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Figure 1: us
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Why are we all here today?

(Slides available on our webpages)

• Because Conformal Prediction has been a popular topic recently.

• Because we believe that conformal methods are important tools,

whose strengths and limitations are sometimes misunderstood.

• To be part of the diffusion effort that many colleagues are making.
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CMU's team (Jing Lei & Larry Wasserman) 
dives into conformal

J. Lei et al., JASA
pedagogical paper

Y. Romano et al., NeurIPS
boost paper

E. Candès keynote at NeurIPS

Vovk et al. (2005) algorithmic learning in a random world cite count.
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Why are we all here today?

(Slides available on our webpages)

• Because Conformal Prediction has been a popular topic recently.

• Because we believe that conformal methods are important tools,

whose strengths and limitations are sometimes misunderstood.

Successfully applied to
• Medical applications

• Markets / demand forecasting

• Computer Vision

• To be part of the diffusion effort that many colleagues are making.
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• Because Conformal Prediction has been a popular topic recently.

• Because we believe that conformal methods are important tools,

whose strengths and limitations are sometimes misunderstood.

• To be part of the diffusion effort that many colleagues are making.

Book reference: Vovk et al. (2005) A gentle tutorial: Angelopoulos and Bates (2023) R. J. Tibshirani

(new edition in 2022) + Videos playlist introductive lecture’s notes
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Why are we all here today?

(Slides available on our webpages)

• Because Conformal Prediction has been a popular topic recently.

• Because we believe that conformal methods are important tools,

whose strengths and limitations are sometimes misunderstood.

• To be part of the diffusion effort that many colleagues are making.

Book reference: Vovk et al. (2005) A gentle tutorial: Angelopoulos and Bates (2023) R. J. Tibshirani

(new edition in 2022) + Videos playlist introductive lecture’s notes

→ Based on material freely accessible on this webpage, including sources.

Feel free to reuse these contents for presentations or teaching!
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https://www.youtube.com/playlist?list=PLBa0oe-LYIHa68NOJbMxDTMMjT8Is4WkI
https://www.stat.berkeley.edu/~ryantibs/statlearn-s23/lectures/conformal.pdf
https://conformalpredictionintro.github.io


Goals and disclaimers

Goals

• Provide a detailed introduction to the basics

• Demystify the results: fair introduction with limits

• Give you tools to leverage those techniques in your own fields

Disclaimers

• Many people contributed to the domain - list of references may not be

exhaustive

• Multiple other excellent resources
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On the importance of quantifying uncertainty

• Obvious in most applications - weather, medical, markets

• Mathematically

0 2 4
X

−10

−5

0

5

10

Y

1

0 2 4
X

−10

−5

0

5

10

Y

1

0 2 4
X

−10

−5

0

5

10

Y

1

↪→ Same “best” predictor, yet 3 distinct underlying phenomena!

=⇒ Quantifying uncertainty conveys this information.
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Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



Reminder about quantiles

• Quantile level β ∈ [0, 1]

• QY (β) := inf{t ∈ R,P(Y ≤ t) ≥ β}

• Empirical quantile

qβ(Y1, . . . ,Yn)

:= ⌈β × n⌉ smallest value of (Y1, . . . ,Yn)

• Pinball loss

ℓβ(Y ,Y ′) =β|Y − Y ′|1{Y−Y ′≥0}

+ (1− β)|Y − Y ′|1{Y−Y ′≤0}

Associated risk:

Riskℓβ (c) = E [ℓβ(Y , c)]

Link to quantile:

QY (β) = argmin
c∈R

Riskℓβ (c)

Proof: sub-differential
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Median

Example (a special quantile: the median).

β = 0.5
↪→ QY (0.5) represents the median of the distribution of Y .

↪→ QY (0.5) = argmincE [|Y − c |].
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Quantile regression

• Goal : approximate QY |X (β) – Quantile level β – Pinball loss ℓβ(Y ,Y ′).

• Associated risk:

Riskℓβ (f ) = E [ℓβ(Y , f (X ))]

• Bayes predictor:

f ⋆ ∈ argmin
f ∈RX

Riskℓβ (f ) ⇒ f ⋆(X ) = QY |X (β)
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̸= 1− β
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Quantifying predictive uncertainty

• (X ,Y ) ∈ Rd ×R random variables

• n training samples (Xi ,Yi )
n
i=1

• Goal: predict an unseen point Yn+1 at Xn+1 with confidence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive set Cα such that:

P {Yn+1 ∈ Cα (Xn+1)} ≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative

For example: α = 0.1 and obtain a 90% coverage interval

• Construction of the predictive intervals should be

◦ agnostic to the model

◦ agnostic to the data distribution

• Validity should be ensured

◦ in finite samples

◦ for all data distribution and underlying model
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Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)
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Split Conformal Prediction (SCP)1,2,3: toy example

0 1 2 3 4 5
X
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Train Cal Test

1
1
Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: toy example training step

0 2 4
X

−2

0

2

Y

1

▶ Learn (or get) µ̂

1
Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: toy example calibration step

0 2 4
X

−2

0

2

Y

1

▶ Predict with µ̂

▶ Get the |residuals|, a.k.a.
conformity scores

▶ Compute the (1− α) empirical

quantile of

S = {|residuals|}Cal ∪ {+∞},
noted q1−α (S)

1
Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

11 / 78



Split Conformal Prediction (SCP)1,2,3: toy example prediction step

0 2 4
X

−2

0
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Y

1

▶ Predict with µ̂

▶ Build Ĉα(x): [µ̂(x)± q1−α (S)]

1
Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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SCP: implementation details V0 with +∞

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get µ̂ by training the algorithm A on the proper training set

3. On the calibration set, get prediction values with µ̂

4. Obtain a set of #Cal+ 1 conformity scores :

S = {Si = |µ̂(Xi )− Yi |, i ∈ Cal} ∪ {+∞}
(+ worst-case scenario)

5. Compute the 1− α quantile of these scores, noted q1−α (S)
6. For a new point Xn+1, return

Ĉα(Xn+1) = [µ̂(Xn+1)− q1−α (S); µ̂(Xn+1) + q1−α (S)]

13 / 78
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SCP: theoretical foundation

Definition (Exchangeability).

(Xi ,Yi )
n
i=1 are exchangeable if, for any permutation σ of J1, nK:

((X1,Y1) , . . . , (Xn,Yn))
d
=
((
Xσ(1),Yσ(1)

)
, . . . ,

(
Xσ(n),Yσ(n)

))
.

Example (exchangeable sequences).

• i.i.d. samples

• The components of N




m
...
...

m

 ,


σ2

. . . γ2

γ2 . . .

σ2
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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem (Marginal validity).

Suppose (Xi ,Yi )
n+1
i=1 are exchangeablea. SCP applied on (Xi ,Yi )

n
i=1 outputs

Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal ∪ {Sn+1} are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

#Cal+ 1
.

aOnly the calibration and test data need to be exchangeable.
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Proof architecture of SCP guarantees

Lemma (Quantile lemma).

If (U1, . . . ,Un,Un+1) are exchangeable, then for any β ∈]0, 1[:
P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≥ β.

Additionally, if U1, . . . ,Un,Un+1 are almost surely distinct, then:

P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≤ β +
1

n + 1
.

When (Xi ,Yi )
n+1
i=1 are exchangeable, the scores {Si}i∈Cal∪{Sn+1} are exchangeable.

↪→ applying the quantile lemma to the scores concludes the proof.

{
Yn+1 ∈ Ĉn,α (Xn+1)

}
= {µ̂ (Xn+1)− q1−α (S) ≤ Yn+1 ≤ µ̂ (Xn+1) + q1−α (S)}

= {|Yn+1 − µ̂ (Xn+1) | ≤ q1−α (S)}
= {Sn+1 ≤ q1−α (S)} .
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Proof of the quantile lemma lower bound

First note that Un+1 ≤ qβ(U1, . . . ,Un,+∞) ⇐⇒ Un+1 ≤ qβ(U1, . . . ,Un,Un+1).

By exchangeability, for any i ∈ J1, n + 1K:
P (Un+1 ≤ qβ(U1, . . . ,Un,Un+1))

d
= P (Ui ≤ qβ(U1, . . . ,Un,Un+1)). Thus:

P (Un+1 ≤ qβ(U1, . . . ,Un,Un+1)) =
1

n + 1

n+1∑
i=1

P (Ui ≤ qβ(U1, . . . ,Un,Un+1))

=
1

n + 1
E

[
n+1∑
i=1

1 {Ui ≤ qβ(U1, . . . ,Un,Un+1)}
]

≥ 1

n + 1
E [⌈β(n + 1)⌉]

=
⌈β(n + 1)⌉

n + 1

≥ β,

proving the first statement.
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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem (Marginal validity Vovk et al. (2005)).

Suppose (Xi ,Yi )
n+1
i=1 are exchangeabled. SCP applied on (Xi ,Yi )

n
i=1 outputs

Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal ∪ {Sn+1} are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

#Cal+ 1
.

dOnly the calibration and test data need to be exchangeable.

✗ Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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Conditional coverage implies adaptiveness

• Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)

}
the errors may differ across regions

of the input space (i.e. non-adaptive)

• Conditional coverage: P
{
Yn+1 ∈ Ĉα (Xn+1) |Xn+1

}
errors are evenly distributed

(i.e. fully adaptive)

• Conditional coverage is stronger than marginal coverage

no coverage

marginal conditional

0 2 4
X

−4

−2

0

2

Y

1
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Standard mean-regression SCP is not adaptive

0 2 4
X

−2

0

2

Y

1

▶ Predict with µ̂

▶ Build Ĉα(x): [µ̂(x)± q1−α (S)]
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Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



Conformalized Quantile Regression (CQR)5

0 1 2 3 4 5
X

−4

−2

0

2

Y

Train Cal Test

1
5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5 training step

0 2 4
X

−4

−2

0

2

Y

1

▶ Learn (or get) Q̂Rlower and

Q̂Rupper

5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5 calibration step

+

+

+ ++
++

+

-
--

-

++

- -

▶ Predict with Q̂Rlower and

Q̂Rupper

▶ Get the scores

S = {Si}Cal ∪ {+∞}
▶ Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ Si := max
{
Q̂Rlower (Xi )− Yi ,Yi − Q̂Rupper (Xi )

}
5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5 prediction step

0 2 4
X

−4

−2

0

2

Y

1

▶ Predict with Q̂Rlower and

Q̂Rupper

▶ Build

Ĉα(x) = [Q̂Rlower(x)− q1−α (S); Q̂Rupper(x) + q1−α (S)]

5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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CQR: implementation details V0 with +∞

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Q̂Rlower and Q̂Rupper by training the algorithm A on the proper training

set

3. Obtain a set of #Cal+ 1 conformity scores S:

S = {Si = max
(
Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )

)
, i ∈ Cal} ∪ {+∞}

4. Compute the 1− α quantile of these scores, noted q1−α (S)
5. For a new point Xn+1, return

Ĉα(Xn+1) = [Q̂Rlower(Xn+1)− q1−α (S); Q̂Rupper(Xn+1) + q1−α (S)]
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Ĉα(Xn+1) = [Q̂Rlower(Xn+1)− q1−α (S); Q̂Rupper(Xn+1) + q1−α (S)]

25 / 78



CQR: implementation details V1 without +∞
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3. Obtain a set of #Cal conformity scores S:

S = {Si = max
(
Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )

)
, i ∈ Cal}

4. Compute the (1− α)

(
1

#Cal
+ 1

)
quantile of these scores, noted q1−α (S)

5. For a new point Xn+1, return

Ĉα(Xn+1) = [Q̂Rlower(Xn+1)− q1−α (S); Q̂Rupper(Xn+1) + q1−α (S)]
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CQR: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Romano

et al. (2019).

Theorem (Marginal validity of CQR Romano et al. (2019)).

Suppose (Xi ,Yi )
n+1
i=1 are exchangeablea. CQR on (Xi ,Yi )

n
i=1 outputs Ĉα (·)

such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

#Cal+ 1
.

aOnly the calibration and test data need to be exchangeable.

Proof: quantile lemma again Yn+1 ∈ Ĉn,α (Xn+1) ⇔ Sn+1 ≤ q1−α (S) .

✗ Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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SCP is defined by the conformity score function

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Â by training the algorithm A on the proper training set

3. On the calibration set, obtain #Cal+ 1 conformity scores

S = {Si = s (Â(Xi ),Yi ), i ∈ Cal} ∪ {+∞}

Ex 1: s (Â(Xi ),Yi ) := |µ̂(Xi )− Yi | in regression with standard scores

Ex 2: s (Â(Xi ),Yi ) := max
(
Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )

)
in CQR

4. Compute the 1− α quantile of these scores, noted q1−α (S)
5. For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}

↪→ The definition of the conformity scores is crucial, as they incorporate almost all

the information: data + underlying model
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Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
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Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
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2. Get Â by training the algorithm A on the proper training set

3. On the calibration set, obtain #Cal+ 1 conformity scores
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SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk

et al. (2005).

Theorem (Marginal validity of SCP Vovk et al. (2005)).

Suppose (Xi ,Yi )
n+1
i=1 are exchangeablea. SCP on (Xi ,Yi )

n
i=1 outputs Ĉα (·)

such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

#Cal+ 1
.

aOnly the calibration and test data need to be exchangeable.

Proof: application of the quantile lemma.

✗ Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

28 / 78



SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk

et al. (2005).

Theorem (Marginal validity of SCP Vovk et al. (2005)).

Suppose (Xi ,Yi )
n+1
i=1 are exchangeablea. SCP on (Xi ,Yi )

n
i=1 outputs Ĉα (·)

such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)
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SCP: standard classification

• Y ∈ {1, . . . ,C} (C classes)

• Â(X ) = (p̂1(X ), . . . , p̂C (X )) (estimated probabilities)

• s (Â(X ),Y ) := 1− (Â(X ))Y

• For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}

29 / 78
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SCP: standard classification in practice

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.15

0.60

0.25

0.15

0.55

0.30

0.20

0.50

0.30

0.15

0.45

0.40

0.15

0.40

0.45

0.25

0.35

0.40

0.20

0.45

0.35

Si 0.05 0.1 0.15 0.40 0.45 0.50 0.55 0.55 0.6 0.65

• q1−α(S) = 0.65

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1), “dog”) = 0.95 “dog” /∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “cat”) = 0.65 ≤ q1−α(S) “cat” ∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”, “cat”}
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Si 0.05 0.1 0.15 0.40 0.45 0.50 0.55 0.55 0.6 0.65

• q1−α(S) = 0.65

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1), “dog”) = 0.95 “dog” /∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “cat”) = 0.65 ≤ q1−α(S) “cat” ∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”, “cat”}
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SCP: standard classification in practice, cont’d

Ex: Y ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set
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Si 0.05 0.1 0.15 0.15 0.20 0.25 0.30 0.35 0.40 0.45

• q1−α(S) = 0.45

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1), “dog”) = 0.95
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“cat” /∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”}
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SCP: limits of the standard classification case

efficiency yet non-adaptivity of the simplest classification scores

✓ Outputs the most efficient set possible (i.e. achieving the smallest

average set size, Sadinle et al., 2018),

✗ Does not allow to discriminate between “easy” and “hard” test point.

In practice, it leads to predictive sets that under-cover (resp.

over-cover) on “hard” (resp. “easy”) subgroups.

This is due to the fact that the same threshold q1−α(S) is applied to

any test point.
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SCP: classification with Adaptive Prediction Sets8

1. Sort in decreasing order p̂σx (1)(x) ≥ . . . ≥ p̂σx (C)(x)

2. s (x , y ; p̂) :=

σ−1
x (y)∑
k=1

p̂σx (k)(x) (sum of the estimated probabilities

associated to classes at least as large as that of the true class Y )

3. Return the set of classes
{
σXn+1(1), . . . , σXn+1(r

⋆)
}
, where

r⋆ = argmax
1≤r≤C

{
r∑

k=1

p̂σXn+1
(k)(Xn+1) < q1−α(S)

}
+ 1
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Romano et al. (2020b), Classification with Valid and Adaptive Coverage, NeurIPS

Figure highly inspired by Angelopoulos and Bates (2023).
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SCP: classification with Adaptive Prediction Sets in practice

Ex: Y ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set
Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )
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0.03
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0.85

0.10
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0.85

0.10

0.05

0.80

0.15
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0.75

0.20

0.10

0.75

0.15

0.25

0.40

0.35

0.10

0.30

0.60

0.15

0.30

0.55

Si 0.95 0.90 0.85 0.85 0.80 0.75 0.75 0.75 0.60 0.55

• q1−α(S) = 0.95

↪→ Ex 1: Â(Xn+1) = (0.05, 0.45, 0.5)

, r⋆ = 2

Ĉα(Xn+1) = {“tiger”, “cat”}

↪→ Ex 2: Â(Xn+1) = (0.03, 0.95, 0.02)

, r⋆ = 1

Ĉα(Xn+1) = {“tiger”}
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Ĉα(Xn+1) = {“tiger”, “cat”}

↪→ Ex 2: Â(Xn+1) = (0.03, 0.95, 0.02)

, r⋆ = 1
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Split Conformal Prediction: summary

• Simple procedure which quantifies the uncertainty of any predictive model Â

by returning predictive regions

• Finite-sample guarantees

• Distribution-free as long as the data are exchangeable (and so are the scores)

• Marginal theoretical guarantee over the joint (X ,Y ) distribution, and not con-

ditional, i.e., no guarantee that for any x :

P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α.

↪→ marginal also over the whole calibration set and the test point!
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Challenges: open questions (non exhaustive!)

• Conditional coverage

• Computational cost vs statistical power

• Exchangeability

36 / 78



Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

On distribution-free X -conditional validity

Y -conditional validity

Impact of the calibration set on the coverage

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



SCP: what choices for the regression scores?

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
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Vovk et al. (2005)
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SCP: what choices for the regression scores?

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
Standard SCP Locally weighted SCP CQR

Vovk et al. (2005) Lei et al. (2018) Romano et al. (2019)

s (Â(X ),Y ) |µ̂(X )− Y | |µ̂(X )− Y |
ρ̂(X )

max(Q̂Rlower(X )− Y ,

Y − Q̂Rupper(X ))

Ĉα(x) [µ̂(x)± q1−α (S)] [µ̂(x)± q1−α (S)ρ̂(x)]
[Q̂Rlower(x)− q1−α (S);

Q̂Rupper(x) + q1−α (S)]
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Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

On distribution-free X -conditional validity

Y -conditional validity

Impact of the calibration set on the coverage

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



Definition of distribution-free features conditional validity

Ĉα = estimated predictive set based on n data points.

Definition (Distribution-free X -conditional validity).

Ĉα achieves distribution-free X -conditional validity if:

• for any distribution D,

• for any associated exchangeable joint distribution Dexch(n+1),

we have that:

PDexch(n+1)

(
Y (n+1) ∈ Ĉα

(
X (n+1)

)
|X (n+1)

) a.s.
≥ 1− α.
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Informative conditional coverage as such is impossible

Theorem (Impossibility results Vovk (2012); Lei and Wasserman (2014)).

If Ĉα is distribution-free X -conditionally valid, then, for any D, for DX–almost

all DX–non-atoms x ∈ X , it holds:

▶ Regression: PD⊗(n)

(
mes

(
Ĉα (x)

)
= ∞

)
≥ 1− α,

▶ Classification: for any y ∈ Y, PD⊗(n)

(
y ∈ Ĉα (x)

)
≥ 1− α.

↪→ distribution-free X -conditional hardness result apply beyond CP

↪→ X -conditional estimators are overly large even on easy cases

↪→ the lower bounds are tight

↪→ Classification: every label is likely to be included in Ĉα.

Ĉα is likely to be large: for any D, for DX–almost all DX–non-atoms x ∈ X ,

ED⊗(n)

[
#Ĉα (x)

]
≥ (1− α)#Y.
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Weaker notion of X -conditional validity (Barber et al., 2021a)

Definition (distribution-free (1− α, δ)–X -conditional validity).

Let δ > 0 be a tolerance level.

An estimator Ĉα achieves distribution-free (1 − α, δ)–X -conditional validity

if for any distribution D, for any X ⊆ X such that PDX
(X ∈ X) ≥ δ, and

for any associated exchangeable joint distribution Dexch(n+1), we have:

PDexch(n+1)

(
Yn+1 ∈ Ĉα (Xn+1) |Xn+1 ∈ X

)
≥ 1− α.

Informal theorem (lower bound on (1− α, δ)–X -cond. valid efficiency)

An estimator achieving (1 − α, δ)–X -conditional validity can not be more

efficient than an estimator achieving distribution-free marginal validity at

the level 1− αδ.

↪→ In practive, consider small δ → unefficient predictive sets.
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Pre-defined partition of the X space

Definition (distribution-free group-features-conditional validity).

Let G :=
(
G (k)

)K
k=1

represents groups on the features space (possibly over-

lapping).

An estimator Ĉα achieves distribution-free G -conditional validity if for any dis-

tribution D, and for any associated exchangeable joint distribution Dexch(n+1),

we have:

PDexch(n+1)

(
Yn+1 ∈ Ĉα (Xn+1,Gn+1) |Gn+1

) a.s.
≥ 1− α.
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Hardness results on G -conditional-validity (Zaffran et al., 2024)

Theorem (General MCV hardness result).

If Ĉα is distribution-free group-features-conditionally valid then for any dis-

tribution D, for any group g such that DG (g) := PD(G = g) > 0, it holds:

▶ Regression

PD⊗(n+1)

(
mes

(
Ĉα (Xn+1, g)

)
= ∞

)
≥ 1− α−∆g ,n ≥ 1− α−DG (g)

√
n + 1,

▶ Classification

for any y ∈ Y, PP⊗(n+1)

(
alert < 2|handout : 0 > y ∈ Ĉα (Xn+1, g)

)
≥ 1− α−∆g ,n ≥ 1− α−DG (g)

√
n + 1.

Irreducible term: consider Ĉα outputting Y with probability 1−α and ∅ otherwise.

∆g ,n term: smaller than DG (g)
√
n + 1

↪→ gets negligible (making the lower bound nearly 1− α) only for low probability

groups compared to n.
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Irreducible term: consider Ĉα outputting Y with probability 1−α and ∅ otherwise.

∆g ,n term: smaller than DG (g)
√
n + 1

↪→ gets negligible (making the lower bound nearly 1− α) only for low probability

groups compared to n.

42 / 78



Hardness results on G -conditional-validity (Zaffran et al., 2024)

Theorem (General MCV hardness result).
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Restricting the link between G and (X or Y ) does not allow informative G -

conditional-coverage (Zaffran et al., 2024)

Theorem (G ⊥⊥ X hardness result).

If any Ĉα is G -conditionally-valid under G⊥⊥X , then for any distribution D
such that G⊥⊥X , for any group g such that DG (g) > 0, it holds:

PD⊗(n+1)

(
mes

(
Ĉα (Xn+1, g)

)
= ∞

)
≥ 1− α−DG (g)

√
n + 1.

Theorem (Y⊥⊥G |X hardness result).

If any Ĉα is G -conditionally-valid under Y⊥⊥G |X , then for any distribution

D such that Y⊥⊥G |X , for any mask g such that
1√
2
≥ DG (g) > 0, it holds:

PD⊗(n+1)

(
mes

(
Ĉα (Xn+1, g)

)
= ∞

)
≥ 1− α− 2DG (g)

√
n + 1.

⇒ Need to restrict both the link between G and X , as well as between G and Y .

Analogous statements are also available for the classification framework.
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Getting closer to X -conditional coverage

• Approximate conditional coverage

↪→ Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)

Target P(Yn+1 ∈ Ĉα (Xn+1) |Xn+1 ∈ R(x)) ≥ 1− α

• Asymptotic (with the sample size) conditional coverage

↪→ Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.

(2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.
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On the design choices of conformity scores and (empirical) conditional guarantees

On distribution-free X -conditional validity
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Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



Achieving Y -conditional validity in classification

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Â (by training A on the proper training set (Xi ,Yi )i∈Tr)

3. For any candidate y ∈ Y:

On the calibration set, obtain a set of #Caly + 1 conformity scores :

Sy = {Si = s
(
Xi , y ; Â

)
, i ∈ Cal such that Yi = y} ∪ {+∞}

4. For a new point Xn+1, return Ĉn,α (Xn+1)
{
y such that s

(
Xn+1, y ; Â

)
≤ q1−α (Sy )

}
.

↪→ What if there is a high class imbalance?

Ding et al. (2023) proposed to instead obtain cluster-conditional coverage.
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Probably Approximately Correct bounds on calibration-conditional coverage

(Vovk, 2012; Bian and Barber, 2023)

Theorem (calibration conditional validity of SCP).

SCP outputs Ĉα such that for any distribution D and any 0 < δ ≤ 0.5:

PD⊗(n+1)

(
PD

(
Yn+1 /∈ Ĉn,α (Xn+1) | (Xi ,Yi )

n
i=1

)
≤ α+

√
log(1/δ)

2#Cal

)
≥ 1−δ.

↪→ controls the deviation of miscoverage with respect to the nominal level of a

predictive set built on a given calibration set.
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Splitting the data might not be desired

SCP suffers from data splitting:

• lower statistical efficiency (lower model accuracy and higher predictive set size)

• higher statistical variability

Can we avoid splitting the data set?
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The naive idea does not enjoy valid coverage (even empirically)

• A naive idea:
◦ Get Â by training the algorithm A on {(X1,Y1), . . . , (Xn,Yn)}.

◦ compute the empirical quantile q1−α(S) of the set of scores

S =
{
s
(
Â (Xi ) ,Yi

)}n

i=1
∪ {∞}.

◦ output the set
{
y such that s

(
Â (Xn+1) , y

)
≤ q1−α(S)

}
.

✗ Â obtained w. the training set {(X1,Y1), . . . , (Xn,Yn)} but not Xn+1.

Example (“Naive Idea” sets with an interpolating algorithm).

Assume A interpolates:

• Â = A ((x1, y1), . . . , (xn, yn))

• Â(xk)− yk = 0 for any k ∈ J1, nK

⇒ Naive method above (with MAE score functions) outputs {Â (Xn+1)}
(a single point) for any new test point!
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✗ Â obtained w. the training set {(X1,Y1), . . . , (Xn,Yn)} but not Xn+1.

Example (“Naive Idea” sets with an interpolating algorithm).

Assume A interpolates:
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Full Conformal Prediction9 does not discard training points!

• Full (or transductive) Conformal Prediction

◦ avoids data splitting

◦ at the cost of many more model fits

• Idea: the most probable labels Yn+1 live in Y, and have a low enough conformity

score. By looping over all possible y ∈ Y, the ones leading to the smallest

conformity scores will be found.

9
Vovk et al. (2005), Algorithmic Learning in a Random World
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Full Conformal Prediction (CP): recovering exchangeability

For any candidate (Xn+1, y):

1. Get Ây by training A on {(X1,Y1), . . . , (Xn,Yn)} ∪ {(Xn+1, y)}

2. Obtain a set of training scores

S(train)
y =

{
s (Ây (Xi ),Yi )

}n

i=1
∪ { s (Ây (Xn+1), y)}

and compute their 1− α empirical quantile q1−α

(
S(train)
y

)
Output the set

{
y such that s

(
Ây (Xn+1) , y

)
≤ q1−α

(
S(train)
y

)}
.

✓ Test point treated in the same way than train points

✓ Any score works

✗ Computationally costly
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1. Get Ây by training A on {(X1,Y1), . . . , (Xn,Yn)} ∪ {(Xn+1, y)}
2. Obtain a set of training scores

S(train)
y =

{
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Full CP: theoretical foundation

Definition (Symmetrical algorithm).

A deterministic algorithm A : (U1, . . . ,Un) 7→ Â is symmetric if for any

permutation σ of J1, nK: A (U1, . . . ,Un)
a.s.
= A

(
Uσ(1), . . . ,Uσ(n)

)
.

Lemma (Exchangeable scores).

If the algorithm A : (U1, . . . ,Un) 7→ Â is symmetric, and (Xi ,Yi )
n+1
i=1 are

exchangeable, then S1, . . . ,Sn+1 are exchangeable, with

Si := s (ÂYn+1(Xi ),Yi ).

Moreover

Yn+1 ∈ ĈFull
α (Xn+1) :=

{
y such that s

(
Ây (Xn+1) , y

)
≤ q1−α

(
S(train)
y

)}
⇔ s

(
ÂYn+1 (Xn+1) ,Yn+1

)
≤ q1−α

(
S(train)
Yn+1

)
⇔ Sn+1 ≤ q1−α(S1, . . . ,Sn,Sn+1) !
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ÂYn+1 (Xn+1) ,Yn+1

)
≤ q1−α

(
S(train)
Yn+1

)
⇔ Sn+1 ≤ q1−α(S1, . . . ,Sn,Sn+1) !

51 / 78



Full CP: theoretical foundation

Definition (Symmetrical algorithm).

A deterministic algorithm A : (U1, . . . ,Un) 7→ Â is symmetric if for any
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Full CP: theoretical guarantees

Full CP enjoys finite sample guarantees proved in Vovk et al. (2005).

Theorem (Marginal validity of Full CP Vovk et al. (2005)).

Suppose that

(i) (Xi ,Yi )
n+1
i=1 are exchangeable,

(ii) the algorithm A is symmetric.

Full CP applied on (Xi ,Yi )
n
i=1 ∪ {Xn+1} outputs Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

n + 1
.

✗ Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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Interpolation regime

Example (FCP sets with an interpolating algorithm).

Assume A interpolates:

• Â = A ((x1, y1), . . . , (xn+1, yn+1))

• Â(xk)− yk = 0 for any k ∈ J1, n + 1K

⇒ Full Conformal Prediction (with standard score functions) outputs Y (the

whole label space) for any new test point!
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Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Full Conformal Prediction

Jackknife+

Beyond exchangeability

Some case studies

Concluding remarks



Jackknife: the naive idea does not enjoy valid coverage

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO scores S =
{
|Â−i (Xi )− Yi |

}
i
∪ {+∞} (in standard mean regression)

• Get Â by training A on Dn

• Build the predictive interval:
[
Â(Xn+1)± q1−α(S)

]
Warning

No guarantee on the prediction of Â with scores based on (Â−i )i , without

assuming a form of stability on A.
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assuming a form of stability on A.

54 / 78



Jackknife: the naive idea does not enjoy valid coverage

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data
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assuming a form of stability on A.

54 / 78



Jackknife: the naive idea does not enjoy valid coverage

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data
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|Â−i (Xi )− Yi |

}
i
∪ {+∞} (in standard mean regression)
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Jackknife+ (Barber et al., 2021b)

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO predictions / predictive intervals

Sup/down =
{
Â−i (Xn+1)± |Â−i (Xi )− Yi |

}
i
∪ {±∞}

(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem (Marginal validity of Jackknife+ Barber et al. (2021b)).

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric:

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− 2α.

Recall qβ,inf(X1, . . . ,Xn) := ⌊β × n⌋ smallest value of (X1, . . . ,Xn)
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• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO predictions / predictive intervals

Sup/down =
{
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CV+ Barber et al. (2021b) (see also cross-conformal predictors: Vovk, 2015)

• Based on cross-validation residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Split Dn into K folds F1, . . . ,FK

• Get Â−Fk
by training A on Dn \ Fk

• Cross-val predictions / predictive intervals

Sup/down =

{{
Â−Fk

(Xn+1)± |Â−Fk
(Xi )− Yi |

}
i∈Fk

}
k

∪ {±∞}
(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem (Marginal validity of CV+ Barber et al. (2021b)).

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric: P(Yn+1 ∈ Ĉα(Xn+1)) ≥
1− 2α−min

(
2(1− 1/K )

n/K + 1
,
1− K/n

K + 1

)
≥ 1− 2α−

√
2/n.

Recall qβ,inf(X1, . . . ,Xn) := ⌊β × n⌋ smallest value of (X1, . . . ,Xn)
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• Split Dn into K folds F1, . . . ,FK

• Get Â−Fk
by training A on Dn \ Fk

• Cross-val predictions / predictive intervals

Sup/down =

{{
Â−Fk

(Xn+1)± |Â−Fk
(Xi )− Yi |

}
i∈Fk

}
k

∪ {±∞}
(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem (Marginal validity of CV+ Barber et al. (2021b)).

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric: P(Yn+1 ∈ Ĉα(Xn+1)) ≥
1− 2α−min

(
2(1− 1/K )

n/K + 1
,
1− K/n

K + 1

)
≥ 1− 2α−

√
2/n.
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General overview

SCP CV+ FCPJackknife+

Computational efficiency

Statistical efficiency

Nested Conformal Prediction

• Generalized framework encapsulating out-of-sample methods: Nested CP

(Gupta et al., 2022) → extends JK+/CV+ for any score.

• Accelerating FCP: Nouretdinov et al. (2001); Lei (2019); Ndiaye and Takeuchi

(2019); Cherubin et al. (2021); Ndiaye and Takeuchi (2022); Ndiaye (2022)

Non exhaustive references.
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Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



Exchangeability does not hold in many practical applications

• CP requires exchangeable data points to ensure validity

✗ Covariate shift, i.e. LX changes but LY |X stays constant

✗ Label shift, i.e. LY changes but LX |Y stays constant

✗ Arbitrary distribution shift

✗ Possibly many shifts, not only one
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Covariate shift (Tibshirani et al., 2019)12

• Setting:

◦ (X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ PX × PY |X

◦ (Xn+1,Yn+1) ∼ P̃X × PY |X

• Idea: give more importance to calibration points that are closer in distribution

to the test point

• In practice:

1. estimate the likelihood ratio w(Xi ) =
dP̃X (Xi )

dPX (Xi )

2. normalize the weights, i.e. ωi = ω(Xi ) =
w(Xi )∑n+1
j=1 w(Xj)

3. outputs Ĉα(Xn+1) ={
y : s (Â(Xn+1), y) ≤ Q1−α

(∑
i∈Cal

ωiδSi + ωn+1δ∞

)}

12
Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS
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Label shift (Podkopaev and Ramdas, 2021)13

• Setting:
◦ (X1,Y1), . . . , (Xn,Yn)

i.i.d.∼ PX |Y × PY

◦ (Xn+1,Yn+1) ∼ PX |Y × P̃Y

◦ Classification

• Idea: give more importance to calibration points that are closer in distribution

to the test point

• Trouble: the actual test labels are unknown
• In practice:

1. estimate the likelihood ratio w(Yi ) =
dP̃Y (Yi )

dPY (Yi )
using algorithms from the existing

label shift literature

2. normalize the weights, i.e. ωy
i = ωy (Xi ) =

w(Yi )∑n
j=1 w(Yj) + w(y)

3. outputs Ĉα(Xn+1) ={
y : s (Â(Xn+1), y) ≤ Q1−α

(∑
i∈Cal

ωy
i δSi + ωy

n+1δ∞

)}

13
Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under label

shift, UAI
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3. outputs Ĉα(Xn+1) ={
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Generalizations

• Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the

distributionally robust optimization literature

• Two major general theoretical results beyond exchangeability:

◦ Chernozhukov et al. (2018)

↪→ If the learnt model is accurate and the data noise is strongly mixing, then CP

is valid asymptotically ✓

◦ Barber et al. (2022)

↪→ Quantifies the coverage loss depending on the strength of exchangeability

violation

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α− average violation of exchangeability
by each calibration point

↪→ proposed algorithm: reweighting again!

e.g., in a temporal setting, give higher weights to more recent points.
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Online setting

• Data: T0 random variables (X1,Y1), . . . , (XT0 ,YT0) in R
d ×R

• Aim: predict the response values as well as predictive intervals for T1 subsequent

observations XT0+1, . . . ,XT0+T1 sequentially: at any prediction step t ∈ JT0 +

1,T0 + T1K, Yt−T0 , . . . ,Yt−1 have been revealed

• Build the smallest interval Ĉ t
α such that:

P
{
Yt ∈ Ĉ t

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K,

often relaxed in:

1

T1

T0+T1∑
t=T0+1

1
{
Yt ∈ Ĉ t

α (Xt)
}
≈ 1− α.
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Recent developments

• Consider splitting strategies that respect the temporal structure

• Gibbs and Candès (2021) propose a method which reacts faster to temporal
evolution

◦ Idea: track the previous coverages of the predictive intervals (1{Yt ∈ Ĉα(Xt)})
◦ Tool: update the empirical quantile level with a learning rate γ

◦ Asymptotic guarantee (on average) for any distribution (even adversarial)

• Zaffran et al. (2022) studies the influence of this learning rate γ and proposes,

along with Gibbs and Candès (2022), a method not requiring to choose γ

• Bhatnagar et al. (2023) enjoys anytime regret bound, by leveraging tools from

the strongly adaptive regret minimization literature

• Bastani et al. (2022) proposes an algorithm achieving stronger coverage guar-

antees (conditional on specified overlapping subsets, and threshold calibrated)

without hold-out set

Non exhaustive references.
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Image to Image regression with DF-UQ - Angelopoulos et al. (2022b)

• Medical application

• Image based task

• Pixel by pixel analysis ⇝

applications to segmentation

for self-driving cars

1. Task: Image to Image

regression - for each pixel of an

image, predict a real valued output

from the entire image.

2. UQ Goal: provide a predictive

interval for each pixel, such that

the output is in the interval at least

90% of the time. Figure 2: Image from Angelopoulos et al. (2022b)
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Image to Image regression with DF-UQ - Angelopoulos et al. (2022b)

Method:

1. Split conformal prediction method - isolate calibration set
2. On the proper training set, learn:

• Mean regressor - µ̂ : RNM → [0; 1]

• Heuristic notion of uncertainty: ũ, ℓ̃ : RNM → [0; 1], such that

[µ̂(X )− ℓ̃(X ); µ̂(X ) + ũ(X )]

→ 3 regressors are used

4 techniques are experimented for these regressors, including QR.

3. Calibration step: leverage the calibration set.
• In spirit, almost equivalent to CQR but with a multiplicative form.

• Precisely, relies on RCPS (Bates et al., 2021a)

Guarantee:

P [E [Average miscoverage on all pixels of a test image ≥ α|Cal]] ≤ δ

→ Marginal validity on the test, with high probability w.r.t. the calibration set.
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Image to Image regression with DF-UQ - Angelopoulos et al. (2022b)

Method:

1. Split conformal prediction method - isolate calibration set
2. On the proper training set, learn:

• Mean regressor - µ̂ : RNM → [0; 1]
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Image to Image regression with DF-UQ - Angelopoulos et al. (2022b)

How do you understand that?

• Not a conditional coverage claim!

• The statement is on-average on the

test point - easy or hard.

• Hard problem (impossibility results!)

• Introduce metrics to see if and on

which underlying regressors such

problem happens.
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Image to Image regression with DF-UQ - Angelopoulos et al. (2022b)

Example of such metrics (see also

Feldman et al., 2021) :

• Link between the size of the PI and

the coverage level −→

• Localization of the errors ↓

Figure 3: All images from Angelopoulos et al. (2022b)

Take aways:

• Elegant application of SCP with CQR type score

• Test marginal and calibration + train conditional validity guarantees with HP

• Main problem is Test conditionality → look at metrics to evaluate which

methods performs best!
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Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Healthcare

Electricity

Concluding remarks



Forecasting French spot electricity prices

Hourly day-ahead market prices (between producers and suppliers)
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To which extent are they forecastable?

↪→ forecasts errors no lower than 10% of the realized price!
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Temporal splitting strategies: Online Sequential Split Conformal Prediction

(OSSCP, Zaffran et al., 2022; Dutot et al., 2024)

(a) OSSCP (b) OSSCP-horizon

Test pointUnused data Proper training set Calibration set

↪→ OSSCP improves robustness in temporal settings;

↪→ OSSCP-horizon drastically improves robustness in non-stationary temporal

settings.
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Zoom on Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution

shift.

It relies on updating online an effective miscoverage rate αt , with the scheme

αt+1 := αt + γ
(
α− 1

{
Y (t) /∈ Ĉαt

(
X (t)

)})
,

and α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so we want to

increase its length by taking a higher quantile (a smaller αt). Reversely if we

included the point.

Guarantee: Asymptotic validity result for any sequence of observations.

∣∣∣∣∣∣ 1T1

T0+T1∑
t=T0+1

1
{
Y (t) ∈ Ĉαt

(
X (t)

)}
− (1− α)

∣∣∣∣∣∣ ≤ 2

γT1

⇒ favors large γ.
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(
X (t)

)}
− (1− α)

∣∣∣∣∣∣ ≤ 2

γT1

⇒ favors large γ.

70 / 78



Zoom on Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Adaptive Conformal Inference (ACI) was initially proposed to handle distribution

shift.

It relies on updating online an effective miscoverage rate αt , with the scheme

αt+1 := αt + γ
(
α− 1

{
Y (t) /∈ Ĉαt
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Visualisation of ACI procedure
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Figure 4: Visualisation of ACI with different values of γ (γ = 0, γ = 0.01, γ = 0.05)
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AgACI: adaptive wrapper around ACI, upper bound (Zaffran et al., 2022)
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Experimental take-away messages (Zaffran et al., 2022; Dutot et al., 2024)

• Synthetic data with ARMA noise

◦ Benchmarks are not robust to the increase in the temporal dependence;

◦ ACI is robust, maintaining validity, with an appropriate γ;

◦ AgACI is robust, maintaining validity, not the smallest.

• French electricity spot prices

◦ 2019: AgACI provides validity with a reasonable efficiency;

◦ 2020 and 2021: AgACI fails to ensure validity, and the various forecasting

models considered behave differently.
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Improving adaptiveness for high non-stationarity (Dutot et al., 2024)

Online aggregation of various AgACI, each of them being trained with different

underlying forecasting models, for each bound independently.

✓ Retrieves validity even in the most hazardous period of 2020 and 2021.

✓ Analyzing its weights provides interpretability.
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✓ Retrieves validity even in the most hazardous period of 2020 and 2021.

✓ Analyzing its weights provides interpretability.
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Highlights and perspectives

Aggregating the two bounds independently (as in AgACI and beyond):

✓ Allows more flexible and adaptive behavior in practice, catching the varying

nature of the predictive distribution tails

✗ Prevents from obtaining theoretical guarantees (by opposition to Gibbs and

Candès, 2022)

↪→ Weaken the objective and consider a more practical theoretical aim?
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Quantile Regression

Split Conformal Prediction (SCP)

On the design choices of conformity scores and (empirical) conditional guarantees

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability

Some case studies

Concluding remarks



Summary: Uncertainty quantification through conformal methods

Quantile regression no guarantee

Conformal methods

• Marginal validity

• Model/distribution agnostic

• Finite sample

SCP

+ no retraining

- split

Full CP

+ no split

- prohibitive cost

JK/CV

+ balance cost

- requires stability or 1− 2α

Various scores

• Based on µ̂(x)

• Based on Q̂R(x)

• Based on P̂(y |x)

Limit 1: only marginal guarantee

• Hardness of conditional coverage

• Asymptotic results / Adaptive

methods

Limit 2: requires exch.

• Distribution shifts

• Online methods

Case Studies 76 / 78



Some (other, non-exhaustives) current open directions

• Outlier detection (Vovk et al., 2003; Bates et al., 2023)

• Selective inference, false discovery rate guarantees (Marandon et al., 2024;

Gazin et al., 2024)

• Beyond the indicator loss (Angelopoulos et al., 2022a; Bates et al., 2021b;

Angelopoulos et al., 2023; Lekeufack et al., 2024)

• Aggregating predictive sets (Gasparin and Ramdas, 2024b,a; Gasparin et al.,

2024)
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