Distribution-Free Predictive Uncertainty Quantification: Strengths and Limits of Conformal Prediction

Aymeric Dieuleveut & Margaux Zaffran July 15th, 2024 40th Conference on Uncertainty in Artifical Intelligence (UAI)

Figure 1: us

(Slides available on our webpages)

(Slides available on our webpages)

• Because Conformal Prediction has been a **popular** topic recently.

Vovk et al. (2005) algorithmic learning in a random world cite count.

(Slides available on our webpages)

- Because Conformal Prediction has been a **popular** topic recently.
- Because we believe that conformal methods are important tools, whose strengths and limitations are sometimes misunderstood.

Successfully applied to

- Medical applications
- Markets / demand forecasting
- Computer Vision

(Slides available on our webpages)

- Because Conformal Prediction has been a **popular** topic recently.
- Because we believe that conformal methods are important tools, whose strengths and limitations are sometimes misunderstood.
- To be part of the **diffusion** effort that many colleagues are making.

(Slides available on our webpages)

- Because Conformal Prediction has been a **popular** topic recently.
- Because we believe that conformal methods are important tools, whose strengths and limitations are sometimes misunderstood.
- To be part of the diffusion effort that many colleagues are making.

Book reference: Vovk et al. (2005) A gentle tutorial: Angelopoulos and Bates (2023) R. J. Libshirani (new edition in 2022) + Videos playlist introductive lecture's notes

→ Based on material freely accessible on this webpage, including sources. Feel free to reuse these contents for presentations or teaching!

Goals

- Provide a detailed introduction to the basics
- Demystify the results: fair introduction with limits
- Give you tools to leverage those techniques in your own fields

Disclaimers

- Many people contributed to the domain list of references may not be exhaustive
- Multiple other excellent resources

• Obvious in most applications - weather, medical, markets

On the importance of quantifying uncertainty

- Obvious in most applications weather, medical, markets
- Mathematically

 \hookrightarrow Same "best" predictor, yet 3 distinct underlying phenomena!

On the importance of quantifying uncertainty

- Obvious in most applications weather, medical, markets
- Mathematically

 \hookrightarrow Same "best" predictor, yet 3 distinct underlying phenomena!

 \implies Quantifying uncertainty conveys this information.

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks

- Quantile level $\beta \in [0, 1]$
- $Q_Y(\beta) := \inf\{t \in \mathbb{R}, \mathbb{P}(Y \le t) \ge \beta\}$

- Quantile level $\beta \in [0, 1]$
- $Q_Y(\beta) := \inf\{t \in \mathbb{R}, \mathbb{P}(Y \le t) \ge \beta\}$
- Empirical quantile

 $q_{\beta}(Y_1,\ldots,Y_n)$

 $:= [\beta \times n]$ smallest value of (Y_1, \ldots, Y_n)

- Quantile level $\beta \in [0, 1]$
- $Q_Y(\beta) := \inf\{t \in \mathbb{R}, \mathbb{P}(Y \le t) \ge \beta\}$
- Empirical quantile

 $q_{\beta}(Y_1,\ldots,Y_n)$

$$:= \left\lceil eta imes n
ight
ceil$$
 smallest value of (Y_1, \ldots, Y_n)

• Pinball loss

$$\ell_{\beta}(Y, Y') = \beta |Y - Y'| \mathbb{1}_{\{Y - Y' \ge 0\}} + (1 - \beta) |Y - Y'| \mathbb{1}_{\{Y - Y' \le 0\}}$$

- Quantile level $\beta \in [0, 1]$
- $Q_Y(\beta) := \inf\{t \in \mathbb{R}, \mathbb{P}(Y \le t) \ge \beta\}$
- Empirical quantile

 $q_{\beta}(Y_1,\ldots,Y_n)$

$$:= \left\lceil eta imes n
ight
ceil$$
 smallest value of (Y_1, \ldots, Y_n)

• Pinball loss

$$\ell_{\beta}(Y, Y') = \beta |Y - Y'| \mathbb{1}_{\{Y - Y' \ge 0\}} + (1 - \beta) |Y - Y'| \mathbb{1}_{\{Y - Y' \le 0\}}$$

Associated risk:

$$\mathsf{Risk}_{\ell_{\beta}}(c) = \mathbb{E}\left[\ell_{\beta}(Y, c)\right]$$

Link to quantile:

$$Q_Y(eta) = \operatorname*{arg\,min}_{c \in \mathbb{R}} \operatorname{Risk}_{\ell_{eta}}(c)$$

- Quantile level $\beta \in [0, 1]$
- $Q_Y(\beta) := \inf\{t \in \mathbb{R}, \mathbb{P}(Y \le t) \ge \beta\}$
- Empirical quantile

 $q_{\beta}(Y_1,\ldots,Y_n)$

$$:= \left\lceil eta imes n
ight
ceil$$
 smallest value of (Y_1, \ldots, Y_n)

• Pinball loss

$$\ell_{\beta}(Y, Y') = \beta |Y - Y'| \mathbb{1}_{\{Y - Y' \ge 0\}} + (1 - \beta) |Y - Y'| \mathbb{1}_{\{Y - Y' \le 0\}}$$

Associated risk:

$$\mathsf{Risk}_{\ell_{\beta}}(c) = \mathbb{E}\left[\ell_{\beta}(Y, c)\right]$$

Link to quantile:

$$Q_Y(eta) = rgmin_{c \in \mathbb{R}} \mathsf{Risk}_{\ell_eta}(c)$$
Proof: sub-differential

 $P(Y < c_0)$ $P(Y > c_0)$ Ý $\ell_{\beta}(Y,c)$ Slope = 0.9Slope = 0.1IY-cl $\mathbb{E}[\ell_{\mathcal{B}}(Y,c)]$ Value at -1 ċ

- Quantile level $\beta \in [0,1]$
- $Q_Y(\beta) := \inf\{t \in \mathbb{R}, \mathbb{P}(Y \le t) \ge \beta\}$
- Empirical quantile

 $q_{\beta}(Y_1,\ldots,Y_n)$

$$:= \left\lceil eta imes n
ight
ceil$$
 smallest value of (Y_1, \ldots, Y_n)

• Pinball loss

$$\ell_{\beta}(Y, Y') = \beta |Y - Y'| \mathbb{1}_{\{Y - Y' \ge 0\}} + (1 - \beta) |Y - Y'| \mathbb{1}_{\{Y - Y' \le 0\}}$$

Associated risk:

$$\mathsf{Risk}_{\ell_{\beta}}(c) = \mathbb{E}\left[\ell_{\beta}(Y, c)\right]$$

Link to quantile:

$$Q_Y(\beta) = \operatorname*{arg\,min}_{c \in \mathbb{R}} \operatorname{Risk}_{\ell_\beta}(c)$$

Proof: sub-differential

Example (a special quantile: the median).

$$\begin{array}{l} \beta = 0.5 \\ \hookrightarrow \ Q_Y(0.5) \text{ represents the median of the distribution of } Y \\ \hookrightarrow \ Q_Y(0.5) = argmin_c \mathbb{E}\left[|Y - c|\right]. \end{array}$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

 $\operatorname{Risk}_{\ell_{\beta}}(f) = \mathbb{E}\left[\ell_{\beta}(Y, f(X))\right]$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{\boldsymbol{\beta}}}(f) = \mathbb{E}\left[\ell_{\boldsymbol{\beta}}(Y, f(X))\right]$$

$$f^{\star} \in \operatorname*{argmin}_{f \in \mathbb{R}^{\mathcal{X}}} \mathsf{Risk}_{\ell_{\boldsymbol{\beta}}}(f) \quad \Rightarrow \quad f^{\star}(X) = Q_{Y|X}(\boldsymbol{\beta})$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{oldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{oldsymbol{eta}}(Y,f(X))
ight]$$

- Goal : approximate $Q_{Y|X}(\beta)$ Quantile level β Pinball loss $\ell_{\beta}(Y, Y')$.
- Associated risk:

$$\mathsf{Risk}_{\ell_{\boldsymbol{eta}}}(f) = \mathbb{E}\left[\ell_{\boldsymbol{eta}}(Y, f(X))\right]$$

• Bayes predictor:

Warning - No theoretical guarantee with a finite sample! $\mathbb{P}\left(Y \in \left[\hat{Q}_{Y|X}(\beta/2); \hat{Q}_{Y|X}(1-\beta/2)\right]\right) \neq 1-\beta$

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X_i, Y_i)_{i=1}^n$
- Goal: predict an unseen point Y_{n+1} at X_{n+1} with confidence
- How? Given a miscoverage level $\alpha \in [0, 1]$, build a predictive set C_{α} such that: $\mathbb{P}\left(Y_{\alpha} \in C_{\alpha}(Y_{\alpha})\right) > 1$ (1)

$$\mathbb{P}\left\{Y_{n+1}\in\mathcal{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha,\tag{1}$$

and C_{α} should be as small as possible, in order to be informative For example: $\alpha = 0.1$ and obtain a 90% coverage interval

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X_i, Y_i)_{i=1}^n$
- Goal: predict an unseen point Y_{n+1} at X_{n+1} with confidence
- How? Given a miscoverage level $\alpha \in [0, 1]$, build a predictive set C_{α} such that: $\mathbb{P}\left\{Y \to C C (X \to 0)\right\} \ge 1 - \alpha$ (1)

$$\mathbb{P}\left\{Y_{n+1}\in\mathcal{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha,\tag{1}$$

and C_{α} should be as small as possible, in order to be informative For example: $\alpha = 0.1$ and obtain a 90% coverage interval

- Construction of the predictive intervals should be
 - agnostic to the model
 - agnostic to the data distribution
- Validity should be ensured
 - $\circ~$ in finite samples
 - $\circ~$ for all data distribution and underlying model

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concellus d'in au vous outre

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR) Generalization of SCP: going beyond regression

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concellus d'un au una sulve

Split Conformal Prediction (SCP)^{1,2,3}: toy example

¹Vovk et al. (2005), Algorithmic Learning in a Random World

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), Algorithmic Learning in a Random World

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

- Predict with $\hat{\mu}$
- Get the |residuals|, a.k.a.
 conformity scores
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), Algorithmic Learning in a Random World

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), *Algorithmic Learning in a Random World*

²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal + 1 conformity scores :

 $\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$

(+ worst-case scenario)

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal + 1 conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$$

(+ worst-case scenario)

5. Compute the $1 - \alpha$ quantile of these scores, noted $q_{1-\alpha}(S)$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal + 1 conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$$

(+ worst-case scenario)

- 5. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 6. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mu}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal conformity scores :

 $\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \mathrm{Cal}\}$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\}$$

5. Compute the $(1 - \alpha) \left(\frac{1}{\# \text{Cal}} + 1 \right)$ quantile of these scores, noted $q_{1-\alpha}(S)$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\}$$

5. Compute the $(1 - \alpha) \left(\frac{1}{\# \text{Cal}} + 1 \right)$ quantile of these scores, noted $q_{1-\alpha}(S)$ 6. For a new point X_{n+1} , return $\widehat{C}_{\alpha}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) - q_{1-\alpha}(S); \widehat{\mu}(X_{n+1}) + q_{1-\alpha}(S)]$

SCP: theoretical foundation

Definition (Exchangeability).

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if, for any permutation σ of [[1, n]]:

$$\left(\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right) \stackrel{d}{=} \left(\left(X_{\sigma(1)}, Y_{\sigma(1)}\right), \ldots, \left(X_{\sigma(n)}, Y_{\sigma(n)}\right)\right).$$

SCP: theoretical foundation

Definition (Exchangeability).

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if, for any permutation σ of [1, n]:

$$\left(\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right) \stackrel{d}{=} \left(\left(X_{\sigma(1)}, Y_{\sigma(1)}\right), \ldots, \left(X_{\sigma(n)}, Y_{\sigma(n)}\right)\right).$$

Toy case: Z_1 and Z_2 are exchangeable if $(Z_1, Z_2) \stackrel{d}{=} (Z_2, Z_1)$.

Definition (Exchangeability).

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if, for any permutation σ of [[1, n]]:

$$\left(\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right) \stackrel{d}{=} \left(\left(X_{\sigma(1)}, Y_{\sigma(1)}\right), \ldots, \left(X_{\sigma(n)}, Y_{\sigma(n)}\right)\right).$$

Example (exchangeable sequences).

• i.i.d. samples

Definition (Exchangeability).

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if, for any permutation σ of [[1, n]]:

$$\left(\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right) \stackrel{d}{=} \left(\left(X_{\sigma(1)}, Y_{\sigma(1)}\right), \ldots, \left(X_{\sigma(n)}, Y_{\sigma(n)}\right)\right).$$

• i.i.d. samples

• The components of $\mathcal{N}\left(\begin{pmatrix}m\\\vdots\\\vdots\\m\end{pmatrix}, \begin{pmatrix}\sigma^2\\\ddots\\\gamma^2\\\gamma^2\\\ddots\\\gamma^2\\\cdots\\\sigma^2\end{pmatrix}\right)$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem (Marginal validity).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^a. SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem (Marginal validity).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^a. SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S_i\}_{i \in \operatorname{Cal}} \cup \{S_{n+1}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{\#\mathrm{Cal}+1}.$$

^aOnly the calibration and test data need to be exchangeable.

Proof architecture of SCP guarantees

Lemma (Quantile lemma).

If
$$(U_1, \ldots, U_n, U_{n+1})$$
 are exchangeable, then for any $\beta \in]0, 1[:$
 $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)) \geq \beta.$
Additionally, if $U_1, \ldots, U_n, U_{n+1}$ are almost surely distinct, then:
 $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)) \leq \beta + \frac{1}{n+1}.$

Proof architecture of SCP guarantees

Lemma (Quantile lemma).

If
$$(U_1, \ldots, U_n, U_{n+1})$$
 are exchangeable, then for any $\beta \in]0, 1[:$
 $\mathbb{P}(U_{n+1} \leq q_\beta(U_1, \ldots, U_n, +\infty)) \geq \beta.$
Additionally, if $U_1, \ldots, U_n, U_{n+1}$ are almost surely distinct, then:
 $\mathbb{P}(U_{n+1} \leq q_\beta(U_1, \ldots, U_n, +\infty)) \leq \beta + \frac{1}{n+1}.$

When $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable, the scores $\{S_i\}_{i \in Cal} \cup \{S_{n+1}\}$ are exchangeable. \hookrightarrow applying the quantile lemma to the scores concludes the proof.

$$\begin{split} \left\{ Y_{n+1} \in \widehat{C}_{n,\alpha} \left(X_{n+1} \right) \right\} &= \left\{ \widehat{\mu} \left(X_{n+1} \right) - q_{1-\alpha} \left(\mathcal{S} \right) \le Y_{n+1} \le \widehat{\mu} \left(X_{n+1} \right) + q_{1-\alpha} \left(\mathcal{S} \right) \right\} \\ &= \left\{ |Y_{n+1} - \widehat{\mu} \left(X_{n+1} \right)| \le q_{1-\alpha} \left(\mathcal{S} \right) \right\} \\ &= \left\{ S_{n+1} \le q_{1-\alpha} \left(\mathcal{S} \right) \right\}. \end{split}$$

First note that $U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty) \iff U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, U_{n+1}).$

Proof of the quantile lemma

First note that
$$U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, +\infty) \iff U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1}).$$

By exchangeability, for any $i \in \llbracket 1, n+1 \rrbracket$:
 $\mathbb{P} (U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})) \stackrel{d}{=} \mathbb{P} (U_i \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})).$ Thus:
 $\mathbb{P} (U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})) = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{P} (U_i \leq q_{\beta}(U_1, \dots, U_n, U_{n+1}))$
 $= \frac{1}{n+1} \mathbb{E} \left[\sum_{i=1}^{n+1} \mathbb{I} \{ U_i \leq q_{\beta}(U_1, \dots, U_n, U_{n+1}) \} \right]$
 $\geq \frac{1}{n+1} \mathbb{E} [\lceil \beta(n+1) \rceil]$
 $= \frac{\lceil \beta(n+1) \rceil}{n+1}$
 $\geq \beta,$

proving the first statement.

Proof of the quantile lemma

First note that
$$U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, +\infty) \iff U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})$$
.
By exchangeability, for any $i \in [\![1, n+1]\!]$:
 $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})) \stackrel{d}{=} \mathbb{P}(U_i \leq q_{\beta}(U_1, \dots, U_n, U_{n+1}))$. Thus:
 $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})) = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{P}(U_i \leq q_{\beta}(U_1, \dots, U_n, U_{n+1}))$
 $= \frac{1}{n+1} \mathbb{E}\left[\sum_{i=1}^{n+1} \mathbb{I}\left\{U_i \leq q_{\beta}(U_1, \dots, U_n, U_{n+1})\right\}\right]$
 $= \frac{1}{n+1} \mathbb{E}\left[\left[\beta(n+1)\right]\right]$ if all (U_i) are distinct
 $= \frac{\left[\beta(n+1)\right]}{n+1}$
 $\leq \beta + \frac{1}{n+1}$,

proving the second statement.

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem (Marginal validity Vovk et al. (2005)).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^d. SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S_i\}_{i\in \operatorname{Cal}}\cup\{S_{n+1}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{\#\mathrm{Cal}+1}.$$

^dOnly the calibration and test data need to be exchangeable.

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem (Marginal validity Vovk et al. (2005)). Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^d. SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha.$$

Additionally, if the scores $\{S_i\}_{i \in \operatorname{Cal}} \cup \{S_{n+1}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{\#\mathrm{Cal}+1}.$$

^dOnly the calibration and test data need to be exchangeable.

× Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$$

Conditional coverage implies adaptiveness

Marginal coverage: P { Y_{n+1} ∈ C
α (X{n+1}) } the errors may differ across regions of the input space (i.e. non-adaptive)

Conditional coverage implies adaptiveness

- Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})\right\}$ the errors may differ across regions of the input space (i.e. non-adaptive)
- Conditional coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1}) | X_{n+1}\right\}$ errors are evenly distributed (i.e. fully adaptive)

Conditional coverage implies adaptiveness

- Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}$ the errors may differ across regions of the input space (i.e. non-adaptive)
- Conditional coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1}\right\}$ errors are evenly distributed (i.e. fully adaptive)
- Conditional coverage is stronger than marginal coverage

Predict with \$\httyce{\mu}\$
Build \$\hat{C}_{\alpha}(x)\$: [\$\httyce{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\$]

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Complete l'in an annual a star

Conformalized Quantile Regression (CQR)⁵

⁵Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁵Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

^bRomano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁵Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set
- 3. Obtain a set of #Cal + 1 conformity scores S:

$$S = \{S_i = \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right), i \in \mathrm{Cal}\} \cup \{+\infty\}$$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set
- 3. Obtain a set of #Cal + 1 conformity scores S:

$$\mathcal{S} = \{S_i = \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right), i \in \mathsf{Cal}\} \cup \{+\infty\}$$

4. Compute the $1 - \alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set
- 3. Obtain a set of #Cal + 1 conformity scores S:

$$\mathcal{S} = \{S_i = \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right), i \in \mathsf{Cal}\} \cup \{+\infty\}$$

- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})\right]$$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \widehat{QR}_{lower} and \widehat{QR}_{upper} by training the algorithm \mathcal{A} on the proper training set
- 3. Obtain a set of #Cal conformity scores S:

$$S = \{S_i = \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right), i \in \mathsf{Cal}\}$$

4. Compute the $(1 - \alpha)\left(\frac{1}{\#\mathsf{Cal}} + 1\right)$ quantile of these scores, noted $q_{1-\alpha}(S)$

5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})\right]$$

CQR: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Romano et al. (2019).

Theorem (Marginal validity of CQR Romano et al. (2019)).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^a. CQR on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i\in\mathrm{Cal}}\cup\{S_{n+1}\}$ are almost surely distinct, then

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}
ight)
ight\}\leq1-lpha+rac{1}{\#\mathrm{Cal}+1}.$$

^aOnly the calibration and test data need to be exchangeable.

Proof: quantile lemma again $Y_{n+1} \in \widehat{C}_{n,\alpha}\left(X_{n+1}\right) \Leftrightarrow S_{n+1} \leq q_{1-\alpha}\left(S\right)$.

CQR: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Romano et al. (2019).

Theorem (Marginal validity of CQR Romano et al. (2019)).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^a. CQR on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i\in\mathrm{Cal}}\cup\{S_{n+1}\}$ are almost surely distinct, then

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}
ight)
ight\}\leq1-lpha+rac{1}{\#\mathrm{Cal}+1}.$$

^aOnly the calibration and test data need to be exchangeable.

 $\text{Proof: quantile lemma again } Y_{n+1} \in \widehat{\mathcal{C}}_{n,\alpha}\left(X_{n+1}\right) \Leftrightarrow S_{n+1} \leq q_{1-\alpha}\left(\mathcal{S}\right).$

★ Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$

26 / 78

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Complete l'in an annual a star

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

2. Get \hat{A} by training the algorithm A on the proper training set

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $s(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $\mathbf{s}(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores Ex 2: $\mathbf{s}(\hat{A}(X_i), Y_i) := \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right)$ in CQR

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $\mathbf{s}(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores

- Ex 2: $\mathbf{s}(\hat{A}(X_i), Y_i) := \max\left(\widehat{\mathbf{QR}}_{\mathsf{lower}}(X_i) Y_i, Y_i \widehat{\mathbf{QR}}_{\mathsf{upper}}(X_i)\right)$ in CQR
- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $s(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores

Ex 2: $\mathbf{s}(\hat{A}(X_i), Y_i) := \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right)$ in CQR

4. Compute the $1 - \alpha$ quantile of these scores, noted $q_{1-\alpha}(S)$

5. For a new point X_{n+1} , return

 $\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S})\}$

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $s(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores

- Ex 2: $\mathbf{s}(\hat{A}(X_i), Y_i) := \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) Y_i, Y_i \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right)$ in CQR
- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point X_{n+1} , return

$$\widehat{C}_{\alpha}(X_{n+1}) = \{ y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S}) \}$$

Ex 1:
$$\widehat{C}_{\alpha}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) \pm q_{1-\alpha}(\mathcal{S})]$$

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: s $(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores

- Ex 2: $s(\hat{A}(X_i), Y_i) := max\left(\widehat{QR}_{lower}(X_i) Y_i, Y_i \widehat{QR}_{upper}(X_i)\right)$ in CQR
- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point X_{n+1} , return

$$\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S})\}$$

Ex 2:
$$\widehat{C}_{\alpha}(X_{n+1}) = [\widehat{QR}_{\text{lower}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S});$$
$$\widehat{QR}_{\text{upper}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$$

1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)

Train

Calib

- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $s(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores

Ex 2: $\mathbf{s}(\hat{A}(X_i), Y_i) := \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right)$ in CQR

- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \{y ext{ such that } extbf{s}(\widehat{A}(X_{n+1}),y) \leq q_{1-lpha}\left(\mathcal{S}
ight)\}$$

 \hookrightarrow The definition of the conformity scores is crucial, as they incorporate almost all the information: data + underlying model

SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005).

Theorem (Marginal validity of SCP Vovk et al. (2005)).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^a. SCP on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i\in\mathrm{Cal}}\cup\{S_{n+1}\}$ are almost surely distinct, then

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\leq1-\alpha+\frac{1}{\#\mathrm{Cal}+1}$$

^aOnly the calibration and test data need to be exchangeable.

Proof: application of the quantile lemma.

SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005).

Theorem (Marginal validity of SCP Vovk et al. (2005)).

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable^a. SCP on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i\in\mathrm{Cal}}\cup\{S_{n+1}\}$ are almost surely distinct, then

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}
ight)
ight\}\leq1-lpha+rac{1}{\#\mathrm{Cal}+1}.$$

^aOnly the calibration and test data need to be exchangeable.

Proof: application of the quantile lemma.

X Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$$

78

- $Y \in \{1,\ldots,C\}$
- $\hat{A}(X) = (\hat{p}_1(X), \dots, \hat{p}_C(X))$

(*C* classes) (estimated probabilities)

- $Y \in \{1, \ldots, C\}$
- $\hat{A}(X) = (\hat{p}_1(X), \dots, \hat{p}_C(X))$
- $\mathbf{s}(\hat{A}(X), Y) := 1 (\hat{A}(X))_Y$

(*C* classes) (estimated probabilities)

- $Y \in \{1, \ldots, C\}$
- $\hat{A}(X) = (\hat{p}_1(X), \dots, \hat{p}_C(X))$
- $\mathbf{s}(\hat{A}(X), Y) := 1 (\hat{A}(X))_Y$
- For a new point X_{n+1} , return

 $\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S})\}$

(C classes)

(estimated probabilities)

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

• $q_{1-\alpha}(\mathcal{S}) = 0.65$

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

- $q_{1-\alpha}(S) = 0.65$
- $\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

- $q_{1-\alpha}(S) = 0.65$
- $\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$ $\hookrightarrow s(\hat{A}(X_{n+1}), \text{``dog''}) = 0.95$

 $\texttt{`'dog''}\notin \widehat{\mathcal{C}}_{\alpha}(X_{n+1})$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{\boldsymbol{\rho}}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

• $q_{1-\alpha}(S) = 0.65$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$

 $ext{``dog''}
otin \widehat{C}_{lpha}(X_{n+1}) \\ ext{``tiger''} \in \widehat{C}_{lpha}(X_{n+1}) \\ \end{array}$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

• $q_{1-\alpha}(\mathcal{S}) = 0.65$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\Rightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$
 $\Rightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\Rightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65 \le q_{1-\alpha}(S)$

 $\begin{array}{l} \text{``dog''} \notin \widehat{C}_{\alpha}(X_{n+1}) \\ \text{``tiger''} \in \widehat{C}_{\alpha}(X_{n+1}) \end{array}$ "cat" $\in \widehat{C}_{\alpha}(X_{n+1})$

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

- $q_{1-\alpha}(\mathcal{S}) = 0.65$
- $\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$ $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$ $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$ $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65 \le q_{1-\alpha}(S)$
- $\widehat{C}_{\alpha}(X_{n+1}) = \{$ "tiger", "cat" $\}$

"dog" $\notin \widehat{C}_{\alpha}(X_{n+1})$ "tiger" $\in \widehat{C}_{\alpha}(X_{n+1})$ "cat" $\in \widehat{C}_{\alpha}(X_{n+1})$

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
Si	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(\mathcal{S}) = 0.45$$

(Cali	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
	$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
I	$\hat{\mathbf{p}}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
I	$\hat{\mathbf{D}}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
	S _i	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(\mathcal{S}) = 0.45$$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{``dog''}) = 0.95$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{``tiger''}) = 0.40$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{``tat''}) = 0.65$

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{\boldsymbol{\rho}}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
Si	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(\mathcal{S}) = 0.45$$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65$

• Scores on the calibration set

Cali	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
Si	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(\mathcal{S}) = 0.45$$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65$

"dog" $\notin \widehat{C}_{\alpha}(X_{n+1})$ "tiger" $\in \widehat{C}_{\alpha}(X_{n+1})$ "cat" $\notin \widehat{C}_{\alpha}(X_{n+1})$

• Scores on the calibration set

Cali	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
Si	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(\mathcal{S}) = 0.45$$

•
$$\hat{A}(X_{n+1}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"dog"}) = 0.95$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\hookrightarrow \mathbf{s}(\hat{A}(X_{n+1}), \text{"cat"}) = 0.65$

"dog" $\notin \widehat{C}_{\alpha}(X_{n+1})$ "tiger" $\in \widehat{C}_{\alpha}(X_{n+1})$ "cat" $\notin \widehat{C}_{\alpha}(X_{n+1})$

• $\widehat{C}_{\alpha}(X_{n+1}) = \{$ "tiger" $\}$

efficiency yet non-adaptivity of the simplest classification scores

- Outputs the most efficient set possible (i.e. achieving the smallest average set size, Sadinle et al., 2018),
- X Does not allow to discriminate between "easy" and "hard" test point. In practice, it leads to predictive sets that under-cover (resp. over-cover) on "hard" (resp. "easy") subgroups. This is due to the fact that the same threshold q_{1-α}(S) is applied to any test point.

SCP: classification with Adaptive Prediction Sets⁸

1. Sort in decreasing order $\hat{\rho}_{\sigma_x(1)}(x) \ge \ldots \ge \hat{\rho}_{\sigma_x(C)}(x)$

⁸Romano et al. (2020b), *Classification with Valid and Adaptive Coverage*, NeurIPS
SCP: classification with Adaptive Prediction Sets⁸

1. Sort in decreasing order $\hat{\rho}_{\sigma_x(1)}(x) \ge \ldots \ge \hat{\rho}_{\sigma_x(C)}(x)$

2. $\mathbf{s}(x,y;\hat{\boldsymbol{p}}) := \sum_{k=1}^{\sigma_x^{-1}(y)} \hat{\boldsymbol{p}}_{\sigma_x(k)}(x)$

(sum of the estimated probabilities

associated to classes at least as large as that of the true class Y)

⁸Romano et al. (2020b), Classification with Valid and Adaptive Coverage, NeurIPS

SCP: classification with Adaptive Prediction Sets⁸

1. Sort in decreasing order $\hat{\rho}_{\sigma_x(1)}(x) \ge \ldots \ge \hat{\rho}_{\sigma_x(C)}(x)$

2.
$$\mathbf{s}(x, y; \hat{\boldsymbol{\rho}}) := \sum_{k=1}^{\sigma_x^{-1}(y)} \hat{\boldsymbol{\rho}}_{\sigma_x(k)}(x)$$

(sum of the estimated probabilities

associated to classes at least as large as that of the true class Y)

3. Return the set of classes $\{\sigma_{X_{n+1}}(1), \dots, \sigma_{X_{n+1}}(r^*)\}$, where $r^* = \operatorname*{arg\,max}_{1 \le r \le C} \left\{ \sum_{k=1}^r \hat{p}_{\sigma_{X_{n+1}}(k)}(X_{n+1}) < q_{1-\alpha}(\mathcal{S}) \right\} + 1$

⁸Romano et al. (2020b), *Classification with Valid and Adaptive Coverage*, NeurIPS

SCP: classification with Adaptive Prediction Sets⁸

1. Sort in decreasing order $\hat{\rho}_{\sigma_x(1)}(x) \ge \ldots \ge \hat{\rho}_{\sigma_x(C)}(x)$

2.
$$\mathbf{s}(x,y;\hat{\boldsymbol{\rho}}) := \sum_{k=1}^{\sigma_x^{-1}(y)} \hat{\boldsymbol{\rho}}_{\sigma_x(k)}(x)$$

(sum of the estimated probabilities

associated to classes at least as large as that of the true class Y)

3. Return the set of classes $\{\sigma_{X_{n+1}}(1), \ldots, \sigma_{X_{n+1}}(r^{\star})\}$, where

⁸Romano et al. (2020b), *Classification with Valid and Adaptive Coverage*, NeurIPS Figure highly inspired by Angelopoulos and Bates (2023).

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

•	Scores	on	the	calibration	set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

•
$$q_{1-\alpha}(\mathcal{S}) = 0.95$$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

•
$$q_{1-\alpha}(\mathcal{S}) = 0.95$$

 \hookrightarrow Ex 1: $\hat{A}(X_{n+1}) = (0.05, 0.45, 0.5)$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

•
$$q_{1-\alpha}(\mathcal{S}) = 0.95$$

$$\hookrightarrow$$
 Ex 1: $\hat{A}(X_{n+1}) = (0.05, 0.45, 0.5), r^* = 2$

 $\widehat{C}_{\alpha}(X_{n+1}) = \{$ "tiger", "cat" $\}$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{\boldsymbol{\rho}}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

•
$$q_{1-\alpha}(\mathcal{S}) = 0.95$$

$$\hookrightarrow$$
 Ex 1: $\hat{A}(X_{n+1}) = (0.05, 0.45, 0.5), r^* = 2$

 $\widehat{C}_{\alpha}(X_{n+1}) = \{\text{``tiger'', ``cat''}\}$

$$\hookrightarrow$$
 Ex 2: $\hat{A}(X_{n+1}) = (0.03, 0.95, 0.02)$

• Scores on the calibration set

Cal_i	"dog"	"dog"	"dog"	"tiger"	"tiger"	"tiger"	"tiger"	"cat"	"cat"	"cat"
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

•
$$q_{1-\alpha}(\mathcal{S}) = 0.95$$

$$\hookrightarrow$$
 Ex 1: $\hat{A}(X_{n+1}) = (0.05, 0.45, 0.5), r^* = 2$

 \hookrightarrow Ex 2: $\hat{A}(X_{n+1}) = (0.03, 0.95, 0.02), r^* = 1$

 $\widehat{C}_{\alpha}(X_{n+1}) = \{\text{``tiger'', ``cat''}\}$

$$\widehat{C}_{\alpha}(X_{n+1}) = \{$$
 "tiger" $\}$

- **Simple** procedure which quantifies the uncertainty of **any** predictive model \hat{A} by returning predictive regions
- Finite-sample guarantees
- Distribution-free as long as the data are exchangeable (and so are the scores)

- **Simple** procedure which quantifies the uncertainty of **any** predictive model \hat{A} by returning predictive regions
- Finite-sample guarantees
- Distribution-free as long as the data are exchangeable (and so are the scores)
- Marginal theoretical guarantee over the joint (X, Y) distribution, and not conditional, i.e., no guarantee that for any x:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)|X_{n+1}=x\right\}\geq 1-\alpha.$$

- **Simple** procedure which quantifies the uncertainty of **any** predictive model \hat{A} by returning predictive regions
- Finite-sample guarantees
- Distribution-free as long as the data are exchangeable (and so are the scores)
- Marginal theoretical guarantee over the joint (X, Y) distribution, and not conditional, i.e., no guarantee that for any x:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1}\right)|X_{n+1}=x\right\}\geq 1-\alpha.$$

 \hookrightarrow marginal also over the whole calibration set and the test point!

- Conditional coverage
- Computational cost vs statistical power
- Exchangeability

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees On distribution-free X-conditional validity Y-conditional validity Impact of the calibration set on the coverage

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding Komparks

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \{y ext{ such that } extbf{s}(\widehat{\mathcal{A}}(X_{n+1}),y) \leq q_{1-lpha}\left(\mathcal{S}
ight)\}$$

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{\mathcal{A}}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S})\}$$

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{\mathcal{A}}(X_{n+1}), y) \leq q_{1-lpha}(\mathcal{S})\}$$

	Standard SCP Vovk et al. (2005)	CQR Romano et al. (2019)
s $(\hat{A}(X), Y)$ $\widehat{C}_{\alpha}(x)$ Visu.	$ \hat{\mu}(X) - Y $ $[\hat{\mu}(X) \pm q_{1-\alpha}(S)]$	$\max(\widehat{QR}_{lower}(X) - Y,$ $Y - \widehat{QR}_{upper}(X))$ $[\widehat{QR}_{lower}(X) - q_{1-\alpha}(S);$ $\widehat{QR}_{upper}(X) + q_{1-\alpha}(S)]$
1	black-box around a "us- able" prediction	adaptive
×	not adaptive	no black-box around a "us- able" prediction

 $\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S})\}$

	Standard SCP Vovk et al. (2005)	Locally weighted SCP Lei et al. (2018)	CQR Romano et al. (2019)
$s(\hat{A}(X),Y)$	$ \hat{\mu}(X) - Y $	$\frac{ \hat{\mu}(X) - Y }{\hat{\rho}(X)}$	$\max(\widehat{QR}_{lower}(X) - Y,$ $Y - \widehat{QR}_{upper}(X))$
$\widehat{C}_{\alpha}(x)$	$[\hat{\mu}(x) \pm q_{1-lpha}\left(\mathcal{S} ight)]$	$[\hat{\mu}(x) \pm q_{1-lpha}(S)\hat{ ho}(x)]$	$[\widehat{QR}_{lower}(x) - q_{1-\alpha}(S);$ $\widehat{QR}_{upper}(x) + q_{1-\alpha}(S)]$
Visu.	$ \begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ -2 \\ -4 \\ 0 \\ -4 \\ 0 \\ -4 \\ 0 \\ 0 \\ -2 \\ -4 \\ 0 \\ 0 \\ -2 \\ -4 \\ 0 \\ 0 \\ -2 \\ -4 \\ 0 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ 0 \\ -2 \\ -4 \\ -4 \\ 0 \\ -2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4$	$ \begin{array}{c} 2 \\ 0 \\ -2 \\ -3 \\ 0 \\ -2 \\ -4 \\ 0 \\ 2 \\ x \end{array} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \\ \end{array}{} \\ \\ \\ \\ \end{array}{} \\ \\ \\ \\ \\ \end{array}{} \\ \\ \\ \\ \end{array}{} \\ \\ \\ \\ \\ \end{array}{} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
1	black-box around a "us- able" prediction	black-box around a "usable" prediction	adaptive
×	not adaptive	limited adaptiveness	no black-box around a "us- able" prediction

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees On distribution-free X-conditional validity

Y-conditional validity

Impact of the calibration set on the coverage

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding Komparks

 $\widehat{C}_{\alpha} =$ estimated predictive set based on *n* data points.

Definition (Distribution-free X-conditional validity).

 \widehat{C}_{α} achieves distribution-free X-conditional validity if:

- for any distribution \mathcal{D} ,
- for any associated exchangeable joint distribution $\mathcal{D}^{\operatorname{exch}(n+1)}$

we have that:

$$\mathbb{P}_{\mathcal{D}^{\mathrm{exch}(n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)}\right) \stackrel{a.s.}{\geq} 1 - \alpha$$

Theorem (Impossibility results Vovk (2012); Lei and Wasserman (2014)).

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_X -almost all \mathcal{D}_X -non-atoms $x \in \mathcal{X}$, it holds:

► Regression: $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(\max\left(\widehat{C}_{\alpha}\left(x\right)\right) = \infty\right) \geq 1 - \alpha$,

• Classification: for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(y \in \widehat{\mathcal{C}}_{\alpha}\left(x\right)\right) \geq 1 - \alpha$.

Theorem (Impossibility results Vovk (2012); Lei and Wasserman (2014)). If \hat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_{X} almost all \mathcal{D}_{X} -non-atoms $x \in \mathcal{X}$, it holds: \blacktriangleright Regression: $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(x\right)\right) = \infty \right) \geq 1 - \alpha$, \triangleright Classification: for any $y \in \mathcal{Y}$, $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(y \in \widehat{C}_{\alpha}\left(x\right)\right) \geq 1 - \alpha$.

 \hookrightarrow distribution-free X-conditional hardness result apply beyond CP

Theorem (Impossibility results Vovk (2012); Lei and Wasserman (2014)). If \hat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_{X} almost all \mathcal{D}_{X} -non-atoms $x \in \mathcal{X}$, it holds: • Regression: $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(x\right)\right) = \infty\right) \geq 1 - \alpha$, • Classification: for any $y \in \mathcal{Y}$, $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(y \in \widehat{C}_{\alpha}\left(x\right)\right) \geq 1 - \alpha$.

- \hookrightarrow distribution-free X-conditional hardness result apply beyond CP
- $\,\,\hookrightarrow\,\, X$ -conditional estimators are overly large even on easy cases

Theorem (Impossibility results Vovk (2012); Lei and Wasserman (2014)).

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_X -almost all \mathcal{D}_X -non-atoms $x \in \mathcal{X}$, it holds:

• Regression: $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(\max\left(\widehat{\mathcal{C}}_{\alpha}\left(x\right)\right)=\infty\right)\geq 1-\alpha$,

• Classification: for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(y \in \widehat{\mathcal{C}}_{\alpha}\left(x\right)\right) \geq 1 - \alpha$.

- \hookrightarrow distribution-free X-conditional hardness result apply beyond CP
- \hookrightarrow X-conditional estimators are overly large even on easy cases
- \hookrightarrow the lower bounds are tight

Example (Naive estimator). $C_{\alpha}(\cdot; \xi) \equiv \mathcal{Y}\mathbb{1} \{\xi \leq 1 - \alpha\} + \emptyset\mathbb{1} \{\xi > \alpha\}, \text{ where } \xi \sim \mathcal{U}([0, 1]).$

Theorem (Impossibility results Vovk (2012); Lei and Wasserman (2014)).

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_X -almost all \mathcal{D}_X -non-atoms $x \in \mathcal{X}$, it holds:

• Regression: $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(\max\left(\widehat{C}_{\alpha}\left(x\right)\right)=\infty\right)\geq 1-\alpha$,

► Classification: for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left(y \in \widehat{\mathcal{C}}_{\alpha}\left(x\right)\right) \geq 1 - \alpha$.

- \hookrightarrow distribution-free X-conditional hardness result apply beyond CP
- \hookrightarrow X-conditional estimators are overly large even on easy cases
- \hookrightarrow the lower bounds are tight
- $\stackrel{}{\hookrightarrow} \underline{\text{Classification: every label}}_{\alpha} \text{ is likely to be included in } \widehat{C}_{\alpha}. \\ \widehat{C}_{\alpha} \text{ is likely to be large: for any } \mathcal{D}, \text{ for } \mathcal{D}_X\text{-almost all } \mathcal{D}_X\text{-non-atoms } x \in \mathcal{X}, \\ \mathbb{E}_{\mathcal{D}^{\otimes(n)}} \left[\# \widehat{C}_{\alpha} \left(x \right) \right] \geq (1 \alpha) \# \mathcal{Y}.$

Definition (distribution-free $(1 - \alpha, \delta)$ -X-conditional validity).

Let $\delta > 0$ be a tolerance level. An estimator \widehat{C}_{α} achieves distribution-free $(1 - \alpha, \delta)$ -X-conditional validity if for any distribution \mathcal{D} , for any $\mathcal{X} \subseteq \mathcal{X}$ such that $\mathbb{P}_{\mathcal{D}_X} (X \in \mathcal{X}) \ge \delta$, and for any associated exchangeable joint distribution $\mathcal{D}^{\operatorname{exch}(n+1)}$, we have:

$$\mathbb{P}_{\mathcal{D}^{\text{exch}(n+1)}}\left(Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)|X_{n+1}\in\mathcal{X}\right)\geq 1-\alpha.$$

Definition (distribution-free $(1 - \alpha, \delta)$ -X-conditional validity).

Let $\delta > 0$ be a tolerance level.

An estimator \widehat{C}_{α} achieves distribution-free $(1 - \alpha, \delta)$ -X-conditional validity if for any distribution \mathcal{D} , for any $\mathcal{X} \subseteq \mathcal{X}$ such that $\mathbb{P}_{\mathcal{D}_X}(X \in \mathcal{X}) \geq \delta$, and for any associated exchangeable joint distribution $\mathcal{D}^{\operatorname{exch}(n+1)}$, we have:

$$\mathbb{P}_{\mathcal{D}^{\mathsf{exch}(n+1)}}\left(Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)|X_{n+1}\in\mathcal{X}\right)\geq 1-\alpha.$$

An estimator achieving $(1 - \alpha, \delta) - X$ -cond. valid efficiency) An estimator achieving $(1 - \alpha, \delta) - X$ -conditional validity can not be more efficient than an estimator achieving **distribution-free marginal validity at the level** $1 - \alpha \delta$.

 \hookrightarrow In practive, consider small $\delta \to$ unefficient predictive sets.

Definition (distribution-free group-features-conditional validity).

Let $G := (G^{(k)})_{k=1}^{K}$ represents groups on the features space (possibly overlapping). An estimator \widehat{C}_{α} achieves distribution-free *G*-conditional validity if for any distribution \mathcal{D} , and for any associated exchangeable joint distribution $\mathcal{D}^{\operatorname{exch}(n+1)}$, we have:

$$\mathbb{P}_{\mathcal{D}^{\mathsf{exch}(n+1)}}\left(Y_{n+1}\in\widehat{C}_{\alpha}\left(X_{n+1},G_{n+1}\right)|G_{n+1}\right)\overset{a.s.}{\geq}1-\alpha.$$

Theorem (General MCV hardness result).

If \widehat{C}_{α} is distribution-free group-features-conditionally valid then for any distribution \mathcal{D} , for any group g such that $\mathcal{D}_{G}(g) := \mathbb{P}_{\mathcal{D}}(G = g) > 0$, it holds:

► Regression

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{\mathsf{mes}}\left(\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1},g\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{g,n}\geq 1-\alpha-\mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1},$$

$$\text{for any } y \in \mathcal{Y}, \ \mathbb{P}_{\mathcal{P}^{\otimes (n+1)}}\left(\textit{alert} < 2|\textit{handout}: 0 > y \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}, g\right)\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}.$$

Theorem (General MCV hardness result).

If \widehat{C}_{α} is distribution-free group-features-conditionally valid then for any distribution \mathcal{D} , for any group g such that $\mathcal{D}_{G}(g) := \mathbb{P}_{\mathcal{D}}(G = g) > 0$, it holds:

► Regression

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\max\left(\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1},g\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{g,n}\geq 1-\alpha-\mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1},$$

Classification

for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{P^{\otimes (n+1)}}\left(alert < 2|handout: 0 > y \in \widehat{C}_{\alpha}\left(X_{n+1}, g\right)\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}$.

Theorem (General MCV hardness result).

If \widehat{C}_{α} is distribution-free group-features-conditionally valid then for any distribution \mathcal{D} , for any group g such that $\mathcal{D}_{G}(g) := \mathbb{P}_{\mathcal{D}}(G = g) > 0$, it holds:

► Regression

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{\mathsf{mes}}\left(\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1},g\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{g,n}\geq 1-\alpha-\mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1},$$

Classification

for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{\mathcal{P}^{\otimes (n+1)}}\left(alert < 2|handout: 0 > y \in \widehat{C}_{\alpha}\left(X_{n+1}, g\right)\right) \ge 1 - \alpha - \Delta_{g,n} \ge 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}$.

Theorem (General MCV hardness result).

If \widehat{C}_{α} is distribution-free group-features-conditionally valid then for any distribution \mathcal{D} , for any group g such that $\mathcal{D}_{G}(g) := \mathbb{P}_{\mathcal{D}}(G = g) > 0$, it holds:

Regression

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{\mathsf{mes}}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{g,n}\geq 1-\alpha-\mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1},$$

Classification

for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{P^{\otimes (n+1)}}\left(alert < 2|handout: 0 > y \in \widehat{C}_{\alpha}\left(X_{n+1}, g\right)\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}$.

Irreducible term: consider $\widehat{\mathcal{C}}_{\alpha}$ outputting \mathcal{Y} with probability $1 - \alpha$ and \emptyset otherwise.

Theorem (General MCV hardness result).

If \widehat{C}_{α} is distribution-free group-features-conditionally valid then for any distribution \mathcal{D} , for any group g such that $\mathcal{D}_{G}(g) := \mathbb{P}_{\mathcal{D}}(G = g) > 0$, it holds:

- ► Regression $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\max\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty\right) \ge 1 - \alpha - \Delta_{g,n} \ge 1 - \alpha - \mathcal{D}_{G}(g)\sqrt{n+1},$
- Classification

for any
$$y \in \mathcal{Y}$$
, $\mathbb{P}_{P^{\otimes (n+1)}}\left(alert < 2|handout: 0 > y \in \widehat{C}_{\alpha}\left(X_{n+1}, g\right)\right) \ge 1 - \alpha - \Delta_{g,n} \ge 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}$.

Irreducible term: consider \widehat{C}_{α} outputting \mathcal{Y} with probability $1 - \alpha$ and \emptyset otherwise. $\Delta_{g,n}$ term: smaller than $\mathcal{D}_{G}(g)\sqrt{n+1}$

Theorem (General MCV hardness result).

If \widehat{C}_{α} is distribution-free group-features-conditionally valid then for any distribution \mathcal{D} , for any group g such that $\mathcal{D}_G(g) := \mathbb{P}_{\mathcal{D}}(G = g) > 0$, it holds:

- ► Regression $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{G}(g)\sqrt{n+1},$
- Classification

for any $y \in \mathcal{Y}$, $\mathbb{P}_{\mathcal{P}^{\otimes (n+1)}}\left(alert < 2|handout: 0 > y \in \widehat{C}_{\alpha}\left(X_{n+1}, g\right)\right) \ge 1 - \alpha - \Delta_{g,n} \ge 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}.$

Irreducible term: consider \widehat{C}_{α} outputting \mathcal{Y} with probability $1 - \alpha$ and \emptyset otherwise. $\Delta_{g,n}$ term: smaller than $\mathcal{D}_{G}(g)\sqrt{n+1}$

 \hookrightarrow gets negligible (making the lower bound nearly $1 - \alpha$) only for low probability groups compared to *n*.

Restricting the link between G and (X or Y) does not allow informative G-conditional-coverage (Zaffran et al., 2024)

Analogous statements are also available for the classification framework.

Restricting the link between G and (X or Y) does not allow informative G-conditional-coverage (Zaffran et al., 2024)

Theorem ($G \perp X$ hardness result).

If any \widehat{C}_{α} is *G*-conditionally-valid under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group *g* such that $\mathcal{D}_G(g) > 0$, it holds: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty \right) \geq 1 - \alpha - \mathcal{D}_G(g)\sqrt{n+1}.$

Analogous statements are also available for the classification framework.
Restricting the link between G and (X or Y) does not allow informative G-conditional-coverage (Zaffran et al., 2024)

Theorem ($G \perp X$ hardness result).

If any \widehat{C}_{α} is *G*-conditionally-valid under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group *g* such that $\mathcal{D}_G(g) > 0$, it holds: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty \right) \geq 1 - \alpha - \mathcal{D}_G(g)\sqrt{n+1}.$

Theorem ($Y \perp G \mid X$ hardness result).

If any \widehat{C}_{α} is G-conditionally-valid under $Y \perp G \mid X$, then for any distribution \mathcal{D} such that $Y \perp G \mid X$, for any mask g such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_G(g) > 0$, it holds: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty \right) \geq 1 - \alpha - 2\mathcal{D}_G(g)\sqrt{n+1}.$

Analogous statements are also available for the classification framework.

Restricting the link between G and (X or Y) does not allow informative G-conditional-coverage (Zaffran et al., 2024)

Theorem ($G \perp X$ hardness result).

If any \widehat{C}_{α} is *G*-conditionally-valid under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group *g* such that $\mathcal{D}_G(g) > 0$, it holds: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty \right) \geq 1 - \alpha - \mathcal{D}_G(g)\sqrt{n+1}.$

Theorem ($Y \perp G \mid X$ hardness result).

If any \widehat{C}_{α} is *G*-conditionally-valid under $Y \perp G \mid X$, then for any distribution \mathcal{D} such that $Y \perp G \mid X$, for any mask *g* such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_G(g) > 0$, it holds: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{mes}\left(\widehat{C}_{\alpha}\left(X_{n+1},g\right)\right) = \infty \right) \geq 1 - \alpha - 2\mathcal{D}_G(g)\sqrt{n+1}.$

 \Rightarrow Need to restrict **both** the link between G and X, as well as between G and Y. Analogous statements are also available for the classification framework. • Approximate conditional coverage

 \hookrightarrow Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1}) | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$ • Approximate conditional coverage

 \hookrightarrow Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1}) | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

• Approximate conditional coverage

 \hookrightarrow Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1}) | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

On distribution-free X-conditional validity

Y-conditional validity

Impact of the calibration set on the coverage

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding romarks

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \hat{A} (by training A on the proper training set $(X_i, Y_i)_{i \in \text{Tr}}$)
- 3. For any candidate $y \in \mathcal{Y}$: On the calibration set, obtain a set of $\#\operatorname{Cal}_y + 1$ conformity scores : $S_y = \{S_i = s (X_i, y; \hat{A}), i \in \operatorname{Cal} \text{ such that } Y_i = y\} \cup \{+\infty\}$

4. For a new point X_{n+1} , return $\widehat{C}_{n,\alpha}(X_{n+1})\left\{y \text{ such that } \mathbf{s}\left(X_{n+1}, y; \widehat{A}\right) \leq q_{1-\alpha}(S_y)\right\}$

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \hat{A} (by training A on the proper training set $(X_i, Y_i)_{i \in \text{Tr}}$)
- 3. For any candidate $y \in \mathcal{Y}$: On the calibration set, obtain a set of $\#\operatorname{Cal}_y + 1$ conformity scores : $S_y = \{S_i = \mathbf{s} \ (X_i, y; \hat{A}), i \in \operatorname{Cal} \text{ such that } Y_i = y\} \cup \{+\infty\}$
- 4. For a new point X_{n+1} , return $\widehat{C}_{n,\alpha}(X_{n+1})\left\{y \text{ such that } \mathbf{s}\left(X_{n+1}, y; \widehat{A}\right) \leq q_{1-\alpha}(S_y)\right\}$

→ What if there is a high class imbalance?
 Ding et al. (2023) proposed to instead obtain cluster-conditional coverage.

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

On distribution-free X-conditional validity

Y-conditional validity

Impact of the calibration set on the coverage

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding romarks

Probably Approximately Correct bounds on calibration-conditional coverage (Vovk, 2012; Bian and Barber, 2023)

Theorem (calibration conditional validity of SCP).
SCP outputs
$$\widehat{C}_{\alpha}$$
 such that for any distribution \mathcal{D} and any $0 < \delta \leq 0.5$:
 $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathbb{P}_{\mathcal{D}}\left(Y_{n+1} \notin \widehat{C}_{n,\alpha}\left(X_{n+1}\right) | (X_{i}, Y_{i})_{i=1}^{n}\right) \leq \alpha + \sqrt{\frac{\log(1/\delta)}{2\#\mathrm{Cal}}}\right) \geq 1-\delta.$

 \hookrightarrow controls the deviation of miscoverage with respect to the nominal level of a predictive set built on a given calibration set.

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches Full Conformal Prediction Jackknife+

Beyond exchangeability

Some case studies

Concluding remarks

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Full Conformal Prediction

Jackknife+

Beyond exchangeability

Some case studies

Concluding remarks

SCP suffers from data splitting:

- lower statistical efficiency (lower model accuracy and higher predictive set size)
- higher statistical variability

SCP suffers from data splitting:

- lower statistical efficiency (lower model accuracy and higher predictive set size)
- higher statistical variability

Can we avoid splitting the data set?

- A naive idea:
 - Get \hat{A} by training the algorithm \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$.

- A naive idea:
 - Get \hat{A} by training the algorithm \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$.
 - \circ compute the empirical quantile $q_{1-lpha}(\mathcal{S})$ of the set of scores

$$\mathcal{S} = \left\{ \mathbf{s} \left(\hat{A}(X_i), Y_i \right) \right\}_{i=1}^n \cup \{\infty\}.$$

- A naive idea:
 - Get \hat{A} by training the algorithm A on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$.
 - \circ compute the empirical quantile $q_{1-lpha}(\mathcal{S})$ of the set of scores

$$S = \left\{ s\left(\hat{A}(X_i), Y_i\right) \right\}_{i=1}^n \cup \{\infty\}.$$

• output the set $\left\{ y \text{ such that } s\left(\hat{A}(X_{n+1}), y\right) \le q_{1-\alpha}(S) \right\}.$

- A naive idea:
 - Get \hat{A} by training the algorithm \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$.
 - \circ compute the empirical quantile $q_{1-lpha}(\mathcal{S})$ of the set of scores

$$S = \left\{ s\left(\hat{A}(X_i), Y_i\right) \right\}_{i=1}^n \cup \{\infty\}.$$

• output the set $\{y \text{ such that } \mathbf{s}\left(\hat{A}(X_{n+1}), y\right) \leq q_{1-\alpha}(S)\}$.

 $\overset{\checkmark}{A}$ obtained w. the training set $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ but not X_{n+1} .

Example ("Naive Idea" sets with an interpolating algorithm).

Assume \mathcal{A} interpolates:

- $\hat{A} = \mathcal{A}((x_1, y_1), \ldots, (x_n, y_n))$
- $\hat{A}(x_k) y_k = 0$ for any $k \in \llbracket 1, n \rrbracket$

⇒ Naive method above (with MAE score functions) outputs $\{\hat{A}(X_{n+1})\}$ (a single point) for any new test point!

- Full (or transductive) Conformal Prediction
 - avoids data splitting

⁹Vovk et al. (2005), Algorithmic Learning in a Random World

- Full (or transductive) Conformal Prediction
 - avoids data splitting
 - at the cost of many more model fits

⁹Vovk et al. (2005), Algorithmic Learning in a Random World

- Full (or transductive) Conformal Prediction
 - $\circ~$ avoids data splitting
 - $\circ\;$ at the cost of many more model fits
- Idea: the most probable labels Y_{n+1} live in 𝔅, and have a low enough conformity score. By looping over all possible y ∈ 𝔅, the ones leading to the smallest conformity scores will be found.

⁹Vovk et al. (2005), Algorithmic Learning in a Random World

1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$

- 1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$
- 2. Obtain a set of training scores

$$\mathcal{S}_{y}^{(\text{train})} = \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{i}), Y_{i} \right) \right\}_{i=1}^{n} \cup \{ \mathbf{s} \left(\hat{A}_{y}(X_{n+1}), y \right) \}$$

and compute their $1 - \alpha$ empirical quantile $q_{1-\alpha} \left(\mathcal{S}_{y}^{(\text{train})} \right)$

- 1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$
- 2. Obtain a set of training scores

$$S_{y}^{(\text{train})} = \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{i}), Y_{i} \right) \right\}_{i=1}^{n} \cup \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{n+1}), y \right) \right\}_{i=1}^{n}$$

and compute their $1 - \alpha$ empirical quantile $q_{1-\alpha} \left(S_{y}^{(\text{train})} \right)$

Output the set $\left\{ y \text{ such that } \mathbf{s}\left(\hat{A}_{y}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}\left(\mathcal{S}_{y}^{(\text{train})}\right) \right\}.$

- 1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$
- 2. Obtain a set of training scores

$$\mathcal{S}_{y}^{(\text{train})} = \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{i}), Y_{i} \right) \right\}_{i=1}^{n} \cup \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{n+1}), y \right) \right\}_{i=1}^{n}$$
 and compute their $1 - \alpha$ empirical quantile $q_{1-\alpha} \left(\mathcal{S}_{y}^{(\text{train})} \right)$

Output the set
$$\left\{ y \text{ such that } \mathbf{s}\left(\hat{A}_{y}\left(X_{n+1}\right),y\right) \leq q_{1-\alpha}\left(\mathcal{S}_{y}^{(\mathsf{train})}\right)
ight\}$$
.

Test point treated in the same way than train points

- 1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$
- 2. Obtain a set of training scores

$$\mathcal{S}_{y}^{(\text{train})} = \left\{ \mathbf{s}\left(\hat{A}_{y}(X_{i}), Y_{i}\right) \right\}_{i=1}^{n} \cup \left\{ \mathbf{s}\left(\hat{A}_{y}(X_{n+1}), y\right) \right\}_{i=1}^{n}$$

and compute their $1 - \alpha$ empirical quantile $q_{1-\alpha} \left(S_{y}^{(\text{train})} \right)$

Output the set $\left\{ y \text{ such that } \mathbf{s}\left(\hat{A}_{y}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}\left(\mathcal{S}_{y}^{(\text{train})}\right) \right\}.$

- Test point treated in the same way than train points
- Any score works

- 1. Get \hat{A}_y by training \mathcal{A} on $\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \cup \{(X_{n+1}, y)\}$
- 2. Obtain a set of training scores

$$\mathcal{S}_{y}^{(\text{train})} = \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{i}), Y_{i} \right) \right\}_{i=1}^{n} \cup \left\{ \mathbf{s} \left(\hat{A}_{y}(X_{n+1}), y \right) \right\}_{i=1}^{n}$$

and compute their $1 - \alpha$ empirical quantile $q_{1-\alpha} \left(S_{y}^{(\text{train})} \right)$

Output the set $\left\{ y \text{ such that } \mathbf{s}\left(\hat{A}_{y}\left(X_{n+1}\right), y\right) \leq q_{1-\alpha}\left(\mathcal{S}_{y}^{(\text{train})}\right) \right\}.$

- Test point treated in the same way than train points
- Any score works
- X Computationally costly

Full CP: theoretical foundation

Definition (Symmetrical algorithm).

A deterministic algorithm $\mathcal{A} : (U_1, \ldots, U_n) \mapsto \hat{A}$ is symmetric if for any permutation σ of $\llbracket 1, n \rrbracket$: $\mathcal{A}(U_1, \ldots, U_n) \stackrel{a.s.}{=} \mathcal{A}(U_{\sigma(1)}, \ldots, U_{\sigma(n)})$.

Full CP: theoretical foundation

Definition (Symmetrical algorithm).

A deterministic algorithm $\mathcal{A} : (U_1, \ldots, U_n) \mapsto \hat{\mathcal{A}}$ is symmetric if for any permutation σ of $\llbracket 1, n \rrbracket$: $\mathcal{A} (U_1, \ldots, U_n) \stackrel{\text{a.s.}}{=} \mathcal{A} (U_{\sigma(1)}, \ldots, U_{\sigma(n)})$.

Lemma (Exchangeable scores).

If the algorithm $\mathcal{A} : (U_1, \ldots, U_n) \mapsto \hat{A}$ is symmetric, and $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable, then S_1, \ldots, S_{n+1} are exchangeable, with $S_i := \mathbf{s} (\hat{A}_{Y_{n+1}}(X_i), Y_i).$

Full CP: theoretical foundation

Definition (Symmetrical algorithm).

A deterministic algorithm $\mathcal{A} : (U_1, \ldots, U_n) \mapsto \hat{A}$ is symmetric if for any permutation σ of $\llbracket 1, n \rrbracket$: $\mathcal{A}(U_1, \ldots, U_n) \stackrel{\text{a.s.}}{=} \mathcal{A}(U_{\sigma(1)}, \ldots, U_{\sigma(n)})$.

Lemma (Exchangeable scores).

If the algorithm $\mathcal{A} : (U_1, \ldots, U_n) \mapsto \hat{A}$ is symmetric, and $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable, then S_1, \ldots, S_{n+1} are exchangeable, with $S_i := \mathbf{s} (\hat{A}_{Y_{n+1}}(X_i), Y_i).$

Moreover

$$Y_{n+1} \in \widehat{C_{\alpha}^{\mathsf{Full}}}(X_{n+1}) := \left\{ y \text{ such that } \mathbf{s} \left(\hat{A}_{y} \left(X_{n+1} \right), y \right) \leq q_{1-\alpha} \left(\mathcal{S}_{y}^{(\mathsf{train})} \right) \right\}$$

$$\Leftrightarrow \mathbf{s} \left(\hat{A}_{Y_{n+1}} \left(X_{n+1} \right), Y_{n+1} \right) \leq q_{1-\alpha} \left(\mathcal{S}_{Y_{n+1}}^{(\mathsf{train})} \right)$$

$$\Leftrightarrow S_{n+1} \leq q_{1-\alpha}(S_{1}, \dots, S_{n}, S_{n+1}) ! \qquad 51$$

/ 78

Full CP enjoys finite sample guarantees proved in Vovk et al. (2005).

Theorem (Marginal validity of Full CP Vovk et al. (2005)).

Suppose that

- (i) $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable,
- (ii) the algorithm \mathcal{A} is symmetric.

Full CP applied on $(X_i, Y_i)_{i=1}^n \cup \{X_{n+1}\}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})\right\} \ge 1 - \alpha.$

Additionally, if the scores are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{n+1}.$$

Full CP enjoys finite sample guarantees proved in Vovk et al. (2005).

Theorem (Marginal validity of Full CP Vovk et al. (2005)).

Suppose that

- (i) $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable,
- (ii) the algorithm \mathcal{A} is symmetric.

Full CP applied on $(X_i, Y_i)_{i=1}^n \cup \{X_{n+1}\}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})\right\} \ge 1 - \alpha.$

Additionally, if the scores are a.s. distinct:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{n+1}.$$

× Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$

Example (FCP sets with an interpolating algorithm).

Assume \mathcal{A} interpolates:

•
$$\hat{A} = \mathcal{A}((x_1, y_1), \dots, (x_{n+1}, y_{n+1}))$$

•
$$\hat{A}(x_k) - y_k = 0$$
 for any $k \in \llbracket 1, n+1 \rrbracket$

Example (FCP sets with an interpolating algorithm).

Assume \mathcal{A} interpolates:

•
$$\hat{A} = \mathcal{A}((x_1, y_1), \dots, (x_{n+1}, y_{n+1}))$$

•
$$\hat{A}(x_k) - y_k = 0$$
 for any $k \in \llbracket 1, n+1
rbracket$

 \Rightarrow Full Conformal Prediction (with standard score functions) outputs \mathcal{Y} (the whole label space) for any new test point!

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Full Conformal Prediction

 $\mathsf{Jackknife}+$

Beyond exchangeability

Some case studies

Concluding remarks

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$

• Get \hat{A} by training A on \mathcal{D}_n

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$

- Get \hat{A} by training \mathcal{A} on \mathcal{D}_n
- Build the predictive interval: $\left[\hat{A}(X_{n+1}) \pm q_{1-\alpha}(S)\right]$

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$

• Get \hat{A} by training \mathcal{A} on \mathcal{D}_n

• Build the predictive interval:
$$\left[\hat{A}(X_{n+1}) \pm q_{1-lpha}(S)
ight]$$

Warning

No guarantee on the prediction of \hat{A} with scores based on $(\hat{A}_{-i})_i$, without assuming a form of **stability** on A.

Jackknife+ (Barber et al., 2021b)

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO predictions / predictive intervals $S_{up/down} = \left\{ \hat{A}_{-i}(X_{n+1}) \pm |\hat{A}_{-i}(X_i) - Y_i| \right\}_i \cup \{\pm \infty\}$ (in

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO predictions / predictive intervals $S_{up/down} = \left\{ \hat{A}_{-i}(X_{n+1}) \pm |\hat{A}_{-i}(X_i) - Y_i| \right\}_i \cup \{\pm \infty\}$ (in

• Build the predictive interval: $[q_{\alpha,inf}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Recall $q_{\beta,\inf}(X_1,\ldots,X_n) := \lfloor \beta \times n \rfloor$ smallest value of (X_1,\ldots,X_n)

- Based on leave-one-out (LOO) residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Get \hat{A}_{-i} by training \mathcal{A} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO predictions / predictive intervals $S_{up/down} = \left\{ \hat{A}_{-i}(X_{n+1}) \pm |\hat{A}_{-i}(X_i) - Y_i| \right\}_i \cup \{\pm \infty\}$ (in

• Build the predictive interval: $[q_{\alpha,inf}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Theorem (Marginal validity of Jackknife+ Barber et al. (2021b)). If $\mathcal{D}_n \cup (X_{n+1}, Y_{n+1})$ are exchangeable and \mathcal{A} is symmetric: $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \ge 1 - 2\alpha$.

Recall $q_{\beta,\inf}(X_1,\ldots,X_n) := \lfloor \beta \times n \rfloor$ smallest value of (X_1,\ldots,X_n)

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- Get \hat{A}_{-F_k} by training \mathcal{A} on $\mathcal{D}_n \setminus F_k$

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- Get \hat{A}_{-F_k} by training \mathcal{A} on $\mathcal{D}_n \setminus F_k$
- Cross-val predictions / predictive intervals

$$\mathcal{S}_{up/down} = \left\{ \left\{ \hat{A}_{-F_k}(X_{n+1}) \pm |\hat{A}_{-F_k}(X_i) - Y_i| \right\}_{i \in F_k} \right\}_k \cup \{\pm \infty\}$$
(in standard mean regression)

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- Get \hat{A}_{-F_k} by training \mathcal{A} on $\mathcal{D}_n \setminus F_k$
- Cross-val predictions / predictive intervals

$$S_{up/down} = \left\{ \left\{ \hat{A}_{-F_k}(X_{n+1}) \pm |\hat{A}_{-F_k}(X_i) - Y_i| \right\}_{i \in F_k} \right\}_k \cup \{\pm \infty\}$$
(in standard mean regression)

• Build the predictive interval: $[q_{\alpha,inf}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Recall $q_{\beta,\inf}(X_1,\ldots,X_n) := \lfloor \beta \times n \rfloor$ smallest value of (X_1,\ldots,X_n) 56 / 78

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- Get \hat{A}_{-F_k} by training \mathcal{A} on $\mathcal{D}_n \setminus F_k$
- Cross-val predictions / predictive intervals

$$\mathcal{S}_{up/down} = \left\{ \left\{ \hat{A}_{-F_k}(X_{n+1}) \pm |\hat{A}_{-F_k}(X_i) - Y_i| \right\}_{i \in F_k} \right\}_k \cup \{\pm \infty\}$$
(in standard mean regression)

• Build the predictive interval: $[q_{\alpha,inf}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Theorem (Marginal validity of CV+ Barber et al. (2021b)).

If
$$\mathcal{D}_n \cup (X_{n+1}, Y_{n+1})$$
 are exchangeable and \mathcal{A} is symmetric: $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \ge 1 - 2\alpha - \min\left(\frac{2(1-1/K)}{n/K+1}, \frac{1-K/n}{K+1}\right) \ge 1 - 2\alpha - \sqrt{2/n}.$

 $\mathsf{Recall} \ q_{\beta, \mathsf{inf}}(X_1, \dots, X_n) := \lfloor \beta \times n \rfloor \text{ smallest value of } (X_1, \dots, X_n)$

56/78

Nested Conformal Prediction

Nested Conformal Prediction

• Generalized framework encapsulating out-of-sample methods: Nested CP (Gupta et al., 2022) \rightarrow extends JK+/CV+ for any score.

Nested Conformal Prediction

- Generalized framework encapsulating out-of-sample methods: Nested CP (Gupta et al., 2022) \rightarrow extends JK+/CV+ for any score.
- Accelerating FCP: Nouretdinov et al. (2001); Lei (2019); Ndiaye and Takeuchi (2019); Cherubin et al. (2021); Ndiaye and Takeuchi (2022); Ndiaye (2022)

Non exhaustive references.

Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks

• CP requires exchangeable data points to ensure validity

- CP requires exchangeable data points to ensure validity
- X Covariate shift, i.e. \mathcal{L}_X changes but $\mathcal{L}_{Y|X}$ stays constant

- CP requires exchangeable data points to ensure validity
- X Covariate shift, i.e. \mathcal{L}_X changes but $\mathcal{L}_{Y|X}$ stays constant
- X Label shift, i.e. \mathcal{L}_Y changes but $\mathcal{L}_{X|Y}$ stays constant

- CP requires exchangeable data points to ensure validity
- X Covariate shift, i.e. \mathcal{L}_X changes but $\mathcal{L}_{Y|X}$ stays constant
- X Label shift, i.e. \mathcal{L}_Y changes but $\mathcal{L}_{X|Y}$ stays constant
- X Arbitrary distribution shift

- CP requires exchangeable data points to ensure validity
- X Covariate shift, i.e. \mathcal{L}_X changes but $\mathcal{L}_{Y|X}$ stays constant
- X Label shift, i.e. \mathcal{L}_Y changes but $\mathcal{L}_{X|Y}$ stays constant
- × Arbitrary distribution shift
- × Possibly many shifts, not only one

• Setting:

$$\circ (X_1, Y_1), \dots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_X \times P_{Y|X}$$

$$\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$$

¹²Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS

- Setting:
 - $\circ (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{i.i.d.}{\sim} P_X \times P_{Y|X}$ $\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Idea: give more importance to calibration points that are closer in distribution to the test point

¹²Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS

- Setting:
 - $\circ (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{i.i.d.}{\sim} P_X \times P_{Y|X}$ $\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Idea: give more importance to calibration points that are closer in distribution to the test point
- In practice:

1. estimate the likelihood ratio
$$w(X_i) = \frac{\mathrm{d}\tilde{P}_X(X_i)}{\mathrm{d}P_X(X_i)}$$

¹²Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS

- Setting:
 - $\circ (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{i.i.d.}{\sim} P_X \times P_{Y|X}$ $\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Idea: give more importance to calibration points that are closer in distribution to the test point
- In practice:

1. estimate the likelihood ratio
$$w(X_i) = \frac{\mathrm{d}\tilde{P}_X(X_i)}{\mathrm{d}P_X(X_i)}$$

2. normalize the weights, i.e. $\omega_i = \omega(X_i) = \frac{w(X_i)}{\sum_{j=1}^{n+1} w(X_j)}$

¹²Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS

- Setting:
 - $\circ (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{i.i.d.}{\sim} P_X \times P_{Y|X}$ $\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Idea: give more importance to calibration points that are closer in distribution to the test point
- In practice:

1. estimate the likelihood ratio
$$w(X_i) = \frac{\mathrm{d}\tilde{P}_X(X_i)}{\mathrm{d}P_X(X_i)}$$

2. normalize the weights, i.e. $\omega_i = \omega(X_i) = \frac{w(X_i)}{\sum_{j=1}^{n+1} w(X_j)}$
3. outputs $\hat{C}_{\alpha}(X_{n+1}) = \begin{cases} y : |\mathbf{s}(\hat{A}(X_{n+1}), y) \leq Q_{1-\alpha}\left(\sum_{i \in \mathrm{Cal}} \omega_i \delta_{S_i} + \omega_{n+1} \delta_{\infty}\right) \end{cases}$

¹²Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under labeb0 / 78

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under labeb0 / 78

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point
- Trouble: the actual test labels are unknown

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under labeb0 / 78

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point
- Trouble: the actual test labels are unknown
- In practice:
 - 1. estimate the likelihood ratio $w(Y_i) = \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}$ using algorithms from the existing label shift literature

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under labeb0 / 78

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point
- Trouble: the actual test labels are unknown
- In practice:
 - 1. estimate the likelihood ratio $w(Y_i) = \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}$ using algorithms from the existing label shift literature

2. normalize the weights, i.e.
$$\omega_i^y = \omega^y(X_i) = \frac{w(Y_i)}{\sum_{j=1}^n w(Y_j) + w(y)}$$

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under labeb0 / 78

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point
- Trouble: the actual test labels are unknown
- In practice:
 - 1. estimate the likelihood ratio $w(Y_i) = \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}$ using algorithms from the existing label shift literature
 - 2. normalize the weights, i.e. $\omega_i^{\mathbf{y}} = \omega^{\mathbf{y}}(X_i) = \frac{w(Y_i)}{\sum_{i=1}^n w(Y_j) + w(\mathbf{y})}$

3. outputs
$$\widehat{C}_{\alpha}(X_{n+1}) =$$

$$\left\{ y : \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq Q_{1-\alpha} \left(\sum_{i \in \mathrm{Cal}} \omega_i^y \delta_{\mathcal{S}_i} + \omega_{n+1}^y \delta_{\infty} \right) \right\}$$

¹³Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under labeb0 / 78

- Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the distributionally robust optimization literature
- Two major general theoretical results beyond exchangeability:

- Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the distributionally robust optimization literature
- Two major general theoretical results beyond exchangeability:
 - Chernozhukov et al. (2018)

 \hookrightarrow If the learnt model is accurate and the data noise is strongly mixing, then CP is valid asymptotically \checkmark

- Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the distributionally robust optimization literature
- Two major general theoretical results beyond exchangeability:
 - Chernozhukov et al. (2018)

 \hookrightarrow If the learnt model is accurate and the data noise is strongly mixing, then CP is valid asymptotically \checkmark

• Barber et al. (2022)

 \hookrightarrow Quantifies the coverage loss depending on the strength of exchangeability violation

 $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha}(X_{n+1})) \geq 1 - \alpha - \overset{\text{average violation of exchangeability}}{\underset{\text{by each calibration point}}{\text{worker}}}$

e.g., in a temporal setting, give higher weights to more recent points.
- Data: T_0 random variables $(X_1, Y_1), \ldots, (X_{T_0}, Y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$
- Aim: predict the response values as well as predictive intervals for T₁ subsequent observations X_{T0+1},..., X_{T0+T1} sequentially: at any prediction step t ∈ [[T₀ + 1, T₀ + T₁]], Y_{t-T0},..., Y_{t-1} have been revealed
- Build the smallest interval \widehat{C}^t_{α} such that:

$$\mathbb{P}\left\{Y_t\in\widehat{C}^t_{\alpha}\left(X_t\right)\right\}\geq 1-\alpha, \text{ for } t\in \llbracket T_0+1, T_0+T_1\rrbracket,$$

often relaxed in:

$$\frac{1}{T_1}\sum_{t=T_0+1}^{T_0+T_1} \mathbb{1}\left\{Y_t \in \widehat{C}^t_{\alpha}(X_t)\right\} \approx 1-\alpha.$$

• Consider splitting strategies that respect the temporal structure

Non exhaustive references.

Recent developments

- Consider splitting strategies that respect the temporal structure
- Gibbs and Candès (2021) propose a method which reacts faster to temporal evolution
 - Idea: track the previous coverages of the predictive intervals $(\mathbb{1}\{Y_t \in \widehat{C}_{\alpha}(X_t)\})$
 - $\circ~$ Tool: update the empirical quantile level with a learning rate γ
 - $\circ~$ Asymptotic guarantee (on average) for any distribution (even adversarial)

Recent developments

- Consider splitting strategies that respect the temporal structure
- Gibbs and Candès (2021) propose a method which reacts faster to temporal evolution
 - Idea: track the previous coverages of the predictive intervals $(\mathbb{1}\{Y_t \in \widehat{C}_{\alpha}(X_t)\})$
 - $\circ~$ Tool: update the empirical quantile level with a learning rate γ
 - $\circ~$ Asymptotic guarantee (on average) for any distribution (even adversarial)
- Zaffran et al. (2022) studies the influence of this learning rate γ and proposes, along with Gibbs and Candès (2022), a method not requiring to choose γ

- Consider splitting strategies that respect the temporal structure
- Gibbs and Candès (2021) propose a method which reacts faster to temporal evolution
 - Idea: track the previous coverages of the predictive intervals $(\mathbb{1}\{Y_t \in \widehat{C}_{\alpha}(X_t)\})$
 - $\circ~$ Tool: update the empirical quantile level with a learning rate γ
 - $\circ~$ Asymptotic guarantee (on average) for any distribution (even adversarial)
- Zaffran et al. (2022) studies the influence of this learning rate γ and proposes, along with Gibbs and Candès (2022), a method not requiring to choose γ
- Bhatnagar et al. (2023) enjoys **anytime** regret bound, by leveraging tools from the strongly adaptive regret minimization literature

Non exhaustive references.

- Consider splitting strategies that respect the temporal structure
- Gibbs and Candès (2021) propose a method which reacts faster to temporal evolution
 - Idea: track the previous coverages of the predictive intervals $(\mathbb{1}\{Y_t \in \widehat{C}_{\alpha}(X_t)\})$
 - $\circ~$ Tool: update the empirical quantile level with a learning rate γ
 - $\circ~$ Asymptotic guarantee (on average) for any distribution (even adversarial)
- Zaffran et al. (2022) studies the influence of this learning rate γ and proposes, along with Gibbs and Candès (2022), a method not requiring to choose γ
- Bhatnagar et al. (2023) enjoys anytime regret bound, by leveraging tools from the strongly adaptive regret minimization literature
- Bastani et al. (2022) proposes an algorithm achieving stronger coverage guarantees (conditional on specified overlapping subsets, and threshold calibrated) without hold-out set

Non exhaustive references.

Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Healthcare

Electricity

Concluding remarks

Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Healthcare

Electricity

Concluding remarks

- Medical application
- Image based task
- Pixel by pixel analysis ~>> applications to segmentation for self-driving cars

Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging

Anastasios N. Angelopoulos^{*1} Amit Kohli^{*1} Stephen Bates¹ Michael I. Jordan¹ Jitendra Malik¹ Thayer Alshaabi² Srigokul Upadhyayula²³ Yaniv Romano⁴

- Medical application
- Image based task
- Pixel by pixel analysis ~>> applications to segmentation for self-driving cars
- 1. **Task**: *Image to Image regression* - for each pixel of an image, predict a real valued output from the entire image.

 UQ Goal: provide a predictive interval for each pixel, such that the output is in the interval at least 90% of the time. Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging

Anastasios N. Angelopoulos^{*1} Amit Kohli^{*1} Stephen Bates¹ Michael I. Jordan¹ Jitendra Malik¹ Thayer Alshaabi² Srigokul Upadhyayula²³ Yaniv Romano⁴

- Medical application
- Image based task
- Pixel by pixel analysis → applications to segmentation for self-driving cars
- 1. **Task**: *Image to Image regression* - for each pixel of an image, predict a real valued output from the entire image.
- UQ Goal: provide a predictive interval for each pixel, such that the output is in the interval at least 90% of the time.

Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging

Anastasios N. Angelopoulos^{*1} Amit Kohli^{*1} Stephen Bates¹ Michael I. Jordan¹ Jitendra Malik¹ Thayer Alshaabi² Srigokul Upadhyayula²³ Yaniv Romano⁴

Figure 1. An algorithmic MRI reconstruction with uncertainty. A rapidly sequired but undersampled MR image of a knee (λ) is an one of that predicts a sharp reconstruction (B) with calibrated uncertainty (C). In (C), red means high uncertainty and bute means tow uncertainty. Wherever the reconstruction contains hallucinations, the uncertainty is high, see the hallucination in the image patch (E), which has high uncertainty in (F) and does not exist in the ground truth (C). To recognition all details, see Section 3.4.

Figure 2: Image from Angelopoulos et al. (2022b)

- 1. Split conformal prediction method isolate calibration set
- 2. On the proper training set, learn:
 - Mean regressor $\hat{\mu} : \mathbb{R}^{NM} \to [0; 1]$

- 1. Split conformal prediction method isolate calibration set
- 2. On the proper training set, learn:
 - Mean regressor $\hat{\mu} : \mathbb{R}^{NM} \to [0; 1]$
 - Heuristic notion of uncertainty: $\tilde{u}, \tilde{\ell} : \mathbb{R}^{NM} \to [0; 1]$, such that

$$[\hat{\mu}(X) - \tilde{\ell}(X); \hat{\mu}(X) + \tilde{u}(X)]$$

 \rightarrow 3 regressors are used

4 techniques are experimented for these regressors, including QR.

- 1. Split conformal prediction method isolate calibration set
- 2. On the proper training set, learn:
 - Mean regressor $\hat{\mu} : \mathbb{R}^{NM} \to [0; 1]$
 - Heuristic notion of uncertainty: $\tilde{u}, \tilde{\ell} : \mathbb{R}^{NM} \to [0; 1]$, such that

$$[\hat{\mu}(X) - \tilde{\ell}(X); \hat{\mu}(X) + \tilde{u}(X)]$$

 \rightarrow 3 regressors are used

4 techniques are experimented for these regressors, including QR.

- 3. Calibration step: leverage the calibration set.
 - In spirit, almost equivalent to CQR but with a multiplicative form.
 - Precisely, relies on RCPS (Bates et al., 2021a)

- 1. Split conformal prediction method isolate calibration set
- 2. On the proper training set, learn:
 - Mean regressor $\hat{\mu} : \mathbb{R}^{NM} \to [0; 1]$
 - Heuristic notion of uncertainty: $\tilde{u}, \tilde{\ell} : \mathbb{R}^{NM} \to [0; 1]$, such that

$$[\hat{\mu}(X) - \tilde{\ell}(X); \hat{\mu}(X) + \tilde{u}(X)]$$

 \rightarrow 3 regressors are used

4 techniques are experimented for these regressors, including QR.

- 3. Calibration step: leverage the calibration set.
 - In spirit, almost equivalent to CQR but with a multiplicative form.
 - Precisely, relies on RCPS (Bates et al., 2021a)

Guarantee:

 $\mathbb{P}\left[\mathbb{E}\left[\mathsf{Average\ miscoverage\ on\ all\ pixels\ of\ a\ test\ image} \geq \alpha |\mathsf{Cal}]\right] \leq \delta$

 \rightarrow Marginal validity on the test, with high probability w.r.t. the calibration set.

Abstract

Image-to-image regression is an important learning task, used frequently in biological imaging. Current algorithms, however, do not generally offer statistical guarantees that protect against a model's mistakes and hallucinations. To address this, we develop uncertainty quantification techniques with rigorous statistical guarantees for image-to-image regression problems. In particular, we show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value with a user-specified confidence probability. Our methods work in conjunction

2. Methods

We now formally describe the method for constructing uncertainty intervals. Each pixel in the image will get its own uncertainty interval, as in (1), that is statistically guaranteed to contain the true value with high probability.

How do you understand that?

Abstract

Image-to-image regression is an important learning task, used frequently in biological imaging. Current algorithms, however, do not generally offer statistical guarantees that protect against a model's mistakes and hallucinations. To address this, we develop uncertainty quantification techniques with rigorous statistical guarantees for image-to-image regression problems. In particular, we show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value with a user-specified confidence probability. Our methods work in conjunction

2. Methods

We now formally describe the method for constructing uncertainty intervals. Each pixel in the image will get its own uncertainty interval, as in (1), that is statistically guaranteed to contain the true value with high probability.

How do you understand that?

- Not a conditional coverage claim!
- The statement is on-average on the test point easy or hard.

Size-stratified risk. Next, we seek prediction sets that do not systematically make mistakes in difficult parts of the image. Our risk control requirement in Definition 2.1 may be satisfied even if the prediction sets systematically fail to contain the most difficult pixels. For example, if $\alpha = 0.1$ and 90% of pixels are covered by fixed-width intervals of size 0.01, then the requirement is satisfied—however, the sets no longer serve as useful notions of uncertainty. To

- Hard problem (impossibility results!)
- Introduce metrics to see *if* and *on* which underlying regressors such problem happens. 66 / 78

Example of such metrics (see also Feldman et al., 2021) :

• Link between the size of the PI and the coverage level \longrightarrow

Example of such metrics (see also Feldman et al., 2021) :

- Link between the size of the PI and the coverage level →
- Localization of the errors \downarrow

Figure 3: Examples of quantitative phase reconstructions of leukocytes with uncertainty shown in the following order: input (we only show one of the two illuminations), prediction, uncertainty visualization (produced with quantile regression), absolute difference between prediction and ground truth (resonalized for visualization), ground truth.

Figure 8. Spatial variations in miscoverage in the BSCCM dataset are shown for each of the four methods as a heatmap. Blue represents 0% miscoverage and red represents 100%. The methods are, in order, residual magnutude, gaussian, softmax, and quantile regression.

Figure 3: All images from Angelopoulos et al. (2022b)

Example of such metrics (see also Feldman et al., 2021) :

- Link between the size of the PI and the coverage level \longrightarrow
- Localization of the errors \downarrow

Figure 3. Examples of quantitative phase reconstructions of leukocytes with uncertainty shown in the following order: input (we only show one of the two illuminations), prediction, uncertainty visualization (produced with quantile regression), absolute difference between prediction and ground truth (resonalization for your truth.

Figure 8. Spatial variations in miscoverage in the BSCCM dataset are shown for each of the four methods as a heatmap. Blue represents 0% miscoverage and red represents 100%. The methods are, in order, residual magnutude, gaussian, softmax, and quantile regression.

Figure 3: All images from Angelopoulos et al. (2022b)

Take aways:

- Elegant application of SCP with CQR type score
- Test marginal and calibration + train conditional validity guarantees with HP
- Main problem is Test conditionality \rightarrow look at metrics to evaluate which methods performs best!

Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Healthcare

Electricity

Concluding remarks

Hourly day-ahead market prices (between producers and suppliers)

Hourly day-ahead market prices (between producers and suppliers)

Hourly day-ahead market prices (between producers and suppliers)

To which extent are they forecastable?

 \hookrightarrow forecasts errors no lower than 10% of the realized price!

Temporal splitting strategies: Online Sequential Split Conformal Prediction (OSSCP, Zaffran et al., 2022; Dutot et al., 2024)

69 / 78

Temporal splitting strategies: Online Sequential Split Conformal Prediction (OSSCP, Zaffran et al., 2022; Dutot et al., 2024)

 \hookrightarrow OSSCP improves robustness in temporal settings;

Temporal splitting strategies: Online Sequential Split Conformal Prediction (OSSCP, Zaffran et al., 2022; Dutot et al., 2024)

 \hookrightarrow OSSCP improves robustness in temporal settings;

 \hookrightarrow OSSCP-horizon drastically improves robustness in non-stationary temporal settings.

Zoom on Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

Zoom on Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{C}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{C}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{C}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Zoom on Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{C}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

> 0

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Guarantee: Asymptotic validity result for any sequence of observations.

$$\frac{1}{T_1} \sum_{t=T_0+1}^{T_0+T_1} \mathbb{1}\left\{ Y^{(t)} \in \widehat{C}_{\alpha_t}\left(X^{(t)}\right) \right\} \xrightarrow[T_1 \to +\infty]{} 1 - \alpha$$

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{\mathcal{C}}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Guarantee: Asymptotic validity result for any sequence of observations.

$$\left|\frac{1}{T_1}\sum_{t=T_0+1}^{T_0+T_1}\mathbb{1}\left\{Y^{(t)}\in\widehat{C}_{\alpha_t}\left(X^{(t)}\right)\right\}-(1-\alpha)\right|\leq\frac{2}{\gamma T_1}$$

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution shift.

It relies on updating online an *effective miscoverage rate* α_t , with the scheme

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ Y^{(t)} \notin \widehat{\mathcal{C}}_{\alpha_t} \left(X^{(t)} \right) \right\} \right),$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Guarantee: Asymptotic validity result for any sequence of observations.

$$\left|\frac{1}{T_1}\sum_{t=T_0+1}^{T_0+T_1}\mathbb{1}\left\{Y^{(t)}\in\widehat{C}_{\alpha_t}\left(X^{(t)}\right)\right\}-(1-\alpha)\right|\leq\frac{2}{\gamma T_1}$$

 \Rightarrow favors large γ .

Visualisation of ACI procedure

Visualisation of ACI procedure

Figure 4: Visualisation of ACI with different values of γ ($\gamma = 0$, $\gamma = 0.01$, $\gamma = 0.05$)

• Synthetic data with ARMA noise

 $\circ~$ Benchmarks are not robust to the increase in the temporal dependence;

- $\circ~$ Benchmarks are not robust to the increase in the temporal dependence;
- $\circ~$ ACI is robust, maintaining validity, with an appropriate $\gamma;$

- $\circ~$ Benchmarks are not robust to the increase in the temporal dependence;
- $\circ~$ ACI is robust, maintaining validity, with an appropriate $\gamma;$
- $\circ\,$ AgACI is robust, maintaining validity, not the smallest.

- $\circ~$ Benchmarks are not robust to the increase in the temporal dependence;
- $\circ~$ ACI is robust, maintaining validity, with an appropriate $\gamma;$
- $\circ~\mbox{AgACI}$ is robust, maintaining validity, not the smallest.
- French electricity spot prices

- · Benchmarks are not robust to the increase in the temporal dependence;
- $\circ~$ ACI is robust, maintaining validity, with an appropriate $\gamma;$
- AgACI is robust, maintaining validity, not the smallest.
- French electricity spot prices
 - \circ <u>2019</u>: AgACI provides validity with a reasonable efficiency;

- · Benchmarks are not robust to the increase in the temporal dependence;
- $\circ~$ ACI is robust, maintaining validity, with an appropriate $\gamma;$
- $\circ~\mbox{AgACI}$ is robust, maintaining validity, not the smallest.
- French electricity spot prices
 - $\circ~\underline{2019:}$ AgACI provides validity with a reasonable efficiency;
 - <u>2020 and 2021</u>: AgACI fails to ensure validity, and the various forecasting models considered behave differently.

Online aggregation of various AgACI, each of them being trained with different underlying forecasting models, for each bound independently.

Online aggregation of various AgACI, each of them being trained with different underlying forecasting models, for each bound independently.

✓ Retrieves validity even in the most hazardous period of 2020 and 2021.

Online aggregation of various AgACI, each of them being trained with different underlying forecasting models, for each bound independently.

- ✓ Retrieves validity even in the most hazardous period of 2020 and 2021.
- ✓ Analyzing its weights provides interpretability.

Online aggregation of various AgACI, each of them being trained with different underlying forecasting models, for each bound independently.

- ✓ Retrieves validity even in the most hazardous period of 2020 and 2021.
- Analyzing its weights provides interpretability.

 Allows more flexible and adaptive behavior in practice, catching the varying nature of the predictive distribution tails

- Allows more flexible and adaptive behavior in practice, catching the varying nature of the predictive distribution tails
- Prevents from obtaining theoretical guarantees (by opposition to Gibbs and Candès, 2022)

- Allows more flexible and adaptive behavior in practice, catching the varying nature of the predictive distribution tails
- Prevents from obtaining theoretical guarantees (by opposition to Gibbs and Candès, 2022)
- \hookrightarrow Weaken the objective and consider a more practical theoretical aim?

Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks

Summary: Uncertainty quantification through conformal methods

- Outlier detection (Vovk et al., 2003; Bates et al., 2023)
- Selective inference, false discovery rate guarantees (Marandon et al., 2024; Gazin et al., 2024)
- Beyond the indicator loss (Angelopoulos et al., 2022a; Bates et al., 2021b; Angelopoulos et al., 2023; Lekeufack et al., 2024)
- Aggregating predictive sets (Gasparin and Ramdas, 2024b,a; Gasparin et al., 2024)

For discussion and feedback, thanks to

- Julie Josse
- Claire Boyer
- Étienne Roquain

Questions?

Angelopoulos, A. N. and Bates, S. (2023). Conformal prediction: A gentle introduction. *Foundations and Trends* (*R*) *in Machine Learning*, 16(4).

- Angelopoulos, A. N., Bates, S., Candès, E. J., Jordan, M. I., and Lei, L. (2022a). Learn then test: Calibrating predictive algorithms to achieve risk control.
- Angelopoulos, A. N., Bates, S., Fisch, A., Lei, L., and Schuster, T. (2023). Conformal risk control.
- Angelopoulos, A. N., Kohli, A. P., Bates, S., Jordan, M., Malik, J., Alshaabi, T., Upadhyayula, S., and Romano, Y. (2022b). Image-to-image regression with distribution-free uncertainty quantification and applications in imaging. In *International Conference on Machine Learning*, pages 717–730. PMLR.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021a). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2).

- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021b). Predictive inference with the jackknife+. *The Annals of Statistics*, 49(1).
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2022). Conformal prediction beyond exchangeability. To appear in *Annals of Statistics (2023)*.
- Bastani, O., Gupta, V., Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2022). Practical adversarial multivalid conformal prediction. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Bates, S., Angelopoulos, A., Lei, L., Malik, J., and Jordan, M. (2021a). Distribution-free, risk-controlling prediction sets. *Journal of the ACM (JACM)*, 68(6):1–34.
- Bates, S., Angelopoulos, A., Lei, L., Malik, J., and Jordan, M. (2021b). Distribution-free, risk-controlling prediction sets. *J. ACM*, 68(6).

- Bates, S., Candès, E., Lei, L., Romano, Y., and Sesia, M. (2023). Testing for outliers with conformal p-values. *The Annals of Statistics*, 51(1):149 178.
- Bhatnagar, A., Wang, H., Xiong, C., and Bai, Y. (2023). Improved online conformal prediction via strongly adaptive online learning. In *Proceedings of the* 40th International Conference on Machine Learning. PMLR.
- Bian, M. and Barber, R. F. (2023). Training-conditional coverage for distribution-free predictive inference. *Electronic Journal of Statistics*, 17(2):2044 – 2066.
- Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. (2020). Robust Validation: Confident Predictions Even When Distributions Shift. arXiv: 2008.04267.
- Chernozhukov, V., Wüthrich, K., and Yinchu, Z. (2018). Exact and Robust Conformal Inference Methods for Predictive Machine Learning with Dependent Data. In *Conference On Learning Theory*. PMLR.

- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Cherubin, G., Chatzikokolakis, K., and Jaggi, M. (2021). Exact optimization of conformal predictors via incremental and decremental learning. In *Proceedings* of the 38th International Conference on Machine Learning. PMLR.
- Ding, T., Angelopoulos, A., Bates, S., Jordan, M., and Tibshirani, R. J. (2023).
 Class-conditional conformal prediction with many classes. In Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors, *Advances in Neural Information Processing Systems*, volume 36, pages 64555–64576. Curran Associates, Inc.
- Dutot, G., Zaffran, M., Féron, O., and Goude, Y. (2024). Adaptive probabilistic forecasting of french electricity spot prices.

- Feldman, S., Bates, S., and Romano, Y. (2021). Improving Conditional Coverage via Orthogonal Quantile Regression. arXiv:2106.00394 [cs]. arXiv: 2106.00394.
 Gasparin, M. and Ramdas, A. (2024a). Conformal online model aggregation.
 Gasparin, M. and Ramdas, A. (2024b). Merging uncertainty sets via majority vote.
 Gasparin, M., Wang, R., and Ramdas, A. (2024). Combining exchangeable p-values.
- Gazin, U., Blanchard, G., and Roquain, E. (2024). Transductive conformal inference with adaptive scores.
- Gibbs, I. and Candès, E. (2021). Adaptive conformal inference under distribution shift. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Gibbs, I. and Candès, E. (2022). Conformal inference for online prediction with arbitrary distribution shifts. arXiv: 2208.08401.

- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Gupta, C., Kuchibhotla, A. K., and Ramdas, A. (2022). Nested conformal prediction and quantile out-of-bag ensemble methods. *Pattern Recognition*, 127.
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.

- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR.
- Lei, J. (2019). Fast exact conformalization of the lasso using piecewise linear homotopy. *Biometrika*, 106(4).
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1).

- Lekeufack, J., Angelopoulos, A. N., Bajcsy, A., Jordan, M. I., and Malik, J. (2024). Conformal decision theory: Safe autonomous decisions from imperfect predictions.
- Marandon, A., Lei, L., Mary, D., and Roquain, E. (2024). Adaptive novelty detection with false discovery rate guarantee. *The Annals of Statistics*, 52(1):157 183.
- Ndiaye, E. (2022). Stable conformal prediction sets. In *Proceedings of the 39th International Conference on Machine Learning*. PMLR.
- Ndiaye, E. and Takeuchi, I. (2019). Computing full conformal prediction set with approximate homotopy. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Ndiaye, E. and Takeuchi, I. (2022). Root-finding approaches for computing conformal prediction set. *Machine Learning*, 112(1).

- Nouretdinov, I., Melluish, T., and Vovk, V. (2001). Ridge regression confidence machine. In *Proceedings of the 18th International Conference on Machine Learning*.
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.
- Podkopaev, A. and Ramdas, A. (2021). Distribution-free uncertainty quantification for classification under label shift. In *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence*. PMLR.
- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020a). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).

- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Romano, Y., Sesia, M., and Candes, E. (2020b). Classification with valid and adaptive coverage. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Sadinle, M., Lei, J., and Wasserman, L. (2018). Least ambiguous set-valued classifiers with bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234.
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.

- Tibshirani, R. J., Barber, R. F., Candes, E., and Ramdas, A. (2019). Conformal Prediction Under Covariate Shift. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning. PMLR.
- Vovk, V. (2015). Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74(1-2).
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Vovk, V., Nouretdinov, I., and Gammerman, A. (2003). Testing exchangeability on-line. In *Proceedings of the Twentieth International Conference on International Conference on Machine Learning*, ICML'03, page 768–775. AAAI Press.
References xii

- Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2024). Predictive uncertainty quantification with missing values. Preprint submitted to *Journal of Machine Learning Research*, arXiv arXiv:2405.15641.
- Zaffran, M., Féron, O., Goude, Y., Josse, J., and Dieuleveut, A. (2022). Adaptive conformal predictions for time series. In *Proceedings of the 39th International Conference on Machine Learning*. PMLR.

