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Reweighted wake-sleep (RWS) can perform Bayesian inference in a very general
class of models. However, the number of samples required for effective importance
weighting iIs exponential in the number of latents; getting this many importance

samples is intractable in all but the smallest models. Here, we develop massively

parallel RWS, which circumvents this issue by drawing K samples of all n latent
variables and reasoning about all K possible combinations of samples.

Reasoning about K" combinations might seem intractable, but the required
computations can be performed in polynomial time by exploiting conditional in-
dependencies. Our algorithm and implementation of MPRWS show considerable
improvements over standard RWS, which draws K samples from the full joint.

Background

We seek the the parameters, ¢, of an approximate posterior (), (h|x) with latents h
and data x.

RWS [2] draws K samples from an underlying approximate posterior, then uses
iImportance weighting to provide a better estimate of the true posterior F. RWS
then updates its approximate posterior towards the importance-weighted estimate
of the true posterior.
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Standard reweighted wake-sleep. Draws K samples from the joint latent
space.

However, naively importance weighting, as we do in methods like RWS, does
not provide enough samples for accurate estimation of the posterior [3], making
practical applications of this method difficult.

In past work [1] we circumvent this problem with a massively parallel scheme
drawing K samples for each latent variable, then effectively obtaining K" samples
by considering all combinations of A samples for each of the n latents. Let each
individual sample for each separate latent variable be 17, where k indexes the
sample and : indexes the latent variable.

To sample all K copies of the full joint latent space, TMC [1] uses an IID distribution

over the K samples, 2}, ..., 2%,
Qe (hlx) = T ] Qraie (RF|2; for all j € qa (i) . (1)
1=1 ke

ga (¢) = indices of parents of the ith latent variable under the approximate posterior.

The present work generalises this, allowing dependencies (in ()) between the K
samples for a single latent, and deriving parallel update rules for an RWS which
averages over combinations of samples.

Qup (hlz) = ][ Qup (ilh; for all j € qa (i) . (2)
1=1

There are no formal constraints on these dependencies. However, there are prac-
tical constraints, namely that we need to be able to efficiently compute the single-
particle marginals
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Here, K = 3 and n = 2, so we reason over K" = 9 combinations of samples.

Algorithm 1: Massively Parallel RWS

Require: Data x, Prior Py, Proposal Qyip, K > 1
for: < 1ton do
Sample z; ~ Qup (2|2, for all 7 € qa (7))
Z < {21, Coes Zz’—l} U z;

| p(fi
fise, (2) & —

iKpai QMP(zfﬂx,zj for aIIqua(’i))
end for
flfpa(@(’z) — Py (:1: zfj for all 7 € pa(x)
Prp(2) < % 2 ko flfpam(z) []; f’iz'akpa@)(z)
Abyvip < Vlog Pup(2)
Apyp < Vg (—log Pyp(2))

z;’ for all j Epa(z))
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MPRWS vs global RWS on the movielens dataset.
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MPRWS vs global RWS on the NYC bus breakdown dataset.
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