤(s, a)ϕ(s′, a′)

• RKHS of common kernels can approximate almost all continuous
functions

For integrable V : S → R, [PV] =
∫

s′ P (s′|s, a)V (s′) ∈ Hk

44

RL with Kernel-based FA

Kernel-based transition assumption

For all s′: P (s′|s, a) ∈ Hκ

• A significant generalization of linear models

• Linear model is a special case with linear kernel:
κ(s, a, s′, a′) = ϕ⊤(s, a)ϕ(s′, a′)

• RKHS of common kernels can approximate almost all continuous
functions

For integrable V : S → R, [PV] =
∫

s′ P (s′|s, a)V (s′) ∈ Hk

44

RL with Kernel-based FA

Kernel-based transition assumption

For all s′: P (s′|s, a) ∈ Hκ

• A significant generalization of linear models

• Linear model is a special case with linear kernel:
κ(s, a, s′, a′) = ϕ⊤(s, a)ϕ(s′, a′)

• RKHS of common kernels can approximate almost all continuous
functions

For integrable V : S → R, [PV] =
∫

s′ P (s′|s, a)V (s′) ∈ Hk

44

Optimistic approximate DP goes kernelized

IDEA: Combine the techniques for tabular MDPs with exploration
bonuses borrowed from the linear kernel bandit literature!

UCB-VI [Azar et al., 2017]:
1 Backtrack h = H, H − 1, . . . , 1: run optimistic value iteration

Qh = rh + P̂h︸︷︷︸
model estimate

Vh+1 + bh︸︷︷︸
exploration bonus

and set Vh(s) = maxa Qh(s, a) for all s, a.
2 Forward h = 1, 2, . . . , H: take actions according to greedy policy

πh(s) = arg max
a

Qh(s, a).

But how do we define P̂h and bh?
45

Kernel-based optimistic value iteration (KOVI)

Transition model P̂h can be defined implicitly via least-squares:

▶ Solve the regularized linear regression problem

f̂h = arg minf∈Hκ

∑k
t=1(Vh+1(sh+1,t) − f(sh,t, ah,t)2 + λ∥f∥2

Hκ

▶ That provides a prediction

̂[PhVh+1,k](s, a) = f̂h(s, a) = κ⊤
h,k(s, a)(Kh,k + λI)−1vh,k

vh,k = [Vh+1(sh+1,1), Vh+1(sh+1,2), · · · , Vh+1(sh+1,k)]

▶ Also, an uncertainty quantification (variance)

σ2
h,k(s, a) = κ

(
(s, a), (s, a)

)
− κ⊤

h,k(s, a)(Kh,k + λI)−1κh,k(s, a)

46

Kernel-based optimistic value iteration (KOVI)

The prediction and variance give us an upper confidence bound on Q⋆:

Qh,k(s, a) = rh(s, a) + ̂[PhVh+1](s, a) + β(δ)σh,k(s, a)

This is then used to compute an UCB on V ⋆ as

Vh,k(s) = maxa Qh,k(s, a)

47

Performance guarantees

Theorem [Yang et al., 2020] The regret of KOVI satisfies
Regret(K) = Õ(H2√

(D2 + D log Nϵ)K).

Proof ideas:
• Prove confidence bounds

| ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)| ≤ β(δ)σh,k(s, a).

• Using standard techniques, show

Regret(K) ≲
∑

h,k β(δ)σh,k(sh,k, ah,k).

• Kernelized elliptical potential lemma (e.g., Srinivas et al., 2010)∑
h,k σh,k(sh,k, ah,k) ≲ H

√
KD log(K).

48

Performance guarantees

Theorem [Yang et al., 2020] The regret of KOVI satisfies
Regret(K) = Õ(H2√

(D2 + D log Nϵ)K).

Proof ideas:
• Prove confidence bounds

| ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)| ≤ β(δ)σh,k(s, a).

• Using standard techniques, show

Regret(K) ≲
∑

h,k β(δ)σh,k(sh,k, ah,k).

• Kernelized elliptical potential lemma (e.g., Srinivas et al., 2010)∑
h,k σh,k(sh,k, ah,k) ≲ H

√
KD log(K).

48

Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ)

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ)

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument

49

Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ)

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ)

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument

49

Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ)

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ)

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument

49

Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ)

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ)

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument

49

Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ)

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ)

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument

49

Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ)

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ)

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument 49

Covering Number Argument

▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

▶ How many functions V are required to cover V up to ϵ error?

50

Covering Number Argument

▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

▶ How many functions V are required to cover V up to ϵ error?

50

Covering Number Argument

▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

▶ How many functions V are required to cover V up to ϵ error?

50

Covering Number Argument

▶ We can now use a union-bound argument

β(δ) = β(δ/Nϵ) ≈ ∥f∥Hk
+ H√

λ

√
D + log Nϵ + 1

δ

▶ Regret (ϵ ≈ 1
K) [Yang et al., 2020]

Regret(K) = Õ(H2√
D2K + D log NϵK)

▶ Sample Complexity

• Very smooth kernels D and log(Nϵ) ≈ poly log(K)

Õ
(

1
ϵ2

)
• In general could be vacuous!

51

Covering Number Argument

▶ We can now use a union-bound argument

β(δ) = β(δ/Nϵ) ≈ ∥f∥Hk
+ H√

λ

√
D + log Nϵ + 1

δ

▶ Regret (ϵ ≈ 1
K) [Yang et al., 2020]

Regret(K) = Õ(H2√
D2K + D log NϵK)

▶ Sample Complexity

• Very smooth kernels D and log(Nϵ) ≈ poly log(K)

Õ
(

1
ϵ2

)
• In general could be vacuous!

51

Covering Number Argument

▶ We can now use a union-bound argument

β(δ) = β(δ/Nϵ) ≈ ∥f∥Hk
+ H√

λ

√
D + log Nϵ + 1

δ

▶ Regret (ϵ ≈ 1
K) [Yang et al., 2020]

Regret(K) = Õ(H2√
D2K + D log NϵK)

▶ Sample Complexity

• Very smooth kernels D and log(Nϵ) ≈ poly log(K)

Õ
(

1
ϵ2

)
• In general could be vacuous!

51

Optimistic Closure

Chowdhury and Oliveira [2023] Optimistic Closure Assumption:

V ∈ Hκ′

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

Idea: Leverage kernel mean embedding

Regret(K) = Õ(H2D
√

K)

Doen not hold in the linear setting!

52

Optimistic Closure

Chowdhury and Oliveira [2023] Optimistic Closure Assumption:

V ∈ Hκ′

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

Idea: Leverage kernel mean embedding

Regret(K) = Õ(H2D
√

K)

Doen not hold in the linear setting!

52

Optimistic Closure

Chowdhury and Oliveira [2023] Optimistic Closure Assumption:

V ∈ Hκ′

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

Idea: Leverage kernel mean embedding

Regret(K) = Õ(H2D
√

K)

Doen not hold in the linear setting!

52

Open Problem Vakili [2024]

(a) Can a no-regret learning algorithm be designed?

(b) What is the minimum regret growth rate with K (and also
H)? And, can a learning algorithm be designed to achieve
order optimal (or near-optimal) regret performance,
closely aligning with the established lower bound?

53

Some References

• Chowdhury and Gopalan [2019]
• Yang et al. [2020]
• Domingues et al. [2021]
• Vakili and Olkhovskaya [2023]
• ...

54

References I

Y. Abbasi-Yadkori. Online learning for linearly parametrized control problems. PhD
Thesis, University of Alberta, 2013.

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in Neural Information Processing Systems, 24, 2011.

A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine
Learning, pages 463–474. PMLR, 2020.

M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning.
In International conference on machine learning, pages 263–272. PMLR, 2017.

S. R. Chowdhury and A. Gopalan. Online learning in kernelized Markov decision processes.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages
3197–3205. PMLR, 2019.

S. R. Chowdhury and R. Oliveira. Value function approximations via kernel embeddings
for no-regret reinforcement learning. In Asian Conference on Machine Learning, pages
249–264. PMLR, 2023.

O. D. Domingues, P. Ménard, M. Pirotta, E. Kaufmann, and M. Valko. Kernel-based
reinforcement learning: A finite-time analysis. In International Conference on Machine
Learning, pages 2783–2792. PMLR, 2021.

55

References II

S. Du, S. Kakade, J. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear classes:
A structural framework for provable generalization in RL. In International Conference
on Machine Learning, pages 2826–2836. PMLR, 2021.

C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient?
Advances in neural information processing systems, 31, 2018.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning Theory, pages 2137–2143.
PMLR, 2020.

C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of RL
problems, and sample-efficient algorithms. Advances in neural information processing
systems, 34:13406–13418, 2021.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. Mathematics of Operations Research, 48(3):1496–1521,
2023.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
J. Lee and M.-h. Oh. Demystifying linear mdps and novel dynamics aggregation

framework. In The Twelfth International Conference on Learning Representations,
2024.

56

References III

A. Modi, J. Chen, A. Krishnamurthy, N. Jiang, and A. Agarwal. Model-free representation
learning and exploration in low-rank mdps. Journal of Machine Learning Research, 25
(6):1–76, 2024.

A. Moulin and G. Neu. Optimistic planning by regularized dynamic programming. In
International Conference on Machine Learning, pages 25337–25357. PMLR, 2023.

G. Neu and C. Pike-Burke. A unifying view of optimism in episodic reinforcement
learning. Advances in Neural Information Processing Systems, 33:1392–1403, 2020.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: no regret and experimental design. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages
1015–1022, 2010.

S. Vakili. Open problem: Order optimal regret bounds for kernel-based reinforcement
learning. In The Thirty Seventh Annual Conference on Learning Theory, pages
5340–5344. PMLR, 2024.

S. Vakili and J. Olkhovskaya. Kernelized reinforcement learning with order optimal regret
bounds. Advances in Neural Information Processing Systems, 36, 2023.

S. Vakili, K. Khezeli, and V. Picheny. On information gain and regret bounds in Gaussian
process bandits. In International Conference on Artificial Intelligence and Statistics,
pages 82–90. PMLR, 2021.

57

References IV

G. Weisz, P. Amortila, and C. Szepesvári. Exponential lower bounds for planning in mdps
with linearly-realizable optimal action-value functions. In Algorithmic Learning Theory,
pages 1237–1264. PMLR, 2021.

G. Weisz, A. György, T. Kozuno, and C. Szepesvári. Confident approximate policy
iteration for efficient local planning in qπ-realizable mdps. Advances in Neural
Information Processing Systems, 35:25547–25559, 2022.

G. Weisz, A. György, and C. Szepesvári. Online RL in linearly qπ-realizable MDPs is as
easy as in linear MDPs if you learn what to ignore. Advances in Neural Information
Processing Systems, 36, 2023.

J. Whitehouse, A. Ramdas, and S. Z. Wu. On the sublinear regret of gp-ucb. Advances in
Neural Information Processing Systems, 36, 2023.

L. Yang and M. Wang. Sample-optimal parametric q-learning using linearly additive
features. In International conference on machine learning, pages 6995–7004. PMLR,
2019.

L. Yang and M. Wang. Reinforcement learning in feature space: Matrix bandit, kernels,
and regret bound. In International Conference on Machine Learning, pages
10746–10756. PMLR, 2020.

58

References V

Z. Yang, C. Jin, Z. Wang, M. Wang, and M. Jordan. Provably efficient reinforcement
learning with kernel and neural function approximations. Advances in Neural
Information Processing Systems, 33:13903–13916, 2020.

A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequentist
regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pages 1954–1964. PMLR, 2020a.

A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill. Learning near optimal policies
with low inherent Bellman error. In H. D. III and A. Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 10978–10989. PMLR, 13–18 Jul 2020b.

D. Zhou, J. He, and Q. Gu. Provably efficient reinforcement learning for discounted mdps
with feature mapping. In International Conference on Machine Learning, pages
12793–12802. PMLR, 2021.

59

	References

