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Schedule
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Introduction
Framework

Performative stability and retraining
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Performative optimality
Performative optimality vs performative stability

Model-free and model-based optimization

3rd hour:

Extensions of the framework and connections

Power, incentives, digital activism

Discussion



Different facets of prediction

Prediction in the social world is different from prediction in physical systems

Prediction in astronomy: 
Detect regularities and laws in nature, purely explanatory and descriptive

Prediction in social context:
Predictions are an intrinsic part of the system, they inform decisions, 
beliefs and outcomes 



prediction of 
election outcomes

FiveThirtyEight publishes predictions of US 
election outcome

Predictions change expectations and beliefs of 
individuals

They impact voter turnout and election outcome

Herbert Simon 1954. 

“Bandwagon and Underdog Effects and the 
Possibility of Election Predictions”

Different facets of prediction
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Government agencies make predictions 
about socioeconomic status

Predictions are used to allocate benefits

Different facets of prediction



Government agencies make predictions 
about socioeconomic status

Predictions are used to allocate benefits

People adapt and statistical regularities in 
the population collapse

Different facets of prediction

Camacho & Conover, 
American Economic Journal, 2011



Different facets of prediction

“Option pricing theory—a “crown jewel” of neoclassical economics—
succeeded empirically not because it discovered preexisting price patterns 

but because it pushed the market to conform to its predictions […].” 
MacKenzie & Millo, American Journal of Sociology, 2003



Oskar Morgenstern

Habilitation, 1928 

Forecasts that can impact the predicted event constitute one of the most 
central problems in the theory of economic forecasting

In the physical world - unlike the social world - there is no causal 
relationship between the prediction of an event and its occurrence.

Habilitation titled “Wirtschaftsprognose”. 1928.



What about machine learning?

We routinely make predictions in 
economic and social contexts!



Prediction in machine learning

Traffic predictions impact routing 
decisions and hence traffic



Prediction in machine learning

Find news article

Zestimates set expectations 
that impact sales prices



Prediction in machine learning

Find news article

Recommender systems filter 
information and shape consumption



Supervised learning

• We represent the population as a distribution 𝐷 over data instances (𝑋, 𝑌)
• Predictive model given by a parameter vector 𝜃
• Find a good predictive model through risk minimization

Risk 𝜃, 𝐷 = E(",$)∼' [ loss (𝑥, 𝑦); 𝜃 ]

static description of the world
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Supervised learning

• We represent the population as a distribution 𝐷 over data instances (𝑋, 𝑌)
• Predictive model given by a parameter vector 𝜃
• Find a good predictive model through risk minimization

Risk 𝜃, 𝐷 = E(",$)∼' [ loss (𝑥, 𝑦); 𝜃 ]

static description of the world

No language to articulate Morgenstern’s argument 



Performative prediction

An extension of the classical risk minimization framework that accounts for 
the causal effect of predictions on the target of prediction



Performative prediction

An extension of the classical risk minimization framework that accounts for 
the causal effect of predictions on the target of prediction

Performativity is an established concept in economics, 
finance, public policy, and social science 
see, e.g., M. Callon, D. MacKenzie

Donald MacKenzie. 2006. 
“How Financial Models Shape Markets”



Performative prediction

An extension of the classical risk minimization framework that accounts for 
the causal effect of predictions on the target of prediction

Performativity is an established concept in economics, 
finance, public policy, and social science 
see, e.g., M. Callon, D. MacKenzie

Goal: bring performativity as a concept into 
the foundations of machine learning

Donald MacKenzie. 2006. 
“How Financial Models Shape Markets”



Framework



Performativity thesis: 
Predictions can have a causal influence on the world they aim to predict 

[PZMH20]

Performative prediction framework
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Performativity thesis: 
Predictions can have a causal influence on the world they aim to predict 

Lens to the world is the data
→ Data distribution 𝐷 𝜃 changes in response to a deployed model 𝜃

Risk 𝜃, 𝐷(𝜃) = E(",$)∼'(() [ loss (𝑥, 𝑦); 𝜃 ]

the observed loss of a model is the loss on the distribution 
that surfaces after its deployment

[PZMH20]

Performative prediction framework



Performativity thesis: 
Predictions can have a causal influence on the world they aim to predict 

Lens to the world is the data
→ Data distribution 𝐷 𝜃 changes in response to a deployed model 𝜃

Risk 𝜃, 𝐷(𝜃) = E(",$)∼'(() [ loss (𝑥, 𝑦); 𝜃 ]

the model impacts the risk in two ways:
through the loss and the distribution

[PZMH20]

Performative prediction framework



Performative stability 



Collect data and update your model given data

Retraining and stability

𝜃!"#

𝜃!

Risk(𝜃, 𝐷!)

Risk(𝜃, 𝐷!"#)

𝜃!"$

𝜃!"# ← argmin% Risk 𝜃, 𝐷!Repeated risk minimization (RRM):

1. observe data distribution 𝐷!
2. let 𝜃!"# be the risk minimizer on 𝐷!
3. deploy 𝜃!"# →  𝐷!"# = 𝐷(𝜃!"#)
4. repeat 



Repeated risk minimization (RRM):

Collect data and update your model given data

Performative stability:

Model remains optimal after deployment

𝜃∗ = argmin" Risk 𝜃, 𝐷(𝜃∗)

Retraining and stability

1. observe data distribution 𝐷!
2. let 𝜃!"# be the risk minimizer on 𝐷!
3. deploy 𝜃!"# →  𝐷!"# = 𝐷(𝜃!"#)
4. repeat 

𝜃!"#

𝜃!

Risk(𝜃, 𝐷!)

Risk(𝜃, 𝐷!"#)

𝜃!"$

𝜃!"# ← argmin% Risk 𝜃, 𝐷!

A natural equilibrium concept 

[PZMH20]



When does retraining converge?

𝑊 𝐷 𝜃 ,𝐷 𝜃& ≤ 𝜖 𝜃 − 𝜃& $

Definition: We say the distribution map 𝐷(𝜃) is 𝜖-sensitive if for all 𝜃, 𝜃#

“Similar models lead to similar distributions”



𝑊 𝐷 𝜃 ,𝐷 𝜃& ≤ 𝜖 𝜃 − 𝜃& $

Definition: We say the distribution map 𝐷(𝜃) is 𝜖-sensitive if for all 𝜃, 𝜃#

When does retraining converge?

“Similar models lead to similar distributions”

Theorem [PZMH20]:  Suppose the loss function is 𝛾-strongly convex in 𝜃 and
𝛽-smooth in the data*. Then retraining converges to a unique stable point as long as 
𝐷(𝜃) is not too sensitive: 𝜖 < 𝛾/𝛽 . The rate of convergence is linear:

𝜃$ − 𝜃∗ ≤ %&
'

$
||𝜃( − 𝜃∗||

* ∇𝜃ℓ(𝑧, 𝜃) is 𝛽-Lipschitz in 𝑧



• 𝛾-strong convexity of the loss in 𝜃:           [∇ℓ! 𝜃! − ∇ℓ!(𝜃!∗)]# 𝜃! − 𝜃!∗ ≥ 𝛾||𝜃! − 𝜃!∗||$

• 𝛽-smoothness of the loss in the data:      [∇ℓ! 𝜃! − ∇ℓ!%& 𝜃! ]# 𝜃! − 𝜃!∗ ≤ 𝛽 𝜃! − 𝜃!∗ 𝑊 𝐷(𝜃!%& , 𝐷(𝜃!))

Proof sketch

0

ℓ!%& 𝜃 : loss over 𝐷(𝜃!%&)

𝜃!%&∗

𝜃!∗

𝜃!

ℓ! 𝜃 : loss over 𝐷(𝜃!)

0

Kantorovich-Rubinstein duality theorem: for 𝐿-Lipschitz functions 𝑔:
E'∼)!𝑔 𝑥 − E'∼)"𝑔 𝑥 ≤ 𝐿 𝑊(𝐷&, 𝐷$)



Proof sketch

≤
𝛽
𝛾 𝜖 𝜃!%& − 𝜃!

contraction for 𝜖 < 𝛾/𝛽=
𝛽
𝛾 𝜖 𝜃!%& − 𝜃!%&∗

ℓ!%& 𝜃 : loss over 𝐷(𝜃!%&)

𝜃!%&∗

𝜃!∗

𝜃!

ℓ! 𝜃 : loss over 𝐷(𝜃!)

0

0
• 𝛾-strong convexity of the loss in 𝜃:           [∇ℓ! 𝜃! − ∇ℓ!(𝜃!∗)]# 𝜃! − 𝜃!∗ ≥ 𝛾||𝜃! − 𝜃!∗||$

• 𝛽-smoothness of the loss in the data:      [∇ℓ! 𝜃! − ∇ℓ!%& 𝜃! ]# 𝜃! − 𝜃!∗ ≤ 𝛽 𝜃! − 𝜃!∗ 𝑊 𝐷(𝜃!%& , 𝐷(𝜃!))

• 𝜖-sensitivity of 𝐷(⋅): ⇒ ||𝜃! − 𝜃!∗|| ≤
*
+
𝑊 𝐷(𝜃!%& , 𝐷(𝜃!))

• 𝜖-sensitivity of 𝐷(⋅): 



Fixed-point argument

Historical arguments about the possibility of 
public prediction using Brouwer’s fixed point 
theorem

• Simon 1954
• Grunberg, Modigliani 1954

If the response funtion Y = 𝑅( =𝑌) is continuous 
then perfect public prediction is possible  

Performative stability is a natural analogue of 
these fixed points in parametric prediction 
settings

Herbert Simon, 1954



Fixed-point argument

Historical arguments about the possibility of 
public prediction using Brouwer’s fixed point 
theorem

• Simon 1954
• Grunberg, Modigliani 1954

If the response funtion Y = 𝑅( =𝑌) is continuous 
then perfect public prediction is possible

Performative stability is a natural analogue of 
these fixed points in parametric prediction 
settings

predicted value
!𝒀

Outcome
𝒀

perfect 
prediction

“Win probability”

Herbert Simon, 1954



𝑊 𝐷 𝜃 ,𝐷 𝜃" ≤ 𝜖 𝜃 − 𝜃" #

Definition: We say the distribution map 𝐷(𝜃) is 𝝐-sensitive if for all 𝜃, 𝜃"

[PZMH20]

“Similar models lead 
to similar distributions”

Poverty score

Subsidize individuals below threshold
𝜃𝜃

When is sensitivity satisfied?

𝑃 𝑌 = 1 𝑋 = Bernoulli 𝜇(𝑋) + 𝜖 𝑓$(𝑋)

?𝑌 = 𝑓$(𝑋) = 𝜃𝑋

Estimate a binary outcome

𝑋 ∈ [0,1] 

Prediction is self-fulfilling: sensitivity

𝜖 ∝ strength of effect
𝜖 ∝ fraction of individuals impacted 

by unit change in 𝜃
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Poverty score

Subsidize individuals below threshold
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𝜃′
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Retraining heuristics



gradient update 𝜃% −𝜂 E&∼(($!) [∇ℓ 𝑧; 𝜃% ]

𝜃!"# ← argmin' Risk(𝜃, 𝐷(𝜃!))

• ERM and repeated gradient descent [PZMH20]
• Stochastic gradient descent [MPZH20, DX23]
• Proximal point methods [DX23]
• Projected gradient descent [WBD21]

Retraining heuristics as natural fixed point dynamics under performativity

Empirical risk using samples of 𝐷(𝜃%)

Beyond risk minimization



• SGD update uses unbiased estimate of the gradient:

• For small 𝜖 < 𝛾/𝛽  the gradient on problem 𝐷(𝜃%) is aligned with the gradient on 
problem 𝐷(𝜃∗) and never points against the gradient flow: 

• It remains to choose the stepsize such that the variance decreases sufficiently 
quickly as we approach stability to obtain the classical 𝑂 !

"  convergence rate.

We can study SGD as an algorithm to implicitly solve 
the static problem at equilibrium

𝑔!(𝜃) − ∇𝑔∗ 𝜃 ≤ 𝜖𝛽 𝜃! − 𝜃∗ → cos ∡ 𝑔! 𝜃 , 𝑔∗ 𝜃 ≤ 1 − )*
+

$

𝑔! 𝜃 := E,∼.![∇ℓ' 𝑧; 𝜃 ]

[DX23]

𝑔∗

𝑔#

𝜃
Risk(𝜃, 𝐷 𝜃∗ )

Stochastic gradient descent



• SGD update uses unbiased estimate of the gradient:

• For small 𝜖 < 𝛾/𝛽  the gradient on problem 𝐷(𝜃%) is aligned with the gradient on 
problem 𝐷(𝜃∗) and never points against the gradient flow: 

• Choosing step size such that gradient variance decreases sufficiently quickly as we 
approach stability implies classical 𝑂 !

" convergence rate

SGD under performativity ≈ perturbed SGD at equilibrium distribution 𝐷(𝜃∗)

𝑔!(𝜃) − ∇𝑔∗ 𝜃 ≤ 𝜖𝛽 𝜃! − 𝜃∗ →

𝑔! 𝜃 := E,∼.![∇ℓ' 𝑧; 𝜃 ]

Stochastic gradient descent
[DX23]

cos ∡ 𝑔! 𝜃 , 𝑔∗ 𝜃 ≤ 1 − )*
+

$



Greedy vs lazy
[MPZH20]

greedy = deploy every step lazy = deploy only periodically



Greedy vs lazy

Step size for greedy deploy globally decreasing 
and more conservative as 𝜖 grows

Step size for lazy deploy locally decreasing 
between deployments and independent of 𝜖  

[MPZH20]

greedy = deploy every step lazy = deploy only periodically



Greedy vs lazy

Step size for greedy deploy globally decreasing 
and more conservative as 𝜖 grows

Step size for lazy deploy locally decreasing 
between deployments and independent of 𝜖  

Which one works better?

[MPZH20]

greedy = deploy every step lazy = deploy only periodically



𝜖 = 0.2 𝜖 = 0.6 𝜖 = 0.9

Setup: Mean estimation z ∼ 𝑁(𝜇 + 𝜖𝜃, 𝜎$) using ℓ 𝑧, 𝜃 = $
% 𝑧 − 𝜃

$

Greedy vs lazy

• Greedy deploy: Better if performativity is weak
• Lazy deploy: Better at dealing with strong shifts and poor initialization

[MPZH20]



𝜖 = 0.2 𝜖 = 0.6 𝜖 = 0.9

Setup: Mean estimation z ∼ 𝑁(𝜇 + 𝜖𝜃, 𝜎$) using ℓ 𝑧, 𝜃 = $
% 𝑧 − 𝜃

$

deployments
greedy: 50K

lazy: 200

Greedy vs lazy

• Greedy deploy: Better if performativity is weak
• Lazy deploy: Better at dealing with strong shifts and poor initialization
• Practical tradeoff between sample collection and deployment costs

[MPZH20]



[MMG23, LW24]

Performatively stable points are stationary points: E/∼.('∗) ∇ℓ 𝑧; 𝜃∗ = 0
Stationarity makes sense even with nonconvex losses!

More generally: 𝜃∗is 𝛿-stationary performatively stable if 

Stochastic optimization under nonconvexity

|| E/∼.('∗) ∇ℓ 𝑧; 𝜃∗ ||2 ≤ 𝛿



[MMG23, LW24]

Performatively stable points are stationary points: E/∼.('∗) ∇ℓ 𝑧; 𝜃∗ = 0
Stationarity makes sense even with nonconvex losses!

More generally: 𝜃∗is 𝛿-stationary performatively stable if 

Theorem [LW24]: 
Assume 𝐷 𝜃 is 𝜖-sensitive and ℓ(𝑧; 𝜃) is Lipschitz in 𝜃 and possibly nonconvex. Then,
• greedy deploy satisfies

• lazy deploy with batch size 𝐾 satisfies

Stochastic optimization under nonconvexity

|| E/∼.('∗) ∇ℓ 𝑧; 𝜃∗ ||2 ≤ 𝛿

#
2
∑34#5 || E/∼.('&) ∇ℓ 𝑧; 𝜃3 ||2 = 𝑂 #

5
+ 𝑂 𝜖 ;

#
2
∑34#5 || E/∼.('&) ∇ℓ 𝑧; 𝜃3 ||2 = 𝑂 #

5
+ #

6
+ 𝑂 )

6
.



Performative stability and retraining: recap

Next: Performative optimality

• Performative stability as a natural equilibrium concept of retraining

• Retraining heuristics converge to stable points if problem is close to static

• Online vs offline updates as a new design choice for stochastic optimization



Performative optimality



Performative optimality

Under performativity, after deploying 𝜃 the learner experiences performative risk

PR 𝜃 ≔ Risk 𝜃, 𝐷 𝜃



Performative optimality

Performative optimality:

𝜃78 = argmin9 PR 𝜃 = argmin9 Risk 𝜃, 𝐷(𝜃) lowest possible risk 
after deployment

Under performativity, after deploying 𝜃 the learner experiences performative risk

PR 𝜃 ≔ Risk 𝜃, 𝐷 𝜃



Performative optimality

Performative stability:

𝜃7: = argmin9 Risk 𝜃, 𝐷(𝜃7:)

Performative optimality:

𝜃78 = argmin9 PR 𝜃 = argmin9 Risk 𝜃, 𝐷(𝜃) lowest possible risk 
after deployment

Do stable points have low 
risk after deployment?

Under performativity, after deploying 𝜃 the learner experiences performative risk

PR 𝜃 ≔ Risk 𝜃, 𝐷 𝜃



Stability and performative risk

PR 𝜃 ≔ Risk 𝜃, 𝐷 𝜃 − min, Risk 𝜙, 𝐷 𝜃 + min, Risk 𝜙, 𝐷 𝜃

Performative stability: on its own distribution 𝐷 𝜃-. , 𝜃-. looks optimal

= 0 for 𝜃 = 𝜃-. “easiness” of 𝐷 𝜃

→ θ-. approximately optimal if it induces ”easy” distribution Risk 𝜙, 𝐷(𝜃'()

𝜃')
𝜃'*

Risk 𝜙, 𝐷(𝜃'))Not always true! Stable points can even maximize PR 𝜃



Stability and performative risk

𝐷(𝜃): X ∼ Unif {−1,+1} , Y|X ∼ Bern(0.5 + 𝜖𝜃𝑋)

ℓ (x, y); 𝜃 = (𝑦 − 𝑓𝜃(x))2 where 𝑓𝜃 x = 𝜃𝑥 + 0.5

Example:

A direct calculation shows: PR 𝜃 = 0.25 + 1 − 2𝜖 𝜃2

𝜖-sensitive

𝛾
𝛽 = 1

𝝐 ≤ 𝟏→ retraining converges to stable point 𝜃PS = 0

Non-convex for 𝜖 > 0.5! For 𝜖 ∈ /
#0 ,

1
0 stable point maximizes PR 𝜃



Optimizing the performative risk

∇PR 𝜃 = E2∼(($) ∇ℓ z; 𝜃 + E2∼(($) [ℓ z; 𝜃 ∇log p𝜃(z)]

Difficulties:

• no guarantee of convexity even is loss is convex

Distribution map is unknown!

PR 𝜃 ≔ Risk(𝜃, 𝐷(𝜃))

only convex in first argument

• no gradient access



Optimizing the performative risk

∇PR 𝜃 = E2∼(($) ∇ℓ z; 𝜃 + E2∼(($) [ℓ z; 𝜃 ∇log p𝜃(z)]

Difficulties:

• no guarantee of convexity even is loss is convex

Distribution map is unknown!

PR 𝜃 ≔ Risk(𝜃, 𝐷(𝜃))

only convex in first argument

• no gradient access

For 𝑡 = 1,… , 𝑇:

• Deploy model 𝜃𝑡

• Collect data z𝑡1, … , 𝑧34 ∼ 𝐷(𝜃𝑡)

Compute h𝜃PO based on 𝑆 = {𝜃3, 𝑧35}3,5

We need to collect data from multiple deployments of 𝜃1, … , 𝜃𝑇



Model-free approaches Model-based approaches

• No explicit modeling of 𝐷(𝜃) required

• Based on bandits and other zeroth-order 
optimization methods

• Convergence relies on general regularity conditions 
(e.g. convexity, smooth distribution shifts, etc)

• Generally slow convergence

• Incorporate model of 𝐷(𝜃)

• Based on economic models (e.g. utility-maximizing 
agents), other models from domain knowledge, etc

• Convergence relies on model correctness or degree 
of model misspecification

• Typically fast convergence



Model-free vs model-based: example

𝑓$ 𝑥 = 𝑥7𝜃 ℓ (𝑥, 𝑦 ; 𝜃) = 𝑦 − 𝑓$(𝑥) 2

Model-free: Model-based:

jPR 𝜃𝑡 =
1
𝑚
l
589

4

ℓ(𝑧35; 𝜃3)

h𝜃PO = argmin$∈{$",…,$#}jPR 𝜃

We model the data-generating process:
• agents manipulate features to maximize the prediction:

𝑥 = argmax𝑥 𝛾 ⋅ 𝑥7𝜃 −
1
2
||𝑥 − 𝑥0||2

• agents can manipulate features, not label

This is a distribution map model 𝐷𝛾 𝜃

Fit p𝛾 using 𝑆 and let h𝜃PO = argmin𝜃Risk(𝜃, 𝐷>1 𝜃 )

utility-cost tradeoff

For 𝑡 = 1,… , 𝑇:

• Deploy model 𝜃𝑡

• Collect data z𝑡1, … , 𝑧34 ∼ 𝐷(𝜃𝑡)

Compute h𝜃PO based on 𝑆 = {𝜃3, 𝑧35}3,5

What is the tradeoff?



Suppose model is 𝜏-misspecified: in addition to features, labels change too

𝑦 = 𝑦0 + 𝜏 ⋅ 𝑥7𝜃

For example, if feature manipulations have a causal effect on true label

Model-free vs model-based: example



General tradeoff

Theorem [LZ24] (informal): 

PR h𝜃PO − PR 𝜃PO ≤ misspecification error +    statistical error

error due to having finite 
deployments and finite data

error due to modeling of the 
distribution map



General tradeoff

Theorem [LZ24] (informal): 

PR h𝜃PO − PR 𝜃PO ≤ misspecification error +    statistical error

error due to having finite 
deployments and finite data

error due to modeling of the 
distribution map

Model-free: PR h𝜃PO − PR 𝜃PO ≤ misspecification error +    statistical error

0 large

Model-based: PR h𝜃PO − PR 𝜃PO ≤ misspecification error +    statistical error

depends on domain knowledge, 
complexity of true map, etc

small, often ?𝑂 6
7



Model-free performative optimization



Convexity of the performative risk

Theorem [MPZ21]: 

If the loss is 𝛾-strongly convex and 𝛽-smooth in the data and the distribution map is 𝜖-Lipschitz

and sufficiently regular*, then PR 𝜃 is guaranteed to be convex if and only if 𝜖 < 1
#0

.

*e.g. distributions obtained by translation and rescaling:
𝑧 ∼ 𝐷(𝜃)⇔ 𝑧 = Σ(𝜃) 𝑧0 + 𝜇(𝜃) for linear Σ 𝜃 , 𝜇(𝜃) (see [MPZ21] for details)



Convexity of the performative risk

Theorem [MPZ21]: 

If the loss is 𝛾-strongly convex and 𝛽-smooth in the data and the distribution map is 𝜖-Lipschitz

and sufficiently regular*, then PR 𝜃 is guaranteed to be convex if and only if 𝜖 < 1
#0

.

*e.g. distributions obtained by translation and rescaling:
𝑧 ∼ 𝐷(𝜃)⇔ 𝑧 = Σ(𝜃) 𝑧0 + 𝜇(𝜃) for linear Σ 𝜃 , 𝜇(𝜃) (see [MPZ21] for details)

If PR 𝜃 is convex, we can use derivative-free convex optimization [FKM04]

𝜃3?9 = 𝜃3 − 𝜂 ⋅
𝑑
𝛿 PR 𝜃3 + 𝛿𝑢3 𝑢3, 𝑢3 ∼ Unif 𝑆𝑑_1 , 𝛿, 𝜂 > 0

only queries PR, not its gradientConverges to 𝜃-@ at rate O( 𝑑𝑡A9/C)



Beyond convexity?

Optimization with no gradients and no convexity = continuum-arm bandit problem?

• “pull arm” 𝜃3 and observe bandit feedback jPR 𝜃3 with E jPR 𝜃3 = PR(𝜃3)
• assuming only Lipschitzness of PR we can apply Lipschitz bandits [KSU08]



Beyond convexity?

Optimization with no gradients and no convexity = continuum-arm bandit problem?

• “pull arm” 𝜃3 and observe bandit feedback jPR 𝜃3 with E jPR 𝜃3 = PR(𝜃3)
• assuming only Lipschitzness of PR we can apply Lipschitz bandits [KSU08]

Performative feedback is more informative than bandit feedback!
At every time step we deploy a model 𝜃3 and observe 𝑚 samples of the induced distribution 𝐷(𝜃3)

→ faster convergence rates by constructing fine-grained confidence bounds



Tighter confidence bounds
[JZM22]

Second term is known because we know the loss and 𝐷(𝜃3)!

→ We only pay for uncertainty due to distribution shift

PR 𝜃DEF − PR 𝜃3 = Risk 𝜃DEF, 𝐷(𝜃DEF) − Risk 𝜃DEF, 𝐷(𝜃3)

+ Risk 𝜃DEF, 𝐷(𝜃3) − Risk 𝜃3, 𝐷(𝜃3)

After deploying 𝜃3 we observe 𝐷(𝜃3) (ignoring finite-sample considerations for now)
What do we learn about the performative risk of an unexplored 𝜃DEF?

uncertainty due to 
distribution shift
uncertainty due to 
changing predictive model



Tighter confidence bounds

PR(𝜃)

𝜃GEHIJK 𝜃DEF

PR(𝜃)

Confidence bound with performative feedback
(Lipschitz Risk(𝜃, 𝐷(𝜙)) in 𝜙)

Confidence bound with bandit feedback
(Lipschitz PR(𝜃))

𝜃GEHIJK 𝜃DEF

[JZM22]



PR(𝜃)

𝜃GEHIJK 𝜃DEF

PR(𝜃)

Confidence bound with performative feedback
(Lipschitz Risk(𝜃, 𝐷(𝜙)) in 𝜙)

Confidence bound with bandit feedback
(Lipschitz PR(𝜃))

the algorithm can discard regions of the parameter space
that have never been explored!

Tighter confidence bounds

𝜃GEHIJK 𝜃DEF

upper 
confidence bound

[JZM22]

Use successive elimination 
to deal with finite-sample uncertainty [EMM06]



Performative regret bound

• regret bound scales with 𝜖 (no distribution shift → fast rate)
• as 𝜖 → 0 bound scales as z𝑂( 𝑇) (no dimension dependence)
• no assumption on loss as a function of 𝜃

𝐿 Lipschitz constant PR
𝑑: ≥ 𝑑 zooming dimension

Theorem [JZM22]: 
Assume the distribution map 𝐷 𝜃 is 𝜖-sensitive and the loss ℓ(𝑧; 𝜃) is 𝐿2-Lipschitz in 𝑧. Then, 
the performative confidence bounds algorithm that after 𝑇 deployments achieves a regret

Reg 𝑇 = ∑3897 E [PR 𝜃3 ] − PR 𝜃-@ = z𝑂 𝑇 + 𝑇
$%"
$%& 𝐿2𝜖

$
$%&

where 𝑑 denotes the “zooming dimension” of the problem.

Baseline: Lipschitz bandits [KSU08]:   Reg 𝑇 = z𝑂 𝑇
$'%"
$'%& 𝐿

$'

$'%&

Benefits of performative confidence bounds:



Model-based performative optimization



Model-based approaches in a nutshell

Basic idea: learn a model of 𝐷 𝜃 and plug it into performative risk

~𝐷 𝜃 - fitted model of 𝐷 𝜃 based on collected data

Then we can solve

h𝜃PO = argmin𝜃Risk(𝜃, ~𝐷 𝜃 )

~𝐷 𝜃 identified correctly → we can find the optimal solution h𝜃PO offline for any loss function!

related to omniprediction [GKRSW22, KP23]



Microfoundations

Modeling 𝐷 𝜃 (“macro level”) in terms of the behavior of individual agents in the population (“micro level”)



Microfoundations

+
-

𝑓;

𝑥 𝜃 = argmax
L

𝛾 𝑓$ 𝑥 − cost(𝑥M, 𝑥)

gain of positive 
clasification

cost of feature 
manipulation

Rational-agent model

Modeling 𝐷 𝜃 (“macro level”) in terms of the behavior of individual agents in the population (“micro level”)

Example: strategic classification [HMPW16]

Distribution 𝐷(𝜃) comes from strategic behavior of individuals trying to adapt to decision rule

𝐷1 𝜃 is “best response map“ over (𝑥 𝜃 , 𝑦)
strategic clasification 

= performative prediction + microfoundation model



Location families

𝑧 ∼ 𝐷 𝜃 ⇔ 𝑧M + 𝜇∗7𝜃, 𝑧M∼ 𝐷M

“base” distribution,  
z< ∈ 𝑅=

unknown
𝜇∗ ∈ 𝑅> ? =

Theorem [JZM22]: 
There exists an algorithm that after 𝑇 deployments achieves a regret

Reg 𝑇 = ∑3897 E [PR 𝜃3 ] − PR 𝜃-@ = z𝑂 𝑇 max{𝑑, 𝑑𝑚} .

Bandit approach: Reg 𝑇 = z𝑂 𝑇 + 𝑇
$%"
$%& 𝐿2𝜖

$
$%&

“Macro level” model:

fast rate regardless of the strength 
of performative effects



Location families

𝑧 ∼ 𝐷 𝜃 ⇔ 𝑧M + 𝜇∗7𝜃, 𝑧M∼ 𝐷M
𝑥 𝜃 = argmax

L
𝛾 𝑓$ 𝑥 − cost(𝑥M, 𝑥)

𝑓; 𝑥 = 𝜃7𝑥

cost 𝑥<, 𝑥 =
1
2 x − x< @Λ(𝑥 − 𝑥<)

Satisfied in strategic classification model:

“base” distribution,  
z< ∈ 𝑅=

unknown
𝜇∗ ∈ 𝑅> ? =

Theorem [JZM22]: 
There exists an algorithm that after 𝑇 deployments achieves a regret

Reg 𝑇 = ∑3897 E [PR 𝜃3 ] − PR 𝜃-@ = z𝑂 𝑇 max{𝑑, 𝑑𝑚} .

Bandit approach: Reg 𝑇 = z𝑂 𝑇 + 𝑇
$%"
$%& 𝐿2𝜖

$
$%&

“Macro level” model:

fast rate regardless of the strength 
of performative effects



Performative modeling through causal inference

Modeling 𝐷 𝜃 is fundamentally a causal inference problem

𝐷 𝜃 is the “effect” of deploying model 𝜃

learning 𝐷 𝜃 ⇔ causal identification 



Performative modeling through causal inference

Causal identification impossible if 𝜃 is fixed!

Example: if Zillow’s housing pricing algorithm is fixed, we can’t tell 𝐷 𝜃 and 𝐷OPQPRS apart

Randomizing 𝜃 allows identification

Modeling 𝐷 𝜃 is fundamentally a causal inference problem

𝐷 𝜃 is the “effect” of deploying model 𝜃

learning 𝐷 𝜃 ⇔ causal identification 



𝑋 𝑌

𝑓$

Performative modeling through causal inference

Special case: performative effects mediated by model predictions [MDW22 , KP23]

Key challenge for causal identification

violation of “positivity”: 𝑓$(𝑋) often deterministic!

Identification achieved by
• randomizing predictions
• discrete predictions
• overparameterized predictions

?𝑌

Modeling 𝐷 𝜃 is fundamentally a causal inference problem

𝐷 𝜃 is the “effect” of deploying model 𝜃

learning 𝐷 𝜃 ⇔ causal identification 

see [MDW22]



Performative modeling through causal inference

discrete 𝑓;
(rounded predictions)

Gain of causal 
identification

Strength of performativity 𝛼

Pe
rf

or
m

at
iv

e 
ris

k

Strength of performativity 𝛼

randomized 𝑓;
(additive noise mechanism)

Gain of causal 
identification

Including prediction 
can hurt performance

deterministic 𝑓;

Semi-synthetic experiment: predict income on US census data
Performative effects simulated on top of real census data

Strength of performativity 𝛼

[MDW22]



• Performative stability can be far from performatively optimal

• Finding performative optima requires exploring different models 𝜃R, … , 𝜃S

• Performative optimization can be done via model-based and model-free approaches

• Model-free approaches make fewer assumptions and converge slowly; model-based 
approaches make stronger assumptions and converge fast, but they can suffer from 
modeling biases

Performative optimality: recap

Next: Extensions



Extensions of the framework and connections



Performative prediction framework: recap

After deploying 𝜃 the learner experiences performative risk

PR 𝜃 ≔ Risk 𝜃, 𝐷 𝜃 = 𝐸T∼V 9 ℓ(𝑧; 𝜃)

Performative stability:
𝜃7: = argmin9 Risk 𝜃, 𝐷(𝜃7:)

Performative optimality:

𝜃78 = argmin9 PR 𝜃 = argmin9 Risk 𝜃, 𝐷(𝜃)



Stateful distribution shifts

After deployment, the environment does not respond immediately

It remembers past deployments and gradually approaches 𝐷(𝜃)

Distribution at time 𝑡:
𝐷3 = 1 − 𝛿 ⋅ 𝐷3A9 + 𝛿 ⋅ 𝐷(𝜃3)

model deployed at time thow fast environment 
forgets past deployments

𝐷AB6

𝐷(𝜃A)
Model 𝜃 deployed over multiple steps

→ distribution close to 𝐷(𝜃)

[BHK22, RRDF22, LW22, IZY22]



Multiplayer performative prediction
[NFDFR23, PY23, WYW23]

Performativity arises in the context of 𝑛 competing decision-makers

Risk of decision-maker 𝑖 depends on all decisions:

PRR 𝜽 = E2∼(((𝜽) ℓ 𝑧; 𝜃5 , where 𝜽 = (𝜃9, … , 𝜃U)

Example: multiple navigation apps predict travel time; people respond by considering multiple 
predictions

Main solution concept: Nash equilibrium 𝜽*= 𝜃9∗, … , 𝜃U∗

𝜃5∗ ∈ argmin𝜃! PRR 𝜃9
∗, … , 𝜃5, … , 𝜃U∗



Considerations in fairness

How do we choose ℓ? In a performative context, ℓ shouldn’t just measure predictive accuracy!
We want to optimize some notion of welfare in equilibrium

Neglecting performative feedback can amplify unfairness and polarization over time, even if 
starting from a fair model [LDRSH18, HSNL18, JXLZ24]

The performative risk captures welfare through the dependence on 𝐷(𝜃)

For example, we can choose: ℓ (𝑥, 𝑦); 𝜃 = ℓ.V (𝑥, 𝑦); 𝜃 − W
#
𝑦#

promotes large values of the label
supervised learning loss

Loss can even depend only on data! e.g. ℓ (𝑥, 𝑦); 𝜃 = 𝑦 is a valid loss, because PR 𝜃 = 𝐸( $ [𝑦]



Shift in perspective:
Focus on those impacted by performativity



Fit patterns 
given data

Steer data

Two levers to achieve small risk

Performative risk

Risk 𝜃, 𝐷(𝜃) = E(�,�)∼�(�) [ loss (𝑥, 𝑦); 𝜃 ]

Finding optimal points = minimize PR 𝜃 := Risk 𝜃, 𝐷 𝜃



Steering as a major concern for competition

EU vs Google

“[T]he General Court [of the European Union] 
finds that, by favouring its own comparison 
shopping service on its general results pages […] 
by means of ranking algorithms, Google departed 
from competition on the merits.”

Traditionally market power enabled a firm to set prices, 
in digital markets power enables firms to steer users and drive consumption



Performative power

Quantifying the strength of performativity as a notion of power

Performative power: The ability to impact individual outcomes through algorithmic 
actions, on average across a population of users 

P ≔ sup
QSPRJD X∈Y

1
|𝑈| 9

Z∈[

E dist(𝑍Z(𝑓M), 𝑍Z(𝑓))

current outcome 
for user u

counterfactual outcome
for user u under 𝑓choice of algorithmic action

[HJM22]



Performative power

Average treatment effect

P ≔ sup
QSPRJD X∈Y

1
|𝑈| 9

Z∈[

E dist(𝑍Z(𝑓M), 𝑍Z(𝑓))

current outcome 
for user u

counterfactual outcome
for user u under 𝑓choice of algorithmic action

Quantifying the strength of performativity as a notion of power

Performative power: The ability to impact individual outcomes through algorithmic 
actions, on average across a population of users 

[HJM22]



A causal inference problem

Through performativity we can relate the abstract concept of power 
to a causal inference problem. 

How much would the average outcome change if the firm were to deploy a 
different model?

click on a website/consumption of a service



A causal inference problem

Through performativity we can relate the abstract concept of power 
to a causal inference problem. 

How much would the average outcome change if the firm were to deploy a 
different model?

The mechanism behind performativity is complex. It depends on social and 
economic context, behavioral biases, and many design decisions on how 
predictions are displayed.

Experimental designs offer a promising avenue! 

click on a website/consumption of a service



Predictions are displayed through content arrangements! 

How do we measure performative power if we don’t have control over the algorithm?

Performativity gap

Ranking algorithm 

search 
query

arrangement



Predictions are displayed through content arrangements! 

Performativity gap : 𝛿W 𝑎 = CTRW 𝑎 − CTRX(𝑎Y)

Assume independence across interactions, then performative power across the 
population of platform participants is bounded as

How do we measure performative power if we don’t have control over the algorithm?

Performativity gap

“Change in click through rate of an item under two different arrangements”

P ≥ max
Z∈𝒜

𝛿W(𝑎) 𝒜 are possible arrangements 
resulting from 𝑓 ∈ 𝐹



Quasi experimental designs

• Anderson, Magruder (2012) “An extra half-star rating [on Yelp] causes restaurants to 
sell out 19 percentage points (49%) more frequently”

• Narayanan, Kalyanam (2015) “Being ranked 2 instead of 1 in Google Ads reduces 
CTR by 21%”

Since performativity is context specific, we need to reassess it in each individual case 

Consider alternative arrangements where items around the decision boundary are 
swapped.

These numbers speak to the performative power of the platform over its participants



What is the causal effect of Google’s 
ranking algorithm on user clicks?

• Experiment as gold standard: 
change the algorithm and inspect 
effect

• Algorithm is proprietary and complex

• Intervene at the level of display to 
emulate algorithmic updates

shopping 
box

generic 
result



Browser extension

What is the causal effect of Google’s 
ranking algorithm on user clicks?

• Experiment as gold standard: 
change the algorithm and inspect 
effect

• Algorithm is proprietary and complex

• Intervene at the level of display to 
emulate algorithmic updates



Performativity gap in online search
[MCH24]

>70’000 search queries of 85 users collected over 3 months.
Randomized display for each query

𝛿9 = 0.44 CTR9 𝛿9 = 0.63 CTR9

Power of Google search over the incoming traffic to a website ranked in first 
position corresponds to more than 44% of base traffic. 



Performativity gap in online search
Focus on queries with boxes naturally present.

𝛿# = 0.44 CTR# 𝛿# = 0.66 CTR#

The effect of adding top content and downranking an element 
is larger than the effect of any of the two individual conducts

[MCH24]



As its name suggests…
 
 it is a search engine not a camera



Applications
• In antitrust investigations we care about performative power over a population of 

consumers in a specific relevant market. 

 Google Shopping case these are consumers in CSS market. 
 A large fraction of them use Google search for navigating to the services.

• When mandating remedies we can use measures of performative power to 
monitor effectiveness over population of interest.

• In consumer protection and fairness we care about power over subpopulations.

Power surfaces in performativity
Performative power can be instantiated flexibly



Let’s zoom out

population

data

algorithmic 
systems       

predictionsmodel

Performativity:
Predictions impact people



Let’s zoom out

population

data

algorithmic 
systems       

predictionsmodel

Data about people feeds back 
into the learning system

Performativity:
Predictions impact people



population

data

algorithmic 
systems       

predictionsmodel

Let’s zoom out
Finding performative optima: 

Firm anticipates 
distribution shift



population

data

algorithmic 
systems       

predictionsmodel

Reversing the order of play:
Individuals anticipate the use of 

their data for learning

Let’s zoom out



Let’s zoom out

population

data

algorithmic 
systems       

predictionsmodel

Reversing the order of play:
Individuals anticipate the use of 

their data for learning

Performativity is 
the reason they care



Algorithmic resistance



Algorithmic resistance



Coordinated efforts

Coordination is effective on the side of the users to have influence on 
the learning algorithm.

platform

A single datapoint has little influence, but systematic patterns will be picked up on

Data leverage: • data strikes, concious data contribution [VH21, VHS19, VLTCH21]
• algorithmic collective action [HMMZ23]
• collective infrastructure, e.g., GigSense [IFS24]



1 − 𝛼

𝛼
Platform observes 

mixture distribution 
𝑃 = 1 − 𝛼 𝑃M + 𝛼𝑃∗

Platform trains 
ML model 𝑓 on 𝑃

𝑃<

𝑃∗

𝑃

Individuals’ initial data 
𝑥, 𝑦 ∼ 𝑃M

platform

Collective goal: 
Favorable property of 𝑓 

[HMMZ23]

Model of algorithmic collective action

𝛼-fraction of the population 
joins the collective and 
implements a strategy 

to change data



Anticipate retraining

𝛼 ∝ suboptimality of 
the targeted solution 𝜃∗

Theorem [HMMZ23]: For controlling the output of a gradient-based 
learner it is sufficient to have a collective of fraction 𝛼 repeatedly 
modifying their data as long as 

𝛼 ≥ 𝑂 E2∼\! |∇ℓ 𝜃
∗; 𝑧 |



Anticipate retraining

𝑓 𝑔 𝑥 = 𝑦∗
“provoke target classification at test time”

𝛼 ∝ suboptimality of 
the targeted solution 𝜃∗

𝛼 ∝ uniquesness of the 
signal to be planted 

Theorem [HMMZ23]: For controlling the output of a gradient-based 
learner it is sufficient to have a collective of fraction 𝛼 repeatedly 
modifying their data as long as 

𝛼 ≥ 𝑂 E2∼\! |∇ℓ 𝜃
∗; 𝑧 |

where 𝜉 = 𝑃M{𝑔 𝑥 : 𝑥 ∈ 𝑋}

Theorem [HMMZ23]: For planting a signal against an 𝜖-optimal risk 
minimizing learner with success 𝑝∗ it is sufficient to have a collective of 
fraction 𝛼 with

𝛼 ≥
𝜉

1 − 𝑝∗ + 𝜉



By strategically correlating a single character in the CV with a skill at training time, gig 
workers can plant a trigger to be exploited at test time.

• Against a Bert classifier a collective size of 0.1% is sufficient [HMMZ23]. 

The more accurate the learner, the more effective the strategy

Various data poisoning example demonstrate the feasibility of impacting learner 
with few datapoints, see [TCLY22] for an overview.

Small collectives can be effective



By reordering playlists and 
strategically choosing the 
position of a target song, 
fans can have disproportionate 
impact on transformer-based 
recommendations at test time.

Small changes can be sufficient
[BM24]

utility preserving actions can be effective



Incentives to participate

Utility of firm and participants often not aligned
Collective action gives power to participants

Incentives for participation:

• collective action comes with overheads and constraints
• typically not self-incentivized (see Olson 1956)
• firms might want to protect against it, punish participation, or move away from 

statistical learning



Incentives to participate

The performativity of predictions determines payoff of 
strategies and how much cost individuals are willing to incur

[HM23]

Utility of firm and participants often not aligned
Collective action gives power to participants

Incentives for participation:

• collective action comes with overheads and constraints
• typically not self-incentivized (see Olson 1956)
• firms might want to protect against it, punish participation, or move away from 

statistical learning



Discussion



Discussion

• When deployed in the real world AI predictions are part of a broader 
sociotechnical ecosystem

• Performativity is pervasive

• Changing predictions means changing outcomes

• Prediction is no longer a purely technical endeavor

• Solution concepts are context dependent



Open problems and challenges

• Major challenge for practical developments: data availability

• Performative optimization requires exploring models; how do we do so safely? 
Should we aim for a different solution concept?

• How should performativity in machine learning be regulated? What kinds of 
performative effects are acceptable?

• We saw that predictions impact people and people impact predictions; how do 
we model this jointly?



Thank you!
Questions?
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