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Locally Varying Scale of Measurement

Motivation: What if the codomain of a random variable of interest is not of standard scale of measurement (e.g., ordinal or cardinal) but its structure varies along its subsets?

Formalization: Preference Systems

Notation: For a preorder R, denote by PR its strict and by IR its indifference part.

Definition 1. Let A ̸= ∅ be a set. Let R1 ⊆ A × A be a preorder on A and R2 ⊆
R1 × R1 be a preorder on R1. The triplet A = [A, R1, R2] is called a preference
system on A. We call A consistent if ∃ u : A → [0, 1] s.t. for all a, b, c, d ∈ A:
• (a, b) ∈ R1 ⇒ u(a) ≥ u(b) (with = iff ∈ IR1).
• ((a, b), (c, d)) ∈ R2 ⇒ u(a) − u(b) ≥ u(c) − u(d) (with = iff ∈ IR2).
The set of all representations u of A is denoted by UA.

Definition 2. A consistent preference system A is bounded, if ∃ a∗, a∗ ∈ A such
that (a∗, a) ∈ R1, and (a, a∗) ∈ R1 for all a ∈ A, and (a∗, a∗) ∈ PR1. In this case,
for δ ∈ [0, 1), denote by N δ

A the set of all u ∈ UA with u(a∗) = 0, u(a∗) = 1, and
u(a) − u(b) ≥ δ ∧ u(c) − u(d) − u(e) + u(f ) ≥ δ

for all (a, b) ∈ PR1 and for all ((c, d), (e, f )) ∈ PR2.

Generalized Stochastic Dominance (GSD)

For π a probability measure on (Ω, S) and A a consistent preference system, set

F(A,π) :=
{

X ∈ AΩ : u ◦ X ∈ L1(Ω, S, π) ∀u ∈ UA

}
.

For X, Y ∈ F(A,π), say Y is (A, π)-dominated by X , formally (X, Y ) ∈ R(A,π), if
∀ u ∈ UA : Eπ(u ◦ X) ≥ Eπ(u ◦ Y ).

The preorder R(A,π) on F(A,π) called generalized stochastic dominance (GSD).

Testing for GSD

Assume i.i.d. samples X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) of X and Y .
Hypotheses:

H0 : (Y, X) ∈ R(A,π) vs. H1 : (Y, X) /∈ R(A,π)

Test Statistic:
dε

X,Y : Ω → R
ω 7→ inf

u∈N δε(ω)
Aω

∑
z∈(XY)ω

u(z) · (π̂ω
X({z}) − π̂ω

Y ({z}))

with, for ω ∈ Ω and ε ∈ [0, 1] fixed, and
• π̂ω

X and π̂ω
Y the observed empirical image measures of X and Y ,

• (XY)ω = {Xi(ω) : i ≤ n} ∪ {Yi(ω) : i ≤ m} ∪ {a∗, a∗}, and
• Aω the subsystem of A restricted to (XY)ω, and
• δε(ω) := ε · sup{ξ : N ξ

Aω
̸= ∅}.

Computation: dε
X,Y can be computed by solving one single linear program.

Test scheme: We made observations of the i.i.d. variables, i.e., we observed:
x := (x1, . . . , xn) := (X1(ω0), . . . , Xn(ω0)) , y := (y1, . . . , ym) := (Y1(ω0), . . . , Ym(ω0))
As the worst case of H0 is πX = πY , we can perform a permutation test:
Step 1: Pool data sample: w := (w1, . . . , wn+m) := (x1, . . . , xn, y1, . . . , ym)
Step 2: For all I ⊆ {1, . . . , n + m} with |I| = n, compute dε

X,Y for (wi)i∈I and
(wi)i∈{1,...,n+m}\I instead of x/y to get dε

I. Sort all dε
I increasingly to get dε

(1), . . . , dε
(k).

Step 3: Reject H0 if dε
X,Y(ω0) > dε

(ℓ), with ℓ := ⌈(1−α)k⌉ and α the significance level.

Robustifying the Test

Idea: Use credal sets to robustify the permutation test. Concretely, allow the samples
to be (potentially) biased in the sense that we only assume the true empirical laws to
lie in some credal neighborhoods MX and MY around the biased empirical laws.
Adapted test scheme: Replace
• dε

X,Y(ω0) by inf(π1,π2)∈Mω0
X ×Mω0

Y
d̃ε

X,Y(ω0)
• dε

I(ω0) by sup(π1,π2)∈Mω0
X ×Mω0

Y
d̃ε

I(ω0)

Results in: Valid (yet conservative) statistical test!

Spaces with Differently Scaled Dimensions

Consider an r-dimensional space A ⊆ Rr and assume that
• the first 0 ≤ z ≤ r dimensions are of cardinal scale and
• the remaining dimensions are purely ordinal.
Utilize the cardinal information only on parts of A where there is no possible conflict
with the ordinal one. Consider A to be a subsystem of pref(Rr) = [Rr, R∗

1, R∗
2], where

R∗
1 =

{
(x, y) : xj ≥ yj ∀j ≤ r

}
R∗

2 =
{

((x, y), (x′, y′)) : xj − yj ≥ x′
j − y′

j ∀j ≤ z

xj ≥ x′
j ≥ y′

j ≥ yj ∀j > z

}
.

Example: Poverty Analysis

We use the ALLBUS data and account for three dimensions of poverty: income (nu-
meric), health (ordinal, 6 levels) and education (ordinal, 8 levels). E.g., for the
following two pairs of vectors we can utilize the cardinal dimensions:

Some Properties of SDSDs

Theorem 1. Let X = (∆1, . . . , ∆r), Y = (Λ1, . . . , Λr) ∈ F(pref(Rr),π). Then:
i) pref(Rr) is consistent.

ii) If z = 0, then R(pref(Rr),π) equals (first-order) stochastic dominance w.r.t. π
and R∗

1 (short: FSD(R∗
1, π)).

iii) If (X, Y ) ∈ R(pref(Rr),π) and ∆j, Λj ∈ L1(Ω, S1, π) for all j = 1, . . . , r, then
I. Eπ(∆j) ≥ Eπ(Λj) for all j = 1, . . . , r, and

II. (∆j, Λj) ∈FSD(≥, π) for all j = z + 1, . . . , r.
If all components of X are jointly independent and all components of Y
are jointly independent, I. and II. imply (X, Y ) ∈ R(pref(Rr),π).

Test in the Example

For the ALLBUS data, we focus on subsamples with n = m = 100 men and women.

Results: All tests significant for α = 0.05. P-values decrease with increasing regular-
ization strength ε of the test statistic.

Credal Sets in Example

A special class of credal sets are γ-
contamination models. For ω ∈ Ω,
γ ∈ [0, 1], and Z ∈ {X, Y }, we set

Mω
Z =

{
π : π ≥ (1 − γ) · π̂ω

Z

}
.

Interpretation: The contamination
parameter γ can be interpreted as the
share of data that can deviate from the
i.i.d. sampling assumption.

Results Robust Testing
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