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Algorithm Design

▶ Consider the following general constrained nonconvex optimization
problem:

min
v

F (v), subject to v ∈ C
▶ SGD performs the following update at the t-th step (t ≥ 1):

vt = ΠC

[
vt−1 − η∇̃F (vt−1; ζt)

]
where ΠC[·] denotes projection operator onto C, and ∇̃F (vt−1; ζt)
denotes unbiased gradient estimator of ∇F (vt−1)

▶ What if there is no access to ∇̃F (vt−1; ζt), but instead stochastic
vector Γ(v; ζ) as unbiased estimate of scaled gradient:

Eζ

[
Γ(v; ζ)

]
= D(v)∇F (v)

▶ Generalized eigenvector computation (GEV) (Principal component
analysis (PCA), Partial least squares regression, Fisher’s linear
discriminant analysis (LDA), canonical correlation analysis (CCA), etc.)

Stochastic Scaled-Gradient Descent

▶ SSGD performs the update:

vt = ΠC [vt−1 − ηΓ(vt−1; ζt)] where Eζ

[
Γ(v; ζ)

]
= D(v)∇F (v)

▶ Example: Generalized Rayleigh quotient given a unit spherical
constraint:

min
v

−v⊤Av

v⊤Bv
subject to v ∈ Sd−1 = {v ∈ Rd : ∥v∥ = 1}

▶ The first-order derivative with respect to v

∇v

[
−v⊤Av

v⊤Bv

]
= −(v⊤Bv)Av − (v⊤Av)Bv

(1/2)(v⊤Bv)2

▶ Replacing the denominator, denoted as D(v), by the constant 1:

vt = ΠSd−1

[
vt−1 + η

(
(v⊤

t−1B̃
′vt−1)Ãvt−1 − (v⊤

t−1Ãvt−1)B̃
′vt−1

)]
where the bracketed term is unbiased estimate of −Γ(v; ζ)

Previous Works

▶ Oja’s online PCA iteration [Oja82] (Special case where B̃ is taken as I)
▶ Procedures for efficient online canonical eigenvectors estimation has

been explored [AMMS17, GGS+19, CLY+19].
▶ [BPF+18] studied the CCA problem and proposed a two-time-scale

online iteration (“Gen-Oja”), obtained 1/
√
N .

Our Contributions

▶ We propose the (SSGD) algorithm—which generalizes the classical SGD
algorithm and has a wider range of applications.

▶ We provide a local convergence analysis for convex spherical-constraint
objective functions. Starting with a warm initialization, matches a
known information-theoretic lower bound[MBM18].

▶ By applying SSGD to the GEV problem, we give a positive answer to
the question raised by [ACLS12] regarding to the existence of an
efficient online GEV algorithm. Specifically, in the case of CCA, our
SSGD algorithm uses as few as two samples at each update, does not
incur intermediate and expensive computational cost while achieving a
polynomial convergence rate guarantee

Theoretical Results: Assumptions

Initialization:

∥v0 − v∗∥ ≤ min

{
Dµ

25ρ
, δ

}
(1)

Assumption (Smoothness Assumption): For any v ∈ {v : ∥v∥ ≤
1, ∥v − v∗∥ ≤ δ}, we assume that D(v) is LD-Lipschitz, F (v) is LF -
Lipschitz, ∇F (v) is LK-Lipschitz and ∇2F (v) is LQ-Lipschitz, where
LD, LF , LK, LQ are fixed positive constants.

Assumption (Sub-Weibull Tail): For some fixed V ∈ (0,∞) and
for all v ∈ C, we assume that the stochastic vectors Γ(v; ζ) satisfy

E exp

(∥∥∥∥Γ(v; ζ)V

∥∥∥∥α) ≤ 2 (2)

Finite-Sample Convergence Rate

Corollary (Finite-Sample): Assume Assumptions 1 and 2 and the
initialization condition (1). For fixed positive constants ϵ and sample

size T , set the step size as η(T ) = Θ

(
log T

DµT

)
, satisfying some scaling

condition, there exists an event H with

P(H) ≥ 1−

(
14 + 8

(
3

α

) 2
α

log−
α+2
α ϵ−1

)
Tϵ,

such that on the event H the iterates generated by the SSGD algorithm
satisfy

∥vT − v∗∥ ≲
GαV
Dµ

log
α+2
2α ϵ−1

√
log T

T
.

▶ In the case of CCA, the (α = 1/2) sub-Weibull parameter V in that
case scales with

√
d and thus the local rate is the minimax-optimal rate

O(
√

d/T ) up to a polylogarithmic factor.

Asymptotic Normality via Trajectory Averaging

Assumption (Mean-Squared Smoothness): There exists a posi-
tive constant LS such that for all v,v′ ∈ {v : ∥v∥ ≤ 1, ∥v−v∗∥ ≤ δ}
and t ≥ 1, we have for ζ

E ∥Γ(v; ζ)− Γ(v′; ζ)∥2 ≤ L2
S∥v − v′∥2

Theorem (Asymptotic Normality): Assume Assumptions 1, 2, 3
and initialization condition (1). If we choose the step size η such that
η → 0 as the total sample size T → ∞, where

Tη2 log
2α+4
α T → 0, T η log−

α+2
α T → ∞ a.s.

we obtain Gaussian convergence in distribution:
√
T
(
v
(η)
T − v∗

)
d→ N

(
0, D−2 · M−

∗Σ∗M−
∗
)

Experiments

▶ Potential future works: Sharper rate of escape of saddle points for
SSGD, study global convergence for generic Riemannian manifolds, etc.
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