

PEC

4

E

Formalization: Preference Systems

Notation: For a preorder R, denote by P_R its *strict* and by I_R its *indifference* part.

Definition 1. Let $A \neq \emptyset$ be a set. Let $R_1 \subseteq A \times A$ be a preorder on A and $R_2 \subseteq A$ $R_1 \times R_1$ be a preorder on R_1 . The triplet $\mathcal{A} = [A, R_1, R_2]$ is called a **preference** system on A. We call \mathcal{A} consistent if $\exists u : A \rightarrow [0,1]$ s.t. for all $a, b, c, d \in A$:

Spaces with Differently Scaled Dimensions

Consider an r-dimensional space $A \subseteq \mathbb{R}^r$ and assume that

- the first $0 \le z \le r$ dimensions are of cardinal scale and
- the remaining dimensions are purely ordinal.

Utilize the cardinal information only on parts of A where there is no possible conflict

- $(a,b) \in R_1 \Rightarrow u(a) \ge u(b)$ (with $= iff \in I_{R_1}$).
- $((a,b), (c,d)) \in R_2 \Rightarrow u(a) u(b) \ge u(c) u(d)$ (with = iff $\in I_{R_2}$). The set of all representations u of \mathcal{A} is denoted by $\mathcal{U}_{\mathcal{A}}$.

Definition 2. A consistent preference system \mathcal{A} is **bounded**, if $\exists a_*, a^* \in A$ such that $(a^*, a) \in R_1$, and $(a, a_*) \in R_1$ for all $a \in A$, and $(a^*, a_*) \in P_{R_1}$. In this case, for $\delta \in [0,1)$, denote by \mathcal{N}^{δ}_{A} the set of all $u \in \mathcal{U}_{A}$ with $u(a_{*}) = 0$, $u(a^{*}) = 1$, and $u(a) - u(b) \ge \delta \quad \land \quad u(c) - u(d) - u(e) + u(f) \ge \delta$

for all $(a, b) \in P_{R_1}$ and for all $((c, d), (e, f)) \in P_{R_2}$.

SITUATION GENERAL

Generalized Stochastic Dominance (GSD)

For π a probability measure on (Ω, \mathcal{S}) and \mathcal{A} a consistent preference system, set $\mathcal{F}_{(\mathcal{A},\pi)} := \Big\{ X \in A^{\Omega} : u \circ X \in \mathcal{L}^1(\Omega, \mathcal{S}, \pi) \; \forall u \in \mathcal{U}_{\mathcal{A}} \Big\}.$ For $X, Y \in \mathcal{F}_{(\mathcal{A},\pi)}$, say Y is (\mathcal{A},π) -dominated by X, formally $(X,Y) \in R_{(\mathcal{A},\pi)}$, if $\forall u \in \mathcal{U}_A : \mathbb{E}_{\pi}(u \circ X) > \mathbb{E}_{\pi}(u \circ Y).$

The preorder $R_{(\mathcal{A},\pi)}$ on $\mathcal{F}_{(\mathcal{A},\pi)}$ called **generalized stochastic dominance (GSD)**.

GENERAL & SITUATION

Testing for GSD

with the ordinal one. Consider A to be a subsystem of $pref(\mathbb{R}^r) = [\mathbb{R}^r, R_1^*, R_2^*]$, where $R_1^* = \left\{ (x, y) : x_j \ge y_j \; \forall j \le r \right\}$ $R_{2}^{*} = \left\{ ((x, y), (x', y')) : \begin{array}{c} x_{j} - y_{j} \ge x'_{j} - y'_{j} \quad \forall j \le z \\ x_{j} \ge x'_{j} \ge y'_{j} \ge y_{j} \quad \forall j > z \end{array} \right\}.$

CONCRETE & SDSD

Example: Poverty Analysis

We use the ALLBUS data and account for three dimensions of poverty: income (numeric), health (ordinal, 6 levels) and education (ordinal, 8 levels). E.g., for the following two pairs of vectors we can utilize the cardinal dimensions:

Some Properties of SDSDs

Assume *i.i.d.* samples $\mathbf{X} = (X_1, \ldots, X_n)$ and $\mathbf{Y} = (Y_1, \ldots, Y_m)$ of X and Y.

Hypotheses:

 $H_0: (Y, X) \in R_{(\mathcal{A}, \pi)}$ vs. $H_1: (Y, X) \notin R_{(\mathcal{A}, \pi)}$

Test Statistic:

$$\omega \mapsto \inf_{u \in \mathcal{N}_{\mathcal{A}_{\omega}}^{\delta_{\varepsilon}(\omega)}} \sum_{z \in (\mathbf{X}\mathbf{Y})_{\omega}} u(z) \cdot (\hat{\pi}_{X}^{\omega}(\{z\}) - \hat{\pi}_{Y}^{\omega}(\{z\}))$$

with, for $\omega \in \Omega$ and $\varepsilon \in [0, 1]$ fixed, and

- $\hat{\pi}_X^{\omega}$ and $\hat{\pi}_Y^{\omega}$ the observed empirical image measures of X and Y,
- $(\mathbf{XY})_{\omega} = \{X_i(\omega) : i \le n\} \cup \{Y_i(\omega) : i \le m\} \cup \{a_*, a^*\}, \text{ and }$
- \mathcal{A}_{ω} the subsystem of \mathcal{A} restricted to $(\mathbf{X}\mathbf{Y})_{\omega}$, and
- $\delta_{\varepsilon}(\omega) := \varepsilon \cdot \sup\{\xi : \mathcal{N}_{\mathcal{A}}^{\xi} \neq \emptyset\}.$

Computation: $d_{\mathbf{X},\mathbf{Y}}^{\varepsilon}$ can be computed by solving one single *linear program*. **Test scheme:** We made observations of the i.i.d. variables, i.e., we observed: $\mathbf{x} := (x_1, \dots, x_n) := (X_1(\omega_0), \dots, X_n(\omega_0))$, $\mathbf{y} := (y_1, \dots, y_m) := (Y_1(\omega_0), \dots, Y_m(\omega_0))$ As the worst case of H_0 is $\pi_X = \pi_Y$, we can perform a *permutation test*: **Step 1:** Pool data sample: $\mathbf{w} := (w_1, \ldots, w_{n+m}) := (x_1, \ldots, x_n, y_1, \ldots, y_m)$

Theorem 1. Let $X = (\Delta_1, \ldots, \Delta_r), Y = (\Lambda_1, \ldots, \Lambda_r) \in \mathcal{F}_{(pref(\mathbb{R}^r), \pi)}$. Then:

 $pref(\mathbb{R}^r)$ is consistent. i)

FOR SDSDs

- If z = 0, then $R_{(pref(\mathbb{R}^r),\pi)}$ equals (first-order) stochastic dominance w.r.t. π ii) and R_1^* (short: $FSD(R_1^*, \pi)$).
- If $(X, Y) \in R_{(pref(\mathbb{R}^r),\pi)}$ and $\Delta_j, \Lambda_j \in \mathcal{L}^1(\Omega, \mathcal{S}_1, \pi)$ for all $j = 1, \ldots, r$, then iii) I. $\mathbb{E}_{\pi}(\Delta_j) \geq \mathbb{E}_{\pi}(\Lambda_j)$ for all $j = 1, \ldots, r$, and
 - II. $(\Delta_j, \Lambda_j) \in FSD(\geq, \pi)$ for all $j = z + 1, \ldots, r$.

If all components of X are jointly independent and all components of Yare jointly independent, I. and II. imply $(X, Y) \in R_{(pref(\mathbb{R}^r), \pi)}$.

Test in the Example

For the ALLBUS data, we focus on subsamples with n = m = 100 men and women.

Step 2: For all $I \subseteq \{1, \ldots, n+m\}$ with |I| = n, compute $d_{\mathbf{X}\mathbf{Y}}^{\varepsilon}$ for $(w_i)_{i\in I}$ and $(w_i)_{i \in \{1,\dots,n+m\}\setminus I}$ instead of \mathbf{x}/\mathbf{y} to get d_I^{ε} . Sort all d_I^{ε} increasingly to get $d_{(1)}^{\varepsilon},\dots,d_{(k)}^{\varepsilon}$. **Step 3:** Reject H_0 if $d_{\mathbf{X},\mathbf{Y}}^{\varepsilon}(\omega_0) > d_{(\ell)}^{\varepsilon}$, with $\ell := \lceil (1-\alpha)k \rceil$ and α the significance level.

GENERAL & SITUATION Robustifying the Test

Idea: Use *credal sets* to robustify the permutation test. Concretely, allow the samples to be (potentially) *biased* in the sense that we only assume the *true empirical laws* to lie in some credal neighborhoods \mathcal{M}_X and \mathcal{M}_Y around the biased empirical laws. Adapted test scheme: Replace

- $d_{\mathbf{X},\mathbf{Y}}^{\varepsilon}(\omega_0)$ by $\inf_{(\pi_1,\pi_2)\in\mathcal{M}_X^{\omega_0}\times\mathcal{M}_Y^{\omega_0}} d_{\mathbf{X},\mathbf{Y}}^{\varepsilon}(\omega_0)$
- $d_I^{\varepsilon}(\omega_0)$ by $\sup_{(\pi_1,\pi_2)\in\mathcal{M}_X^{\omega_0}\times\mathcal{M}_Y^{\omega_0}} \tilde{d}_I^{\varepsilon}(\omega_0)$

Results in: Valid (yet conservative) statistical test!

Results: All tests significant for $\alpha = 0.05$. P-values decrease with increasing regularization strength ε of the test statistic.

Credal Sets in Example

A special class of credal sets are γ contamination models. For $\omega \in \Omega$, $\gamma \in [0, 1]$, and $Z \in \{X, Y\}$, we set $\mathcal{M}_{Z}^{\omega} = \Big\{ \pi : \pi \ge (1 - \gamma) \cdot \hat{\pi}_{Z}^{\omega} \Big\}.$ **Interpretation:** The contamination parameter γ can be interpreted as the share of data that can deviate from the *i.i.d.* sampling assumption.

Results Robust Testing

