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Proposed framework [ Pseudo one-hot labels
- Real one-hot labels
Generated soft labels
Step 1: solve all the OTDD map from the Barycentric projection ,
reference dataset to all the training datasets - or neural map Projection dataset .-~

Step2: generate synthetic dataset on the
generalized geodesic of all training datasets

Train dataset |

Step 3: select the projection
of test dataset as the train
dataset

The projection onto the generalized geodesic
OTDD map: the optimal transport map between labeled datasets

s

Define approximated projection P, as the minimizer of function
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= The minimizer is easily solvable by quadratic programming
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Method 1: OTDD barycentric projection
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Method 2: OTDD neural map

TN(Z) — TN(f,y) — [f; g] — [G(Z),Z(G(Z))] Left to right:

original dataset, projection with optimal map and random chosen map
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] Real e a novel approach to generate new synthetic classification datasets from existing ones
/ _’;;ke by using geodesic interpolations, applicable even if they have disjoint label sets
| ¢ | —y=2— e two efficient methods to compute generalize geodesics, which might be of independent
| g interest
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W2(ay, o) e empirical validation of the method in a transfer learning setting

Transfer learning on *NIST datasets
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Table I: Pretraining on synthetic data. Shown is 5-shot transfer accuracy (mean =+ s.d. over 5 runs).

Methods MNIST-M MNIST USPS FMNIST KMNIST EMNIST
OTDD barycentric projection  42.10+4.37 93.74+1.46 86.01£1.50 70.12+3.02 52.55+2.73 67.06+2.55
OTDD neural map 40.06+4.75 88.78+3.85 83.80+1.60 70.02+2.59 50.32+3.10 65.32+1.80
Mixup 33.85+2.22 88.68+1.57 88.61+2.00 66.74+3.79 48.161+3.38 60.95+1.38
Train on few-shot dataset 19.10+3.57 72.80%+3.10 80.73£+£2.07 60.50+3.07 41.67+2.11 53.60x1.18

I-NN on few-shot dataset 20.95+1.39 64.50+3.32 73.64+2.35 60.92+2.42 40.18+3.09 39.70x+0.57

Transfer learning on VTAB datasets

Pre-Training  Map  Weights Rel. Improv. (%)

CALTECH101 — — 59.68 +41.44
DTD — — -1.17 £ 9.52

FLOWERS102 — — -2.45 £ 26.25

Pooling — — 28.96 + 18.29
Sub-pooling — — 3.00 £ 19.10
Interpolation = Mixup wuniform  33.26 = 21.30
Interpolation  Mixup a 51.99 £ 34.10
Interpolation = OTDD  uniform 82.61+:25.93
Interpolation = OTDD a 95.17+ 20.57




