Uncertainty in Artificial Intelliger Pittsburgh, PA, USA 31st July – 4th August, 2023 uai2023

Claiter

Approximating Probabilistic Explanations via Supermodular Minimization

Louenas Bounia¹, Frédéric Koriche¹

¹CRIL, Université d'Artois – CNRS, Lens, France {name}@cril.fr

MOTIVATIONS OF THE WORK

- Capacity Constraints: cognitive limitations refer to the finite capacity and processing limitations of the human mind [Miller 56]
- Abductive explanations are often too large to be interpretable and computing probabilistic explanations is an NP-hard problem

NOTATIONS AND PROBLEM FORMULATION

• Error Function: Given a classifier $h: \{0,1\}^d \longrightarrow \{0,1\}$, and an instance $x \in \{0,1\}^d$ for which the prediction h(x) must be explained, let

 $\epsilon_{h,x}: 2^{[d]} \longrightarrow \mathbb{R}^+$ denote the error function given by:

$$\epsilon_{h,x}(S) = \frac{|\{z \in \{0,1\}^d : h(z) \neq h(x) \text{ and } z_S = x_S\}|}{|\{z \in \{0,1\}^d : z_S = x_S\}|} = \frac{\mu_{h,x}(S)}{2^{d-|S|}}$$
(1)

• Probabilistic Explanation: Given a precision parameter $\sigma \in [0, 1)$. An explanation S is called $(1 - \sigma)$ -probable if S satisfies : $\epsilon_{h,x}(S) \leq 1 - \sigma$.

• Problem 1: Given a classifier $h: \{0,1\}^d \rightarrow \{0,1\}$, an instance $x \in \{0,1\}^d$, a set $I \subseteq \{1,2,\ldots,d\}$ of features, and a size limit $k \leq |I|$, find a subset $S \subseteq I$ of size at most k such that $\epsilon_{h,x}(S)$ is minimized

SUPERMODULAR MINIMIZATION

• Proposition 1: Let $h: \{0,1\}^d \rightarrow \{0,1\}$ be a classifier, $x \in \{0,1\}^d$ an instance, and $I \subseteq [d]$. $\mu_{h,x}(.)$ is supermodular and non-increasing.

Algorithm 1: Greedy Descent (GD)

Input: classifier h, instance x, feature set I, integer k

Set $S_n = I$, where n = |I|For j = n downto 1 do Let $i^* \in \operatorname{Argmin}_{i \in S_j} \mu_{h,x}(S_j \setminus \{i\})$

Let $S_{GD} \in \operatorname{Argmin}_{S \in \{S_0, S_1, \cdots, S_k\}} \epsilon_{h, x}(S)$

Set $S_{j-1} = S_j \setminus \{i^*\}$

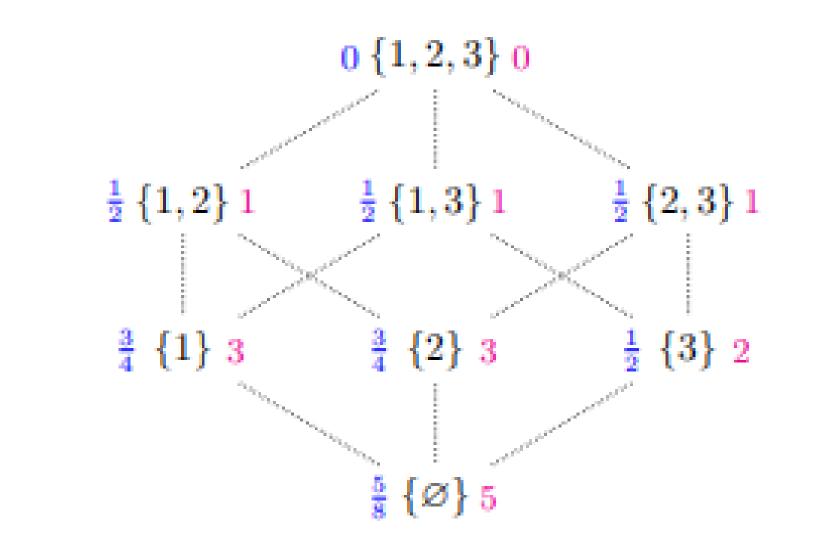
Return S_{GD}

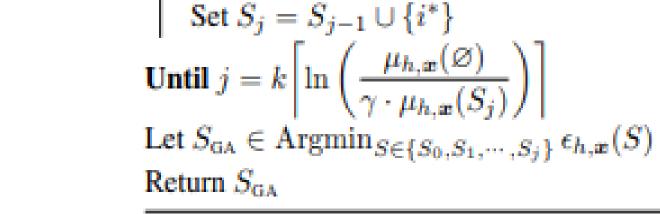
Algorithm 2: Greedy Ascent (GA)

Input: classifier h, instance x, feature set I, integer k

```
Let c be the curvature of \mu_{h,x}(\cdot) over 2^{I}
Set j = 0, S_0 = \emptyset and \gamma = \max\{\frac{1}{c}, c\}
Repeat
     Let i^* \in \operatorname{Argmin}_{i \in I \setminus S_{j-1}} \mu_{h, x}(S_{j-1} \cup \{i\})
```

Example 1: Consider the classifier $h : \{0,1\}^3 \longrightarrow \{0,1\}$ specified by the function: $h(x) = 1 \iff x_1x_2x_3 + x_1x_2 - x_1 - x_2 \ge 0$





Proposition 2: Let S^* be an optimal solution of problem 1, let c be the cur- The figure shows the error $\epsilon_{h,x}(.)$ (blue), the number of mistakes vature of $\mu_{h,x}(.)$ over 2^I , and assume that I is an abductive explanation for $\mu_{h,x}(S)$ (magenta). Given the instance x = (1, 1, 1) for which we h and x. Then, the solution S_{GD} and S_{GA} returned by GD and GD satisfies: need to explain h(x) = 1, and using the Hasse diagram in figure,

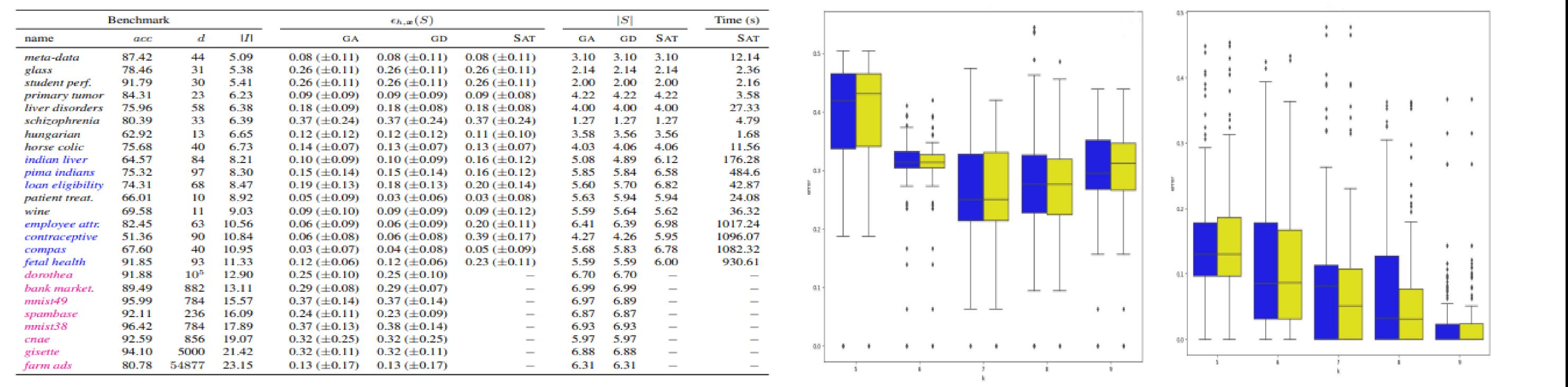
$$\epsilon_{h,x}(S_{GD}) \leq \left(\frac{e^p - 1}{p}\right) \epsilon_{h,x}(S^*) \text{ and } \epsilon_{h,x}(S_{GA}) \leq \left(\frac{1}{1 - c}\right) \epsilon_{h,x}(S^*)$$

where $p = \frac{c}{1 - c} < 1$

we observe that $\{x_1, x_2, x_3\}$ is abductive explanation. However, $\{x_1, x_2\}$ and $\{x_3\}$ are subset-minimal explanations with a probability at least $\frac{1}{2}$ for h and x.

Empirical results "Experimental results on 25 benchmarks for decision tree, using $k=7\pm2$ "

Benchmark				$\epsilon_{h,x}(S)$			S			Time (s)
name	acc	d	171	GA	GD	SAT	GA	GD	SAT	SAT
meta-data	87.42	44	5.09	0.08 (±0.11)	0.08 (±0.11)	0.08 (±0.11)	3.10	3.10	3.10	12.14
glass	78.46	31	5.38	0.26 (±0.11)	0.26 (±0.11)	0.26 (±0.11)	2.14	2.14	2.14	2.36
student perf.	91.79	30	5.41	0.26 (±0.11)	0.26 (±0.11)	0.26 (±0.11)	2.00	2.00	2.00	2.16
primary tumor	84.31	23	6.23	0.09 (±0.09)	0.09 (±0.09)	0.09 (±0.08)	4.22	4.22	4.22	3.58
liver disorders	75.96	58	6.38	0.18 (±0.09)	$0.18 (\pm 0.08)$	$0.18(\pm 0.08)$	4.00	4.00	4.00	27.33
schizophrenia	80.39	33	6.39	0.37 (±0.24)	0.37 (±0.24)	0.37 (±0.24)	1.27	1.27	1.27	4.79
hungarian	62.92	13	6.65	$0.12 (\pm 0.12)$	$0.12 (\pm 0.12)$	$0.11(\pm 0.10)$	3.58	3.56	3.56	1.68
horse colic	75.68	40	6.73	$0.14 (\pm 0.07)$	$0.13 (\pm 0.07)$	$0.13 (\pm 0.07)$	4.03	4.06	4.06	11.56
indian liver	64.57	84	8.21	$0.10(\pm 0.09)$	$0.10(\pm 0.09)$	$0.16(\pm 0.12)$	5.08	4.89	6.12	176.28
pima indians	75.32	97	8.30	$0.15(\pm 0.14)$	$0.15(\pm 0.14)$	$0.16(\pm 0.12)$	5.85	5.84	6.58	484.6
, loan eligibility	74.31	68	8.47	$0.19(\pm 0.13)$	$0.18 (\pm 0.13)$	$0.20(\pm 0.14)$	5.60	5.70	6.82	42.87



CONCLUSION AND FUTURE WORK

- The experimental results demonstrate that our greedy algorithms are highly effective for approximating a probabilistic explanation
- Approximating an abductive explanation of minimal size for a Boolean classifier through supermodular optimization
- Extending approximation algorithms to hypothesis classes for which the problem of evaluating $\mu_{h,x}(.)$ is intractable using sampling methods