Composing Efficient, Robust Tests for Policy Selection

Dustin Morrill, Thomas J. Walsh, Daniel Hernandez, Peter R. Wurman, Peter Stone

A real AI deployment problem: Hundreds of candidate deployment policies, dozens of test cases, but you can only run a few test cases...

Robust Test Construction

Problem: Construct an efficient test $\langle \tau, \sigma_{\tau} \rangle$ by selecting a small number of test cases $\tau \subset \mathcal{T}$ and test case weights $\hat{\sigma} \in \triangle^{|\tau|}$ to approximate a full test, $\langle \mathcal{T}, \sigma \in \triangle^{|\mathcal{T}|} \rangle$ despite **uncertainty** over future policies to evaluate and the future test case weights.

Test construction example

			-	er future on of agg	-	s (e.g. a agents)	higher	
Uncertainty over target	Target (σ)	policy / case	#1	#2	#3	#4	#5	
distribution (e.g. different	?	C1	0	+1	+1	+1	+1	
emphasis on off- course behavior)	?	C2	-1	0	+1	+1	+1	
	?	C3	-1	-1	0	+1	#5 +1	
	?	C4	-1	-1	-1	0	+1	
	?	C5	-1	-1	-1	-1	0	

Possible Test	max error	size	
Uniform	0	5	
Strongest (C5)	1.4	1	
Middle (C3)	0.6	1	
[0, 0.5, 0, 0.5, 0]	0.2	2	
[0.27, 0, 0.47, 0, 0.27]	0.07	3	_

probability $(1-p)(1-q)(1-\alpha)$, $p, q, \alpha > 0$, are $\frac{\varepsilon}{q}$ -optimal for Equation (2), where $\varepsilon = \mathcal{O}\left(\sqrt{\frac{1}{T_1}m} + \sqrt{\frac{1}{T_1}\log(1/p)}\right)$ and $\alpha = \mathcal{O}(e^{-T_2})$.

Selections

Sony Al

									*												-	*		
.45	0.5	0.5	0.5	0.45	0.52	0.8	0.55	0.55	0.95	1	0.7	0.75	0.95	1	0.95 0.95	0.81	1	0.8	0.65	0.65	1	0.95	0.95	0.85
0.5	0.55	0.55	0.75	0.5	0.5	0.9	0.5	0.5	1	0.8	0.45	0.6	0.85	0.25	0.75 0.45	0.65	0.75	0.8	0.4	0.5	0.6	0.9	0.6	0
20 at		22 epl		2 ['] 4 ner		2 ['] 6 Polio	cies	2 ['] 8		30		32		34	36		38		40		42		44	