Generating Synthetic Datasets by Interpolating along Generalized Geodesics

Jiaojiao Fan, and David Alvarez-Melis

Problem setup

Given:

The classification test dataset Q, and several training datasets $\{P_i\}, i = 1, 2, 3, \ldots$ **Question:** Which dataset to choose for training purpose?

Attempts:

× too time-consuming, even detrimental Use the union of $\{P_i\}$

Train on P_i one by one \checkmark catastrophic forgetting

Train on a carefully chosen interpolation of $\{P_i\}$ \checkmark Efficient, information loss-less

Proposed framework

Step 1: solve all the OTDD map from the reference dataset to all the training datasets

Step2: generate synthetic dataset on the generalized geodesic of all training datasets

Step 3: select the projection of test dataset as the train dataset

OTDD map: the optimal transport map between labeled datasets

Method 1: OTDD barycentric projection

$$\mathcal{T}_B(Z_Q) = [N_Q \pi^* X_P, N_Q \pi^* Y_P]$$
$$X_P = (x_P^{(1)}, \dots, x_P^{(N_P)})$$
$$Y_P = (y_P^{(1)}, \dots, y_P^{(N_P)})$$

The squared (2,Q)-dataset distance is given by $\mathcal{W}_{2,Q}^2(P_i, P_j) := \int \left(\|x_i - x_j\|_2^2 + W_2^2(\alpha_{y_i}, \alpha_{y_j}) \right) \dot{Q}(z)$ where $[x_i; y_i] = \mathcal{T}_i^*(z)$ and \mathcal{T}_i^* is the OTDD map from Q to P_i . $\Rightarrow \mathcal{W}_{2,Q}^2$ is a valid metric

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

Left to right: original dataset, projection with optimal map and random chosen map

Contribution

- Real or Fake
- a novel approach to generate new synthetic classification datasets from existing ones by using geodesic interpolations, applicable even if they have disjoint label sets
- two efficient methods to compute generalize geodesics, which might be of independent interest
- empirical validation of the method in a transfer learning setting

Experiment:

 \Rightarrow The minimizer is easily solvable by quadratic programming

Methods	MNIST-M	MNIST	USPS	FMNIST	KMNIST	EMNIST
OTDD barycentric projection	42.10±4.37	93.74±1.46	86.01±1.50	70.12±3.02	52.55±2.73	67.06±2.55
OTDD neural map	40.06±4.75	88.78±3.85	83.80±1.60	70.02±2.59	50.32±3.10	65.32±1.80
Mixup	33.85±2.22	88.68±1.57	88.61±2.00	66.74±3.79	48.16±3.38	60.95±1.38
Train on few-shot dataset	19.10 ± 3.57	$72.80{\pm}3.10$	80.73 ± 2.07	60.50 ± 3.07	41.67±2.11	53.60 ± 1.18
1-NN on few-shot dataset	20.95 ± 1.39	$64.50{\pm}3.32$	73.64 ± 2.35	60.92 ± 2.42	40.18±3.09	39.70 ± 0.57

Transfer learning on VTAB datasets

Pre-Training	Map	Weights	Rel. Improv. (%)
CALTECH101	—	—	59.68 ± 41.44
DTD	_	_	-1.17 ± 9.52
FLOWERS102	_	_	$\textbf{-2.45} \pm \textbf{26.25}$
Pooling	_	_	28.96 ± 18.29
Sub-pooling	—	—	3.00 ± 19.10
Interpolation	Mixup	uniform	33.26 ± 21.30
Interpolation	Mixup	\hat{a}	51.99 ± 34.10
Interpolation	OTDD	uniform	82.61 ± 25.93
Interpolation	OTDD	\hat{a}	$\textbf{95.17}{\pm}~\textbf{20.57}$

Georgia Institute of Technology

Mapping between labeled datasets

Transfer learning on *NIST datasets

Table 1: Pretraining on synthetic data. Shown is 5-shot transfer accuracy (mean \pm s.d. over 5 runs).