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INTRODUCTION
We consider the so-called Independent Cascade
Model for rumor spreading or epidemic pro-
cesses popularized by Kempe et al. [2003]. In
this model, a small subset of nodes from a net-
work are the source of a rumor. In discrete
time steps, each informed node "infects" each
of its uninformed neighbors with probability
p. While many facets of this process are stud-
ied in the literature, less is known about the
inference problem: given a number of infected
nodes in a network, can we learn the source of
the rumor?

INDEPENDANT CASCADE

MODEL
We observe the following model: Let G =
(V,E) be a graph. The model works in dis-
crete steps. Every node has exactly one of the
following attributes in every step:

• currently active

• formerly active

• inactive

It denotes the set of active nodes in step t. All
active nodes It have a chance to infect each of
their inactive neighbors with probability p. All
the infected neighbors of the nodes ist set It
form the set It+1.

ML-ESTIMATOR
We assume that we observe the network at an
unknown time and can only see the set nodes
(X⋆) that are currently active. We also assume
that the source of the rumor is a single node
I0 = {ω}. Note that X⋆ can be empty.
Let

C = {v ∈ V | ∃t ∈ N : ∀w ∈ X⋆ : dist(v, w) = t}

As long as X⋆ is not empty, our estimator is
defined as the closest candidate:

ωc = argmin
v∈C

{dist(v, w) | w ∈ X⋆}

If |C| < 2, then the estimation fails.

VISUALIZATION
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(a) Visualization of a possible snapshot of the spreading
process in a 4-regular tree. The orange nodes are the ac-
tive elements. The candidate set C of possible rumor’s
sources consists of all vertices in the purple sub-tree.
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(b) Here, ωc spawned three sub-trees out of which two
contain active elements of X⋆ (orange) and one does
not contain active elements (purple). Thus, C consists
of all vertices in the purple sub-tree rooted at ωc.

D-REGULAR TREES

Theorem 1 (d-regular trees). Let p be the spreading parameer of the Independant Cascade Model and
t = ω(1) the amount of steps. Then, the following phase-transitions occur.

• If (d− 1) · p ≤ 1, any estimator fails at weak detection with probability 1− ot(1).a

• If 1 < (d − 1) · p = Θ(1) then the closest candidate ωc is the source of the rumor ω with con-
stant probability (weak detection). Furthermore, the probability that dist(ωc,ω) > k is at most
exp (−Ω(k)).

• If (d− 1) · p = ω(1) then closest candidate ωc is the source of the rumor ω with probability 1− od(1)
(strong detection).

aWe denote by ot(1) a quantity that tends to zero with t → ∞.

Po(λ)-GALTON-WATSON TREES
Theorem 2 (Galton-Watson processes). Let p be the spreading parameer of the Independant Cascade
Model and t = ω(1) the amount of steps. Then, the following phase-transitions occur.

• If λp ≤ 1, any estimator fails at weak detection with probability 1− ot(1).

• If 1 < λp = Θ(1), then the closest candidate ωc is the source of the rumor ω with positive probability
(weak detection). Furthermore, the probability that dist(ωc,ω) > k is at most exp (−Ω(k)).

• If λp = ω(1), then closest candidate ωc is the source of the rumor ω with probability 1 − oλ(1)
(strong detection).

EXPERIMENTS
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Figure 2: Success rates for Erdős-
Rényi graphs, random regular
graphs, and random geometric
graphs.
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Figure 3: Success rates in a ran-
dom geometric graph with ex-
pected node degree 16 after 8, 16,
32 steps
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Figure 4: Histogram of the distri-
bution of the distances of the can-
didates returned by our heuristic
to ω for p = 0.45, 0.5, 0.55.
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