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Premise

Reweighted wake-sleep (RWS) can perform Bayesian inference in a very general
class of models. However, the number of samples required for effective importance
weighting is exponential in the number of latents; getting this many importance
samples is intractable in all but the smallest models. Here, we develop massively
parallel RWS, which circumvents this issue by drawing K samples of all n latent
variables and reasoning about all Kn possible combinations of samples.

Reasoning about Kn combinations might seem intractable, but the required
computations can be performed in polynomial time by exploiting conditional in-
dependencies. Our algorithm and implementation of MPRWS show considerable
improvements over standard RWS, which draws K samples from the full joint.

Background

We seek the the parameters, ϕ, of an approximate posterior Qϕ (h|x) with latents h
and data x.

RWS [2] draws K samples from an underlying approximate posterior, then uses
importance weighting to provide a better estimate of the true posterior Pθ. RWS
then updates its approximate posterior towards the importance-weighted estimate
of the true posterior.

Standard reweighted wake-sleep. Draws K samples from the joint latent
space.

However, naively importance weighting, as we do in methods like RWS, does
not provide enough samples for accurate estimation of the posterior [3], making
practical applications of this method difficult.

In past work [1] we circumvent this problem with a massively parallel scheme
drawing K samples for each latent variable, then effectively obtaining Kn samples
by considering all combinations of K samples for each of the n latents. Let each
individual sample for each separate latent variable be hk

i , where k indexes the
sample and i indexes the latent variable.

To sample all K copies of the full joint latent space, TMC [1] uses an IID distribution
over the K samples, z1i , . . . , z

K
i ,

QTMC (h|x) =
n∏
i=1

∏
k∈K

QTMC

(
hk
i

∣∣hj for all j ∈ qa (i)
)
. (1)

qa (i) = indices of parents of the ith latent variable under the approximate posterior.

The present work generalises this, allowing dependencies (in Q) between the K
samples for a single latent, and deriving parallel update rules for an RWS which
averages over combinations of samples.

QMP (h|x) =
n∏
i=1

QMP (hi|hj for all j ∈ qa (i)) . (2)

There are no formal constraints on these dependencies. However, there are prac-
tical constraints, namely that we need to be able to efficiently compute the single-
particle marginals

Methods

Here, K = 3 and n = 2, so we reason over Kn = 9 combinations of samples.

Algorithm 1: Massively Parallel RWS

Require: Data x, Prior Pθ, Proposal QMP, K ≥ 1
for i← 1 to n do

Sample zi ∼ QMP (zi|zj for all j ∈ qa (i))
z ← {z1, ..., zi−1} ∪ zi

f i
ki,kpa(i)

(z)←
Pθ

(
z
ki
i

∣∣∣zkjj for all j∈pa(i)
)

QMP(z
ki
i |x,zj for all j∈qa(i))

end for
fx
kpa(x)

(z)← Pθ

(
x
∣∣∣zkjj for all j ∈ pa (x)

)
PMP(z)← 1

Kn

∑
kn fx

kpa(x)
(z)

∏
i f

i
ki,kpa(i)

(z)

∆θMP← ∇θ logPMP(z)
∆ϕMP← ∇ϕ (− logPMP(z))

Results
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a Number of users = 300

MPRWS vs global RWS on the movielens dataset.
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MPRWS vs global RWS on the NYC bus breakdown dataset.
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