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What to expect from this talk?

* For machine learning researchers:

* Key principles in imitation learning (IL) algorithms.
* The error decomposition theory (foundation of machine learning theory) for IL.
* For reinforcement learning/imitation learning researchers:

* Theoretical analysis framework for adversarial imitation learning (AIL).

* A new AIL algorithm with better theoretical guarantee.
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What is Imitation Learning?

Imitation Learning (a.k.a., learning from demonstrations)

“Efficiently learn a desired behavior by imitating an expert’s behavior”

[ Takayuki et al., 2018]
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imitate to play the game Go [Silver et al., 2016]

imitate to follow instructions [OpenAl., 2023]

Humanoid: Run

Simulation

A4

Policy trained to imitate a running clip.



Markov Decision Process

* Consider a finite-horizon Markov Decision Process M = (S A, H { P} he[H] Arn} helH] ,p)

* Policy m = {mq, -, ty} with . § = A(A).

* Policy value: V™ =E [Zthl Th (Sh,an) |81 ~ pyan ~ 7 (4|Sh) , Sha1 ~ P ('|3h7ah)]

» State (-action) distributions: dj,(s) :=P(s, = s|m), d} (s,a) :=P(sp, = s,ap = a|m)
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Imitation Learning Set-up

* Task: Given a dataset that contains expert trajectories, the learner aims to learn a policy

that matches the expert performance.
» Expert trajectory (H state-action pairs) collected by a deterministic expert policy k.

tr = {(s1,a1),...,(sg,ag)} ~ 7"

» Expert dataset (n expert trajectories):
DY = {trl, . ,tr”}
E

* Criterion (Imitation Gap): the policy value gap between the learner & and expert ™.
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Adversarial Imitation Learning (AIL)

AIL mimics the expert policy via state-action distribution matching [Abbeel and Ng, 2004; Syed
and Schapire, 2007; Ho and Ermon, 2016].
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* Here ¢(+,) is a divergence measure and d,’fE 1s the empirical version of dﬁE.

* As ,TE 1s unknown, AIL needs to establish the empirical distribution from
the expert dataset.

* Asdy is unknown, AIL needs to evaluate it from environment interactions.

{Expert Sample Efficiency} [ Interaction Efficiency J




Empirical Observation: Expert Dataset
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AIL methods (e.g., GAIL, FEM, GTAL) outperforms BC significantly in terms of expert sample complexity.
Figure is from [Ho and Ermon, 2016].



Empirical Observation: Environment Interaction
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AIL methods (e.g., GAIL, DAC, ValueDICE) require substantial environment interactions. Figure 1s from
[Kostrikov et al., 2010].



Theoretical Study of AIL with Unknown Transitions

Problem set-up:

The expert policy £ is unknown. J -3 | The learner has access to m expert trajectories.

The transition function P is unknown.} -2 | The learner can interact with the env. for n trajectories.

The learner aims to recover a policy 7 with small imitation gap yre —yR,

Research Goal:

The expert sample complexity (m) and interaction complexity (n) required to
ensure V" — V® < ¢ for a small tolerated error «.
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Main Results

Interaction
Complexity i
A

Lower
I Bound OAL
[Shani et al., 2022] e MB-TAIL i1s the first to achieve the minimax optimal
HYS12|A | L .. P
— = [T it @ expert complexity with unknown transitions.
I : * MB-TAIL improves the interaction complexity over the
MB,TAIL : SOTA method OAL [Shain et al., 2022] by O (H).
(this,work) !
2
) | BC GTAL FEM
| [Rarjarman et al.,:2020] [Syed and Schapire, 2007] [Abbeel and Ng, 2004]
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Simulation Study
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MB-TAIL outperforms the other methods when the number of interactions exceeds 500.
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Algorithmic Framework with Unknown Transitions

State-action distribution matching Model-based AIL:
with total variation distance:

H H _ -
ggﬁly: S: ‘dZ’P(S, a) — JZE<S, a)| : ‘ glelll%l Z Z |dZ’P(S, a) — dzE(S, a)

h=1 (s,a)eSx A h=1 (s,a)eSx.A

Algorithm 1 Meta-algorithm for AIL with Unknown Transitions

Require: Expert demonstrations D.
1: P < Invoke an exploration algorithm A to collect n trajectories and learn a transition model.
2: dZE + Apply an algorithm B to estimate the expert state-action distribution.
3: ™ < Apply an optimization algorithm C to solve the distribution matching problem with the expert
estimation d};E under transition model P.
Ensure: Policy 7.
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Theoretical Analysis for Model-based AIL

Definition 1 (Uniform Policy Evaluation, UPE)
A learned transition model P is (g, §)-PAC for UPE if

P ( for any r, 7 € II, |[V™Dr — ymbr

35)21—5

Definition 2 (eggr-accurate Estimation)

. . B E . H ~ B E
v v v v
An estimation dj is eggr-accurate for d if > ., ‘ dy  —d7

) < EEST

Definition 3 (eopr-optimal Policy)

A policy 7 is egpr-optimal for the distribution matching problem with P
and d7” it S ||dp T = | < mingen SO ||ap " -

| ‘ + eopT-
1 1
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Error Decomposition Theory

Proposition 1 (Error Decomposition in AIL)

Suppose that

(a) an exploration algorithm A can interact with the env. and output a learned transition model
P that is (5EXP7 5EXP)—PAC for UPE;

b) an algorithm B can establish ¢ -accurate estimation dr” with probability at least > 1 —dggr;
h
¢) with P in (a) and dF in (b , an algorithmic C returns an sopp-optimal policy 7.
h

Then applying algorithms A, B and C under the above framework could return a policy 7 with

P (VWE — V7T < 2epxp + 2ensT + €OPT) > 1 — 0gxp — OEST

Three types of errors in AIL’s training: exploration error, and optimization error.
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Part (a): Controlling the Exploration Error

Applying reward-free exploration methods [Chi et al., 2021] can learn the desired transition model.

Lemma 1 (Theorem 1 of [Ménard et al., 2021])

The reward-free exploration algorithm RF-Express can learn a transition model P that is (€,0)-PAC
for uniform policy evaluation, if the number of trajectories collected by RF-Express satisfies

3 H
n > H \52HA| (|S| + log (—‘8| )) :
€ )

Connection with AIL: both RFE and AIL needs to solve RL problems with different rewards.
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Part (b): Controlling the Estimation Error

e The maximum likelihood estimator (MLE) is considered in the literature
[Abbeel and Ng, 2004; Syed and Schapire, 2007; Shani et al., 2022].

ZtrED [{trn(,-) = (s,a)}
D

d7 (s,a) =

where tr;, (+,) indicates the specific state-action pair of trajectory tr in time step h.

» To obtain an e-accurate estimation, the expert sample complexity required by the
H?|S| H3/2 |5|)

MLE is 0(
with known transmons [Rajaraman et al., 2020].

) [Xu et al., 2022] while the minimax optimal one is 0(

H
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Part (b): Transition-aware Estimator
timestep: h

« Start with the marginal formulation:

dr ZW (trp) T{trp(-,-) = (s,a)}

trh

- Split the expert dataset D into two equal parts D = D, U D¢
and define Tr,?1 as the set of sub-trajectories covered in D; . \
« Then we have the following decomposition: {‘

(s,a)}+ Z P (trp) T{try (-,

tthfTr

= =k
21

timestep: h

d7r Z IP)W tl‘h ]I{tl‘h( )
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Part (b): Transition-aware Estimator

D D
trp€Tr, * trhgéTrhl

A\ g A\ g

+ = i (s,a)= > PT (trp) [{trn() = (s,a)}+ Y P™ (trn) I{tra(, ) = (5,0)}
| —

Z:& ;:‘

D, Dy

* To estimate the term &, we can establish the MLE using Dy.

Dy
= MLE {ZtrhEDf I{try(,+) = (s,a),try & Trfl}}
— D]

* To estimate the term é:

D,

BC rollout
) )

Denv
UI' E Ztrh €D/, H{trh(', ) == (8, CL), try, € Trfl}
— D |

env
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Part (b): Transition-aware Estimator
a7 (5,0) = Sy, emem PTG I{tral ) = (5,0)} + Sy gyr P (tra) I {trn (-, ) = (s,a))

D D
~7'('E L Ztrh €Dl v H{trh( )_(saa’)7trh ETrh ! } Ztrh G’Df H{trh(°"):(s’a)7trh Q/Trh ! }
ho(8,0) = L] + B

Lemma 2

Let D be the expert dataset. Fix ¢ € (0,1) and § € (0,1); suppose H > 5. The transition-aware
estimator d;{E is e-accurate with probability at least 1 — ¢, if

H3/2 H H? H
|’D‘ Zz glog <&> ’ ‘,Dénv| 2 |8| lOg (’8’ ) .

) g2 )

N

v

At a high level, the new estimator utilizes the transition information from environment interactions to
improve the estimation.

The expert sample complexity matches the lower bound [Rajaraman et al., 2021] in the known transition
setting in terms of H and ¢.

23



Part (c¢): Controlling the Optimization Error

* Transform the original minimization problem into a minimax one via the dual form of [, -norm.

H . H N ~
frnel%llz ‘ dZ’P — d};E <= max minz Z wp(s,a) (dzE (s,a) — dZ’P(S, a)) :
h=1

|1 weW mell
h=1(s,a)

* Applying online gradient descent [Shalev-Shwartz et al., 2014] solves this minimax problem.

H
) P B
« For w, apply online projected gradient descent with objective Y, D  wa(s,a) (dh Y(s,a) —dj, (s, a))
h=1 (s,a)eSx A

\ . e

Wt = Py (w® — Oy £ (1)) ——

* For m, solve the RL problem with the reward function w(*1) and P.

The gradient-based optimization procedure can return an e-optimal policy, if

H?|S||A] S]IA|
> - I ) .— /=
PR=—a— 7=\ 3
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MB-TAIL: Putting All Together

Algorithm 2 Model-based Transition-aware AIL

Require: Expert demonstrations D. R
1: Invoke RF-Express to collect n trajectories and learn an empirical transition function P.
2: Randomly split D into two equal parts: D = D; U DY.

3: Learn 7’ € Ilgc (D7) by BC and roll out 7’ to obtain dataset D, , with |D. .| =n'.
4
5%

: Obtain the transition-aware estimator JZE with D and D, .

. 7 < Apply the gradient-based optimization method with the estimation glVZE under transition model P.
Ensure: Policy 7.

Fix e € (0,1) and 6 € (0,1). Under the unknown transition setting, consider MB-TAIL and 7 is the
output policy, if the expert sample complexity and the interaction complexity satisfy

- 3/2 » 31 Q|2
m:o(H |8\>7 n,+n:O(H S |A\>7

€ g2

then with probability at least 1 — d, we have V™ — V7 < ¢,
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Summary

* This paper proposes a provably efficient AIL method with minimax optimal expert sample
complexity and improved interaction complexity.

* An algorithmic framework, which establishes a connection between AIL and
reward-free exploration.

* A better expert state-action distribution estimator with unknown transitions.

* A provably efficient optimization procedure for AIL.

*  We also extend MB-TAIL to the function approximation setting and prove that it can achieve
expert sample and interaction complexity free of |§|, showing its generalization ability.

Paper: https://arxiv.org/abs/2306.06563

Code: https://github.com/tianxusky/tabular-ail
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