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Tabular Setting

Recall results for the tabular setting:

• Q-learning with UCB: [Jin et al., 2018]

Regret(T ) = O(
√

H3SAT )

• Sample complexity:

Õ(poly(H)SA
ϵ2 )

These are only meaningful if T ≪ S or ϵ ≫ 1/
√

S!
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Why “Tabular”?

• Small size of state-action space

• Q(s, a) can be represented as a table
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Why Function Approximation?

Number of states S is enormous in real-world problems!

• Game of Go: 10170 states
• Atari: 10100 states
• Physical systems:

continuum of states
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Why Function Approximation?

Two types of challenges:

▶ Computational: Q and π cannot even be stored in memory, and
Bellman equations are intractable to solve even if P and r were known

▶ Statistical: Most states are not visited even once! How could we
expect to learn about P or r like that?

We need to find a way to generalize knowledge from visited states to
unvisited states by leveraging structure
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RL with Function Approximation

▶ Approximate value function Q(s, a) (or policy) in a class F .

▶ Hope that F captures the MDP structure appropriately and
leverage the information in structure of F to learn faster if possible.

▶ Typical function classes: Linear, Kernel-based, NN-based

Tabular → Linear → Nonlinear
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Setting

▶ Generative oracle, Offline, Online

▶ Episodic, Infinite horizon (discounted)

▶ Model-based, Model-free

In this part we focus on:

Tabular → Linear → Nonlinear
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Setting

For a clear and sharp presentation we focus on episodic MDPs

For simplicity, we assume r is known and deterministic

We focus on the structural complexity of P (s′|s, a)
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Episodic MDP

Episode 1:
s1,1 s2,1 · · · sH,1

a1,1 aH−1,1
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Episodic MDP

Episode 2:

Episode 1:

s1,2 s2,2 · · · sH,2

a1,2 aH−1,2

s1,1 s2,1 · · · sH,1

a1,1 aH−1,1
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Episodic MDP

Episode k:

...

Episode 2:

Episode 1:

s1,k s2,k · · · sH,k

a1,k aH−1,k

s1,2 s2,2 · · · sH,2

a1,2 aH−1,2

s1,1 s2,1 · · · sH,1

a1,1 aH−1,1
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Linear Function Approximation

IDEA: approximate the Q-functions as linear functions of a given
d-dimensional feature map ϕ : S × A → Rd.

Let Φ ∈ R(S×A)×d be the “matrix” of stacked feature vectors
[ϕ(s1, a1) . . .ϕ(sN , aN )]⊤ (where N = |S × A|).

We need to find a parameter vector θ⋆ such that Q⋆ ≈ Φθ⋆.
(Meaning that Q⋆(s, a) ≈ ⟨θ⋆,ϕ(s, a)⟩.)

QUESTION: When can we learn θ⋆ efficiently?
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Linear Function Approximation

Various conditions on the feature map Φ have been studied:
• Linear Q⋆: there exists a θ⋆ such that Q⋆ = Φθ⋆.
• Linear Qπ: for every policy π, there exists a θπ such that

Qπ = Φθπ.
• Closure under Bellman operator: for any Qθ = Φθ,

T Qθ ∈ span(Φ).
• Linear MDP: The transition and reward functions are linear in

the features. This implies all of the above conditions.

A number of more refined conditions have been also studied, such as assuming
linearity of V ⋆ in some feature map, or other types of factorized transition models.
We refer to Du et al. [2021], Jin et al. [2021] for more details on such extensions.
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What can we hope for?

WANT: find an ϵ-optimal policy with a computational and sample
complexity polynomial in d, 1/ϵ and H, independently of S and A.

• This is impossible when only requiring linear Q⋆-realizability!
[Weisz et al., 2021]

• Polynomial sample complexity is possible when relaxing the
condition to linear Qπ-realizability, but no practical algorithms
are known [Weisz et al., 2022, 2023].

• Situation is similar when only assuming closure under Bellman
operator / Bellman completeness [Zanette et al., 2020b, Du
et al., 2021].

• Linear MDP condition enables both statistical and computational
efficiency!!! [Jin et al., 2023]
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Linear MDPs

Linear transition function:

Ph(·|s, a) = ⟨ϕ(s, a),µh(·)⟩,

where µh(·) = [µ1
h(·), · · · , µd

h(·)] is a d-dimensional signed measure.

Linear rewards: rh(s, a) = ⟨ϕ(s, a),ϑh⟩.

In matrix notation:
• Transition operator Ph ∈ R(S×A)×S can be written as

Ph = ΦMh for some “matrix” Mh ∈ RS×d.
• Reward function can be written as rh = Φϑh for some ϑh ∈ Rd.
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Tabular MDPs are linear

Tabular setting is a special case with
dimension d = SA:

• Let ϕ(s, a) = e(s,a) be the
canonical basis in Rd

• Ph(·|s, a) = e⊤
s,aµh(·)

18



A magical property of linear MDPs

In a linear MDP, the Q-functions of all policies are linear in Φ:

Qπ
h = rh + PhV π

h+1 = Φϑh + ΦMhV π
h+1

= Φ
(
ϑh + MhV π

h+1
)

= Φθh,

with θh = ϑh + MhV π
h+1.

This implies linear Q⋆-realizability, linear Qπ-realizability, Bellman
compleness, and many more useful properties for analysis! E.g., note
that for any function u ∈ RS , Phu = ΦMhu is linear in Φ.

The structure of linear MDPs allows us to import tools from linear
bandit literature [Abbasi-Yadkori et al., 2011, Lattimore and
Szepesvári, 2020].
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Optimistic approximate dynamic programming

IDEA: Combine the techniques for tabular MDPs with exploration
bonuses borrowed from the linear bandit literature!

UCB-VI [Azar et al., 2017]:
1 Backtrack h = H, H − 1, . . . , 1: run optimistic value iteration

Qh = rh + P̂h︸︷︷︸
model estimate

Vh+1 + bh︸︷︷︸
exploration bonus

and set Vh(s) = maxa Qh(s, a) for all s, a.
2 Forward h = 1, 2, . . . , H: take actions according to greedy policy

πh(s) = arg max
a

Qh(s, a).

But how do we define P̂h and bh?
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Least Squares Value Iteration (LSVI)

Transition model P̂h can be defined implicitly via least-squares:

▶ Solve the regularized linear regression problem

ŵh,k = arg minw

∑k
t=1(Vh+1,k(sh+1,t) − ⟨ϕ(sh,t, ah,t),w⟩)2 + λ2∥w∥2

▶ That provides a prediction

̂[PhVh+1,k](s, a) = ⟨ϕ(s, a), ŵh,k⟩

▶ Also, an uncertainty quantification (variance)

σ2
h,k(s, a) = ∥ϕ(s, a)∥2

(λI+Σh,k)−1

Σh,k =
k∑

t=1
ϕ⊤(sh,t, ah,t)ϕ(sh,t, ah,t)
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LSVI-UCB

The prediction and variance give us an upper confidence bound on Q⋆:

Qh,k(s, a) = rh(s, a) + ̂[PhVh+1](s, a) + β(δ)σh,k(s, a)

This is then used to compute an UCB on V ⋆ as

Vh,k(s) = maxa Qh,k(s, a)
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Performance guarantees

Theorem [Jin et al., 2023] The regret of LSVI-UCB satisfies
Regret(K) = Õ(H2

√
d3K).

This implies a sample complexity guarantee of Õ( poly(H)d3

ϵ2 ).

Proof ideas:
• Prove confidence bounds

| ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)| ≤ β(δ)σh,k(s, a).

• Using standard techniques (e.g., Azar et al., 2017), show

Regret(K) ≲
∑

h,k β(δ)σh,k(sh,k, ah,k).

• Use elliptical potential lemma (e.g., Abbasi-Yadkori et al., 2011) to
show ∑

h,k σh,k(sh,k, ah,k) ≲ H
√

Kd log(K).
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Proving the confidence bounds

By standard results on least-squares estimators (e.g., Abbasi-Yadkori
et al., 2011), one can prove the following confidence bound for any
fixed u ∈ RS that holds with probability at least 1 − δ:∣∣∣[̂Phu](s, a) − [Phu](s, a)

∣∣∣ ≤ β(δ)σh,k(s, a)

for some
β(δ) ≈ λ

1
2 ∥Mhu∥ + H

√
d log(K

δ )

Challenge: u = Vh+1,k is not fixed, but depends on all past data!

Solution: Covering number argument
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Covering Number Argument
▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa ϕ
⊤(s, a)ŵ + β∥ϕ(s, a)∥(λI+Σ)−1}

}
.

▶ Idea: cover the space of functions V such that we can rewrite∣∣∣ ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)
∣∣∣ ≤ ϵ + sup

u∈V

∣∣∣[̂Phu](s, a) − [Phu](s, a)
∣∣∣ .

▶ How many functions u are required to cover V up to ϵ error?

Nϵ = Õ(d2)

25



Covering Number Argument
▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa ϕ
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Covering Number Argument

▶ We can now use a union-bound argument to show that

sup
u∈V

∣∣∣[̂Phu](s, a) − [Phu](s, a)
∣∣∣ ≤ ϵ + β(δ/Nϵ)σh,k(s, a)

holds with probability at least 1 − δ.

▶ Choosing ϵ ≈ 1/T , we get

β(δ) = β(δ/Nϵ) ≈ λ
1
2 ∥MVh,k∥ + H

√
d log(KNϵ

δ ) = Õ(Hd)
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Alternative linear models

Linear MDP model factorizes P = ΦM with some known
Φ ∈ R(S×A)×d and some unknown M ∈ Rd×S .

Some alternative factorizations are:
• Linear mixture MDPs [Zhou et al., 2021]: P = Φθ with some known

Φ ∈ R(S×A×S)×d and unknown θ ∈ Rd. Analysis is simpler but the
model doesn’t allow simple and explicit Q-function approximation and
leads to impractical algorithms.

• “MatrixRL” [Yang and Wang, 2020]: P = ΦMΨ with some known
Φ ∈ R(S×A)×m, another known Ψ ∈ Rn×S , and an unknown
M ∈ Rm×n. Can be shown to be a special case of linear mixture
MDPs, and suffers from the same limitations.

• Low-rank MDPs [Modi et al., 2024]: Same as linear MDPs except both
Φ and M are unknown and belong to finite model class. Requires much
more sophisticated techniques, but algorithms are kind of tractable.
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Some References

• Linear MDPs: Jin et al. [2020, 2023], Yang and Wang [2019,
2020], Neu and Pike-Burke [2020]

• Linear Bellman complete models: Zanette et al. [2020a]
• Linear mixture MDPs: Yang and Wang [2020], Ayoub et al.

[2020], Zhou et al. [2021], Moulin and Neu [2023]
• Other model classes with hidden finite-dimensional linear

structure: Du et al. [2021], Jin et al. [2021]
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Limitations of the Linear Setting

Directly reachable states:

• Ss,a := {s′ ∈ S : P (s′|s, a) > 0}

• U := max(s,a)∈S×A |Ss,a|

Theorem Lee and Oh [2024] For an MDP with a finite
state space, the feature dimension d is lower bounded by

d ≥ ⌊|S|
U

⌋
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Limitations of the Linear Setting

High dimensional problems

Nonlinear problems
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Kernel-Based Setting
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Kernel-Based Setting
• Kernel-based models are natural extensions of linear models to

infinite dimensional feature maps

• Allow for versatile and powerful non-linear function
approximation

• Lend themselves to analysis

• Serve as an intermediate step towards analysis of NN-based
models

Tabular → Linear → Kernel-Based → NN-Based

...
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Kernel-Based Setting

Function class:

F =
{

f : Rd → R, f(·) =
∑∞

m=1 wmϕm(·)
}

An extension of linear models to infinite dimensions in the feature
space ϕ

Nonlinear functions in Rd

34
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Mercer Theorem

A positive definite kernel κ : Z × Z → R

Theorem Any positive definite kernel can be written as

κ(z, z′) = ∑∞
m=1 λmφm(z)φm(z′)

• The feature map ϕm(·) = λ
1
2
mφm(·) corresponding to κ

• λm are referred to as eigenvalues

• φm are referred to as eigenfunctions
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Kernels

Squared Exponential kernel

κ(z, z′) = exp
(
−∥z−z′∥2

2ℓ2

)
Matérn-ν kernel

κ(z, z′) = 21−ν

Γ(ν)

(√
2ν
ℓ ∥z − z′∥

)ν
Kν

(√
2ν
l ∥z − z′∥

)
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Kernels

... ...
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Reproducing Kernel Hilbert Space

RKHS:

Hκ = {f(·) =
∑∞

m=1 wmϕm(·)}

• Inner product ⟨f, g⟩k = w⊤
f wg

• ∥f∥Hκ = ∥w∥

• ϕm =
√

λmφm form an orthonormal basis
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Kernel Based Regression
Provided a dataset of t observation:{

(zj , Y (zj))
}t

j=1
, Y (zj) = f(zj) + εj

Regularized Least Squares Error:

f̂ = arg ming∈Hκ

∑t
j=1(Y (zj) − g(zj)) + λ∥g∥2

Hκ
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Kernel-Based Regression

Predictor:

f̂(z) = κ⊤
t (z)(Kt + λI)−1yt

• κt(z) = [k(z1, z), k(z2, z), · · · , k(zt, z)]
• Kt = [k(zi, zj)]ti,j=1
• yt = [Y (z1), Y (z2), · · · , Y (zt)]

40



Kernel-Based Regression
Uncertainty estimator:

(σt(z))2 = κ(z, z) − κ⊤
t (z)(Kt + λI)−1κt(z)

Closed from expressions for prediction and uncertainty quan-
tification!
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RL with kernel-based function approximation

IDEA: Approximate the Q-functions as a function in RKHS

Want: Find an ϵ-optimal policy with a computational and sample
complexity polynomial in 1/ϵ and H

—possibly some kernel parameters—

independently of S and A.
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RL with kernel-based function approximation
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RL with kernel-based function approximation

Effective Dimension:[
ϕ1, ϕ2, · · · , ϕD︸ ︷︷ ︸

Ddimension

, ϕD+1, · · ·
]

D ≈ 1
2 log det(I + 1

λKt)

• In the linear setting: D ≈ d

• For Squared Exponential kernel:
D ≈ poly log(T )

• For Matérn kernel:
D ≈ T

d
d+ν [Vakili et al., 2021]
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RL with Kernel-based FA

Kernel-based transition assumption

For all s′: P (s′|s, a) ∈ Hκ

• A significant generalization of linear models

• Linear model is a special case with linear kernel:
κ(s, a, s′, a′) = ϕ⊤(s, a)ϕ(s′, a′)

• RKHS of common kernels can approximate almost all continuous
functions

For integrable V : S → R, [PV ] =
∫

s′ P (s′|s, a)V (s′) ∈ Hk
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Optimistic approximate DP goes kernelized

IDEA: Combine the techniques for tabular MDPs with exploration
bonuses borrowed from the linear kernel bandit literature!

UCB-VI [Azar et al., 2017]:
1 Backtrack h = H, H − 1, . . . , 1: run optimistic value iteration

Qh = rh + P̂h︸︷︷︸
model estimate

Vh+1 + bh︸︷︷︸
exploration bonus

and set Vh(s) = maxa Qh(s, a) for all s, a.
2 Forward h = 1, 2, . . . , H: take actions according to greedy policy

πh(s) = arg max
a

Qh(s, a).

But how do we define P̂h and bh?
45



Kernel-based optimistic value iteration (KOVI)

Transition model P̂h can be defined implicitly via least-squares:

▶ Solve the regularized linear regression problem

f̂h = arg minf∈Hκ

∑k
t=1(Vh+1(sh+1,t) − f(sh,t, ah,t)2 + λ∥f∥2

Hκ

▶ That provides a prediction

̂[PhVh+1,k](s, a) = f̂h(s, a) = κ⊤
h,k(s, a)(Kh,k + λI)−1vh,k

vh,k = [Vh+1(sh+1,1), Vh+1(sh+1,2), · · · , Vh+1(sh+1,k)]

▶ Also, an uncertainty quantification (variance)

σ2
h,k(s, a) = κ

(
(s, a), (s, a)

)
− κ⊤

h,k(s, a)(Kh,k + λI)−1κh,k(s, a)
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Kernel-based optimistic value iteration (KOVI)

The prediction and variance give us an upper confidence bound on Q⋆:

Qh,k(s, a) = rh(s, a) + ̂[PhVh+1](s, a) + β(δ)σh,k(s, a)

This is then used to compute an UCB on V ⋆ as

Vh,k(s) = maxa Qh,k(s, a)

47



Performance guarantees

Theorem [Yang et al., 2020] The regret of KOVI satisfies
Regret(K) = Õ(H2√

(D2 + D log Nϵ)K).

Proof ideas:
• Prove confidence bounds

| ̂[PhVh+1,k](s, a) − [PhVh+1,k](s, a)| ≤ β(δ)σh,k(s, a).

• Using standard techniques, show

Regret(K) ≲
∑

h,k β(δ)σh,k(sh,k, ah,k).

• Kernelized elliptical potential lemma (e.g., Srinivas et al., 2010)∑
h,k σh,k(sh,k, ah,k) ≲ H

√
KD log(K).

48



Performance guarantees

Theorem [Yang et al., 2020] The regret of KOVI satisfies
Regret(K) = Õ(H2√
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Kernel-based Setting - Analysis
▶ We need a confidence bound of the form∣∣∣∣f̂(s, a) − [PhVh+1,k](s, a)

∣∣∣∣ ≤ β(δ)σh(s, a).

▶ For a fixed f ∈ Hκ with non-adaptive inputs z1, . . . , zk,

β(δ) ≈ ∥f∥Hκ + H√
λ

√
d log(T

δ )

Challenge 1: Inputs (s1, a1), . . . , (sk, ak) are adaptive!

Solution: Self-normalized concentration inequalities for vector-valued
martingales extended to kernel setting [Abbasi-Yadkori, 2013,
Whitehouse et al., 2023]:

β(δ) ≈ ∥f∥Hκ + H√
λ

√
D + log(1

δ )

Challenge 2: f = PhVh+1,k is not fixed, but depends on past data!

Solution: Covering number argument
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Covering Number Argument

▶ Notice that all value functions Vh,k belong to the function class

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

▶ How many functions V are required to cover V up to ϵ error?
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Covering Number Argument

▶ We can now use a union-bound argument

β(δ) = β(δ/Nϵ) ≈ ∥f∥Hk
+ H√

λ

√
D + log Nϵ + 1

δ

▶ Regret (ϵ ≈ 1
K ) [Yang et al., 2020]

Regret(K) = Õ(H2√
D2K + D log NϵK)

▶ Sample Complexity

• Very smooth kernels D and log(Nϵ) ≈ poly log(K)

Õ
(

1
ϵ2

)
• In general could be vacuous!
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Optimistic Closure

Chowdhury and Oliveira [2023] Optimistic Closure Assumption:

V ∈ Hκ′

V =
{

V (s) = min{H, maxa f̂(s, a) + βσ(s, a)}
}

Idea: Leverage kernel mean embedding

Regret(K) = Õ(H2D
√

K)

Doen not hold in the linear setting!
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√

K)

Doen not hold in the linear setting!

52



Open Problem Vakili [2024]

(a) Can a no-regret learning algorithm be designed?

(b) What is the minimum regret growth rate with K (and also
H)? And, can a learning algorithm be designed to achieve
order optimal (or near-optimal) regret performance,
closely aligning with the established lower bound?
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Some References

• Chowdhury and Gopalan [2019]
• Yang et al. [2020]
• Domingues et al. [2021]
• Vakili and Olkhovskaya [2023]
• ...
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