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Abstract

Hypothesis testing can help decision-making by
quantifying distributional differences between two
populations from observational data. However,
these tests may inherit biases embedded in the data
collection mechanism (some instances often being
systematically more likely included in our sample)
and consistently reproduce biased decisions. We
propose a two-sample test that adjusts for selection
bias by accounting for differences in marginal dis-
tributions of confounding variables. Our test statis-
tic is a weighted distance between samples embed-
ded in a reproducing kernel Hilbert space, whose
balancing weights provably correct for bias. We es-
tablish the asymptotic distributions under null and
alternative hypotheses, and prove the consistency
of empirical approximations to the underlying pop-
ulation quantity. We conclude with performance
evaluations on artificial data and experiments on
treatment effect studies from economics.

1 INTRODUCTION

The two-sample problem considers testing whether two inde-
pendent samples are likely drawn from the same distribution.
Such tests have a long history in statistical inference but
they are also increasingly used in decision making scenarios.
For example, two-sample tests have been used to determine
gender differences in academic achievements [16], gender
differences in criminal justice outcomes [11], gender dif-
ferences in health issues [34], and also frequently used in
medicine to determine subgroups of patients that respond
differently to medication and establish treatment policies
[3].

In any data driven study, a first step is the collection of a
series of observations about an underlying phenomenon of
interest before making an informed decision, for example

assisted by a hypothesis test, on this data. In most realistic
scenarios, we do not have control on the data collection
process (e.g. participants volunteering for a study involving
a new treatment may differ systematically from the wider
population), but we do implicitly condition on the fact that
participants entered into the study (S = 1).

This implicit conditioning may bias the conclusions of tests
because two samples may differ systematically prior to run-
ning any experiment and a hypothetical difference in distri-
bution be completely unrelated to the effect of interest.

The problem of selection bias and its influence on inference
has attracted much recent interest in the fairness literature
[26, 19, 20, 9], one aspect of which involves mitigating in-
direct discrimination e.g., section 3.1, point (2) in [41], in
which algorithms make biased decisions due to the correla-
tion of the non-discriminatory items with the discriminatory
ones. Selection bias is also relevant in the causal inference
literature [25]. [1] gave graphical conditions under which
the causal effect may be recovered from data with selection
bias. A similar scenario is considered under the rubric of
treatment effect estimation, in which algorithms estimate
individualized, average and conditional treatment effects
in data biased by confounders that simultaneously influ-
ence treatment assignment and outcomes [35, 18, 40]. In
epidemiology [27] and econometrics [15], versions of this
problem are also widely studied. Similarly, hypothesis tests
for the significance of a measured association, and data-
driven algorithms in general, must account for sources of
discrimination, confounding, and selection bias more gener-
ally in the data.

In fairness and causal inference however, while many meth-
ods exist attempting to predict associations adjusting for
selection bias, much less is known on the significance of
effects in the presence of selection bias. We cannot for in-
stance say whether outcome distributions in two groups
significantly differ or not even if model predictions differ.
The literature on hypothesis testing is invested in such prob-
lems but so far hypothesis testing in the presence of selection
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Figure 1: The influence of selection bias on outcome distributions. The left panel plots a sample from the observed data, the middle
panel shows the observed post-intervention income density for males and females, and the right panel shows the income distribution
obtained by adjusting for selection bias, in this case education levels. In this case, a conventional two-sample test rejects the hypothesis of
equal post-intervention income in male and female populations due to the intervention, while our proposed test fails to reject.

bias has been minimally considered. To illustrate the large
impact of selection bias on two-sample testing outcomes
and the need for approaches that can adjust for these spu-
rious effects we consider an example described below and
illustrated in Figure 1.

1.1 EXAMPLE

Suppose a city government wants to understand the role of
gender on the effectiveness of a past employment program
to better allocate their resources in the future. Its analyst con-
structed datasets of volunteering (S = 1) men and women
(T = 1 and T = 0) to be compared, and included a number
of relevant employment figures such as post-intervention
earnings, type of job, satisfaction, etc. (Y ). In this hypo-
thetical example, highly educated men were more likely to
volunteer than women due to historical gender bias in edu-
cation opportunities (X). Such preferential selection creates
a spurious association between T and Y , opening a path of
unblocked correlations through X , as shown in the causal
diagram of Figure 1. It is called spurious because it is not
part of what we seek to estimate – the significance of the
causal effect of T on Y .

A test that ignores this bias tends to determine men and
women to have different employment program outcomes
whereas in reality, once we account for differences in edu-
cation (i.e. we block the spurious open path), the program
is found to perform equally in distribution across men and
women. In this example, higher program benefits are due to
higher starting education standards, not because people of
different gender benefit differently. A decision based on a
plain two sample tests overrates the impact of an individ-
ual’s sex – in this case correlated with education because
we implicitly condition on S = 1. Please find a description
of the data generating mechanism in the Appendix.

1.2 CONTRIBUTIONS

We develop a non-parametric test for differences in distribu-
tion of two samples biased by preferential selection driven

by other observed quantities.

Our proposal is a generalization of two sample tests based on
maximum mean discrepancies between probability distribu-
tions [13, 4, 17, 38, 2] that incorporate importance sampling
techniques to adjust for distributional shift in covariates. The
technical challenge is that adjustments made for differences
in the marginal confounding distributions between two sam-
ples are data-dependent, and therefore invalidate existing
asymptotic guarantees of tests based on the maximum mean
discrepancy.

Our contributions are three-fold.

1. We propose a two-sample test statistic that, under cer-
tain conditions, provably adjusts for selection bias.

2. We derive novel asymptotic distributions for the pro-
posed test.

3. In the finite-sample case, we propose weight approxi-
mations for our test statistic, that we show to be con-
sistent with its population-level quantity.

2 BACKGROUND

From the context of hypothesis testing, to understand the
role of selection bias it is useful to bring in knowledge
of the causal mechanisms in data and augment a causal
graph with a variable S that represents the recruitment of
individuals into the study. The assignment of individuals into
two groups T ∈ {0, 1} is then correlated with confounding
variables X ∈ X through the fact that we condition on
individuals to be included in the study (see Figure 1). We
call these confounding variables because they introduce
spurious differences in the relationship between outcome
variables and the selection mechanism once we condition on
S = 1. To formalise hypothesis testing with biased data, we
adopt the potential outcomes framework of [28]. We assume
to have observed independent samples from an outcome
variable Y = Y 1 ·T +Y 0 · (1−T ), the response variable Y
is split into counterfactual variables, Y 0 and Y 1, had T = 0
and T = 1 occurred respectively, i.e. under a model where
selection bias does not influence treatment assignment.



 The hypothesis testing problem is formulated as evaluating
the evidence for a difference in distribution PY 1 and PY 0 in
two groups of observations,

H0 : PY 1 = PY 0 versus H1 : PY 1 6= PY 0 , (1)

but, unlike conventional two-sample problems, we have ac-
cess to distributions PY 1 and PY 0 only via an (unknown)
sampling policy T ∈ {0, 1} that introduces bias due to the
implicit conditioning on S = 1, rather than directly through
independent samples from PY 1 and PY 0 . S and T create
distributional shift, the assumption is that the available data
is independently sampled from distorted distributions con-
ditional on T . The counterfactual distributions PY 0 and
PY 1 we are interested in differentiating are not directly ob-
served. Instead, through available samples we have access to
PY |T=0 and PY |T=1, different from PY 0 and PY 1 because
(Y 1, Y 0) 6⊥⊥ T |S = 1. The same attributes X that correlate
with the probability of group assignment T may also be
associated with the potential responses Y 0 and Y 1.

2.1 PRELIMINARIES ON HYPOTHESIS
TESTING

The problem of hypothesis testing is to define a test statistic
(a function of observational data) to distinguish between two
hypotheses on the distribution of observed samples. Short
of perfectly distinguishing between any two hypotheses we
may pose due to the limited number of samples available
to characterize distributions, tests are constructed such that
a certain hypothesis is rejected whenever a test statistic
exceeds a certain threshold away from 0 [22]. The goal of
hypothesis testing is to derive a threshold such that false
positives are upper bounded by a design parameter α and
false negatives are as low as possible.

Our test statistic is characterized by distances in mean em-
beddings of distributions in a reproducing kernel Hilbert
spaceHk. The advantage of mapping distributions PY 0 and
PY 1 to functions in Hk is that we may now say that PY 0

and PY 1 are close if the RKHS distance ||µPY 0 −µPY 1 ||Hk
is small, where µP :=

∫
X k(x, ·)dP (x) is the embedding

of the probability measure P toHk. This distance is known
as the Maximum Mean Discrepancy (MMD) [13] and is par-
ticularly appealing because for certain choices of the kernel
function k, the mean embedding can be shown to be injec-
tive [31]. All properties of the distribution are conserved
with this map and one may distinguish between distributions
by computing the MMD between them.

MMD(PY 0 , PY 1) = 0 if and only if PY 0 = PY 1 . (2)

We focus our attention on the Gaussian kernel k(x, y) =
exp(−||x− y||2/σ2) with bandwidth parameter σ, that en-

joys this property. The squared MMD is given by [13],

MMD2 := E
y,y?∼PY 1

k(y, y?) + E
y,y?∼PY 0

k(y, y?)

− 2 E
y∼PY 1 ,y?∼PY 0

k(y, y?), (3)

and empirical estimates may be computed in practice.

3 AN IMPORTANCE WEIGHTED
STATISTIC

With access only to samples from biased populations
PY |T=1 and PY |T=0 estimating the above distance with
respect to counterfactual distributions PY 0 and PY 1 em-
pirically is not possible. To ensure identifiability of the
hypothesis testing problem however, we may assume that
(Y 0, Y 1) and the data generating process satisfy ignorabil-
ity: Y 0, Y 1 |= T |X,S = 1, a common assumption in the
treatment effect estimation literature. It means that within
any stratum of X , individuals who would have one set of
potential outcomes Y (0) = y0 and Y (1) = y1, are just as
likely to be in the control or treatment group as other individ-
uals (with different potential outcomes) that share character-
istics X . If in addition we assume that 0 < Pr(T |X) < 1,
then with knowledge of the sample selection mechanisms
e(x) := Pr(T = 1|X = x) we may recover the expecta-
tions of interest with importance sampling,

E
(

Y

e(X)

∣∣∣ T = 1

)
= E

(
T · Y 1

e(X)

)
= E

(
E
(
T · Y 1

e(X)

∣∣∣ X))
= E

(
Y 1
)
. (4)

This encourages us to define a weighted estimator of the
MMD - called the WMMD - such that the weights empha-
size distances in areas of the support where the distribu-
tions of confounding variables agree. Define w such that
Pr(T = 1|X = x) · w(x) = Pr(T = 0|X = x) and
consider,

WMMD2 := E
(x,y),(x?,y?)∼PXY |T=1

w(x)w(x?)k(y, y?)

+ E
y,y?∼PY |T=0

k(y, y?) (5)

− 2 E
(x,y)∼PXY |T=1,

y?∼PY |T=0

w(x)k(y, y?) (6)

where the superscript ? denotes an independent copy where
appropriate. We show next that this metric consistently dis-
tinguishes between null and alternative hypotheses at the
population level.

Proposition 1 For k a characteristic kernel and known pos-
itive weights, WMMD = 0 if and only if PY1

= PY 0 .



 Proof. All proofs are given in the Appendix.

A kernel k is characteristic if the mean embedding µP is
injective.

In practice, we have access to an empirical estimate of the
WMMD, defined as follows,

ŴMMD
2
:=

∑
i 6=j:ti=tj=1

wiwjk(yi, yj)

+
∑

i 6=j:ti=tj=0

k(yi, yj)

− 2
∑

i,j:ti=1,tj=0

wik(yi, yj),

where the (yi, ti, xi) are realizations of the random vari-
ables (Y, T,X) and where we have written wi = w(xi) for
brevity (we will use these two notations interchangeably).
Deviations from 0 (the theoretical value under the null) are
expected due to finite sample variation. Tests are then con-
structed such that the null hypothesis is rejected whenever

ŴMMD
2

exceeds a certain threshold. In the next section
we will show how to consistently define such a threshold to
ensure a low margin of error.

3.1 HYPOTHESIS TESTING WITH WMMD

As we have mentioned, from the statistical testing point
of view, the coincidence axiom of the WMMD is key, as
it ensures consistency against any alternative hypothesis
H1. Then, given a significance level α for the two-sample
test, a test can be constructed such thatH0 is rejected when

ŴMMD
2
> r.

The expected behaviour of ŴMMD
2

under the null which
we might use to define r however differs from conventional
bounds used for U -statistics. The reason is that in practice
weights are data-dependent and have their own asymptotic
behaviour which needs to be accounted for. In this case,
under mild conditions that ensure well defined limits for
these weights, also the asymptotic distributions are well
defined. This result is given in Theorem 1 below.

Theorem 1 (Asymptotic distribution of WMMD). Assume
that k has finite second moments and that the weight matrix
W ∈ Rn×n (Wij = wiwj) be approximately diagonaliz-
able (made precise in the Appendix). Then, the following
statements hold,

1. Under H0, the asymptotic distribution of ŴMMD2 is
given by a mixture of independent χ2 random vari-
ables.

2. UnderH1,

n1/2
(

ŴMMD2 −WMMD2
)

d→ N
(
0, σ2
H1

)
.

For conciseness, we have omitted here the exact terms of the
scaled χ2 distribution and asymptotic variance which are
intricate but can be found in the Appendix. We have used
d→ to denote convergence in distribution.

3.2 APPROXIMATING THE WEIGHTS IN
PRACTICE

While we have shown that our test statistic is consistent
against all alternatives, in practice simulating from the
asymptotic null distribution can be challenging. The dis-
tribution under the null requires knowledge of the sample
selection mechanism, that is the design densities of the as-
signment variable T in the two populations, which is not
available.

A straightforward solution is to estimate each function
Pr(T = 1|X = x) and Pr(T = 0|X = x) separately,
for example with a classification algorithm, although this
has been shown to result in unstable estimates of the ra-
tio Pr(T = 1|X = x)/Pr(T = 0|X = x) when the
denominator is small [32] and adds an additional compu-
tational burden to the test procedure. An alternative ap-
proach is to use a plug-in estimate for the ratio directly.
The approach we take is to estimate weights ŵ(x) such
that Pr(T = 1|X = x) ≈ ŵ(x)Pr(T = 0|X = x) by
matching feature representation of both domains in a high-
dimensional feature space [14].

We estimate weights ŵ such as to minimize the distance
between mean embeddings in a RKHS HK with kernel
K that is defined by a feature map φ : X → HK of the
confounding variable distributions in the two populations,

ŵ := argmin
0<w<B

∣∣∣∣EPX|T=0
w(x)φ(x)− EPX|T=1

φ(x)
∣∣∣∣
HK

.

(7)

This problem is convex. For injective mappings, minimizing
(7) converges to Pr(T = 1|X = x)/Pr(T = 0|X = x)
and ŵ can be found with a quadratic program for which
many efficient solvers have been developed [6]. In our im-
plementation (see more details in the Appendix) we use the
Gaussian kernel with bandwidth parameter set to the me-
dian Euclidian distance between values of the confounding
variables. Theorem 2 below guarantees that the density ratio
estimation using (7) in the computation of ŴMMD and of
the asymptotic null distribution still yields a consistent test.

Theorem 2 (Consistency of ŴMMD). Let ŵ(x) be the em-
pirical density ratio estimates of w(x) - the underlying pop-
ulation value - derived by matching the kernel mean embed-
dings of the observed distributions of confounding variables
PX|T=1 and PX|T=0. Suppose the test threshold is set to
the upper α quantile of the distribution of the WMMD un-
der H0. Then, asymptotically, the false positive rate with
estimated weights is α and its power converges to 1.



 The proof, given in the Appendix, is based on the consis-
tency of kernel mean matching to approximate the likelihood
ratio in the asymptotic regime. While importance weighting
using the likelihood ratio results in ŴMMD being an asymp-
totically unbiased estimator of the MMD, the estimator may
not concentrate well because the weights may be large or
inaccurate due to the finite samples available in practice. We
now provide a concentration bound for ŴMMD for the case
where weights are upper-bounded by some maximum value.

Theorem 3 (Large deviation bound of ŴMMD). Let
{yi, ti, xi}n+mi=1 be i.i.d observations drawn from the joint
distribution of random variables (Y, T,X), n of them with
ti = 1 and m with ti = 0. Assume the feature representa-
tion φ(x) ∈ Hφ to have maximum value R, w(x) ≤ B for
all x ∈ X , and that there exists an ε > 0 such that,∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1:ti=1

ŵ(xi)φ(xi)−
1

m

m∑
i=1:ti=0

φ(xi)

∣∣∣∣∣
∣∣∣∣∣
Hφ

≤ ε.

Then, with probability at least 1− δ, the absolute difference
in estimation of weighted estimator ŴMMD in comparison

to the MMD, |ŴMMD
2
−MMD2| is bounded above by,

2R(B + 1)

(
ε+

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m

)

+R(B + 1)2
√

1

2m2
log

1

δ
,

where m2 := bm/2c.

Qualitatively, B measures the maximum allowed discrep-
ancy between Pr(T = 1|X = x) and Pr(T = 0|X = x)
(and is a user defined parameter in practice, we set it to
10 as a default in our experiments). A low value of B en-
sures robustness of the learned representations by limiting
the influence of individual observations, thus reducing the
variance of the resulting estimator and improving its con-
centration around the true estimate. However, with strong
bias the discrepancy between Pr(T = 1|X = x) and
Pr(T = 0|X = x) is large and limiting B will result
in higher ε which increases the bound. In turn, as expected,
concentration improves with sample size. Asymptotically
in m and n with high probability, the concentration of the
representation depends only on matching confounding dis-
tributions in feature space φ. This shows that unbiased two-
sample testing is not possible unless enough comparable
examples in the two populations exist.

3.3 CONNECTIONS WITH TESTING IN
REGRESSION MODELS

There is a close connection between testing for distribu-
tional differences in two outcome samples independent of
confounding and the predictive power of those factors on

the outcome. In fact, adjustment is needed precisely because
confounding variables are both predictive of the outcome
and predictive of the sample selection mechanism. In one
approach, the source of variation due to sample selection
bias on the outcome y can be modelled explicitly, for exam-
ple by considering a regression model with random effects.
Consider the following random effect regression model [29]
for the outcome y,

Yi = µ+ Ziui + ε, ε ∼ N (0, σ2), (8)

where Zi ∈ {0, 1} represents the assignment of example
i into one of the two samples and ui ∼ N (0, σ2

u). Un-
der the null assumption, testing for variation in Y that is
irrelevant of the sample selection mechanism (which is
our goal) is then equivalent to testing the variance com-
ponent σ2

u = 0 [10, 23]. A score test statistic for this prob-
lem is given by S =

∑n
i=1

∑n
j=1,j 6=i kij ỸiỸj +

∑n
i=1 Ỹ

2
i

where Ỹi :=
(Yi−µ)
σ , see e.g Section 4 in [10]. The statis-

tic S therefore has a high value whenever the terms of
the matrix K = (kij) and the matrix Ỹ Ỹ T with (i, j)-
th element (ỸiỸj) are correlated. Now consider the case
n = m and write yi,1 = yi if ti = 1, and analogously for
yj,0, i, j = 1, . . . , n. Let kij be a column vector with en-
tries [k(yi,1, yj,1), k(yi,0, yj,0), k(yi,1, yj,0), k(yi,0, yj,1)]
and let wij have entries [w(xi)w(xj), 1,−w(xi),−w(xj)].
Then we may write,

ŴMMD
2
=

1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

wTijkij ,

which can be interpreted as a non-linear alternative to the
first term of S where the inner product 〈a, b〉 = aT b is
replaced by the inner product in feature space k (a, b).

4 RELATED WORK

Many empirical studies, especially those investigating treat-
ments and effects from finite samples require a notion of
statistical significance to assess treatment outcomes.

Existing proposals test for significance of estimated param-
eters in a regression model and are mostly concerned with
average effects or average effects within defined subgroups
[5, 8] and not with differences in the outcome distribution
as a whole as considered in this paper. To our knowledge
no hypothesis test exist for the two-sample problem in the
presence of selection bias.

Existing tests, in some cases, may be adjusted to accom-
modate for selection bias. One possible approach is using
ANCOVA (Analysis of Covariance) methods which proceed
by regressing the outcome variable on confounding vari-
ables before comparing the variation of the corresponding
residuals between the two populations to the variation of
the residuals within each one of the two populations, for



 example with an F -test [33]. Another approach is use a non-
parametric alternative, for example using power series as
basis functions as proposed in [5]. However, in these cases,
the hypothesis being tested tends to be restricted to average
effects.

One extension to (full distribution) two-sample testing that
may be considered for this problem is to first, partition the
combined population into homogeneous subgroups (such
that the feature distribution of confounding variables ap-
proximately agree in each subgroup, for example using the
propensity score) and second, compute two sample tests
statistics in each subgroup before averaging their results.
Such tests would take the form of block tests or B-tests
[38], proposed initially as more efficient alternatives to
conventional tests. In our experiments, we implement non-
parametric versions of each one of these, see the Appendix
for a more detailed description.

Outside the hypothesis testing literature, weighted statis-
tics are frequent, often referred to as importance sampling
techniques and inverse probability weighting methods [32].
Using importance weights with the MMD specifically has
been used in generative models to sample from modified
distributions [7] and for unsupervised domain adaptation
[36, 37].

5 EXPERIMENTS

In this section we compare two-sample tests on both artifi-
cial benchmark data and real-world data. The focus of our
results will be on the evaluation of power: the rate at which
we correctly reject H0 when it is false; and type I error:
the rate at which we incorrectly reject H0 when it is true.
α = 0.05 throughout.

Baseline Tests. The proposed test is denoted WMMD.
Comparisons are made with three tests. The ANCOVA
F -test based on regression residuals from a random for-
est model. The block-based approach where partitions are
made based on the propensity score and two-sample tests
in each partition conducted with the MMD [38] (Block-
MMD). The Block-MMD can be seen as an alternative
adjusting for selection bias in subsets of the data separately,
rather than continuously as with our approach and which we
expect to have uncontrolled type I error in heterogeneous
data samples. And finally, the unweighted (conventional)
MMD test [13] that serves to measure the benefit of adjust-
ments for selection bias as well as any loss in performance
by using the WMMD in data that is not biased.

For kernel-based tests, since their null distributions are given
by an infinite sum of weighted chi-squared variables (no
closed-form quantiles), in each trial we use 400 random
permutations to approximate the null. Details of implemen-
tations are given in the Appendix.

5.1 SYNTHETIC EXAMPLES

The primary objective of our synthetic simulations will be
to analyse the influence of the sampling selection mecha-
nism on performance. Here it will be particularly interesting
to understand our test’s behaviour on samples that appear
different (in distribution) but only because of an underlying
mismatch in confounding variables that simultaneously in-
fluence the distributions of interest. In this case we would
expect conventional two sample tests to reject the null hy-
pothesis resulting in uncontrolled type I error (> α). And
similarly for the case of observed distributions that seem to
match (in distribution) due to spurious correlations that we
show results in low power of traditional tests.

Experiment design. We consider the following data distri-
butions for two samples of data (T = 0 and T = 1) that
exhibit a spurious dependence between their respective out-
come distributions Y |T = 0 and Y |T = 1 such as might
occur due to selection bias,

X|T = 0 ∼ N (0, I), X|T = 1 ∼ N (µ, σ2I),

Y |T = i ∼ gi(X) +N (0, I), i = 0, 1.

With this data generating mechanism, units in our two sam-
ples (T = 0 and T = 1) have differing confounder distribu-
tions X|T , a systematic difference which creates a spurious
connection between T and Y .

Recall that the hypothesis testing problem is to evaluate,
with data sampled from the model above, the evidence for a
difference in distribution PY 1 and PY 0 ,

H0 : PY 1 = PY 0 versus H1 : PY 1 6= PY 0 . (9)

µ and σ2 determine selection bias, i.e. the extent of the
dependence between X and T which biases the dependence
between T and Y . The distributions we are interested in
discriminating are PY 0 and PY 1 (which reduces to g0 = g1
under the null, and g0 6= g1 under the alternative), which
implicitly remove selection bias by breaking the dependency
between X and T .

5.1.1 Performance with increasing bias

In a first experiment we investigate the influence of increas-
ing selection bias with two problems:

1. Difference in means µ (with σ2 = 1) of confounding
variables across the two samples. Results in the two
left-most panels of Figure 2.

2. Difference in variances σ2 (with µ = 0) of confound-
ing variables across the two samples. Results in the
two right-most panels of Figure 2.

In each case the dimensionality ofX and Y are set to 20, the
number of samples in each population to n = 400. Under



 

Figure 2: Type I error (lower better) and Power (higher better) of all tests on synthetic experiments. The proposed test is WMMD. The
WMMD has simultaneously best control of type I errors and highest power.

H0, g0(x) = g1(x) = x+x2, and underH1, g0(x) = x and
g1(x) = [sin(x1), x2, ..., x20]. This set-up is designed to be
a challenging problem with moderately high-dimensionality,
non-linear dependencies and for the alternative hypothesis
differences only in the first dimension of X .

Results. Across experiments (Figure 2) WMMD is the only
test that successfully adjusts for selection bias, with con-
trolled type I error even in relatively high bias settings (for
instance for µ = 1, only 60% of their densities overlap)
while other alternatives underperform.

As anticipated, conventional two-sample test such as the
MMD fail with the presence of confounders, we omit plot-
ting the MMD for the power results (beyond µ = 0 and
σ2 = 1) due to its poor type I error control. We notice
also that the Type I error of the block-MMD deteriorates
substantially for the variance experiment, potentially be-
cause a coarse partition may introduce artificial differences
between samples that lead the test to reject the null more
often than desired. The panels describing power show good
performance for all methods. It is also expected that power
increases with confounder distributional shift, as it results
in more divergent outcome distributions (and thus easier
to distinguish). However, unless type I error is controlled,
those results lose their significance. Among methods that
control type I error (WMMD and Block-MMD for low bias
settings i.e. first half of each panel approximately), WMMD
has higher or competitive power.

We make an important comparison also in the two power ex-
periments in the absence of selection bias (the point where
the MMD in red is computed). The MMD and WMMD have
comparable performance, which suggests that the WMMD
is almost as efficient as the MMD in datasets tailored to the
latter (when no bias exists), while also having good perfor-
mance in the presence of bias. This is important because
in most cases it is not known which variables confound
the association between group membership and outcome.
What this result means is that we are not worse-off using the
WMMD even when there is no selection bias. In this sense
the WMMD generalizes the MMD.

5.1.2 Relating to our theoretical results

Even though performing competitively, we observe the
WMMD to loosen control of type I error as the strength
of bias increases. In the following experiments we consider
data generated underH0 as described in the first paragraph
of section 5.1.1. and investigate the estimated WMMD statis-
tic in comparison with optimal behaviour (defined as "True
MMD", that is the MMD computed from data with no unob-
served confounding on distributions Y 0, Y 1 not accessible
in practice).

Results. With increasing confounding, we see in the left-
most panel of Figure 3 that the WMMD departs from its
optimal value. The reason is that matching distributions of
confounders gets harder with increasing confounding. No-
tice for instance the increasing value of ε in the opposite
vertical axis, that quantifies the difference between matched
distributions introduced in Theorem 3. The middle panel
shows however that this discrepancy rapidly vanishes with
increasing sample size. Here, we have fixed µ = 1 and
increased the sample size to see the estimation error con-
verging to zero.

The takeaway is that a larger number of samples can be
expected to be required to successfully control for type I
errors to the desired threshold, while the number of samples
depends on the strength of the confounding bias among the
two samples.

5.1.3 What if confounding is unobserved?

We have assumed until now that the selection bias is com-
pletely driven by factors available to the researcher. In most
real applications this will not be the case. We simulate such a
scenario by including unobserved confounders in the sample
selection mechanism under the null with the same specifica-
tions considered above. To do so, we hide or remove from
the observed data a proportion p of variables X .

Results. The results, as a function of p, are shown in the
rightmost panel of Figure 3. Unobserved confounders in-
troduce variation in the outcome distribution that cannot



 

Figure 3: The two leftmost panels show the approximation error of the WMMD with increasing bias and increasing sample size - see
details in section 5.1.2. The rightmost panel show type I errors in the presence of unobserved confounders - see details in section 5.1.3.

be adjusted for since it is unobserved, which translates in
uncontrolled type I errors for all methods. One may not
expect to consistent hypothesis testing in this scenario but
we note that this criticism extends to all methods with an
assumption of ignorability, and in particular including most
treatment effect estimation algorithms.

Remark. Variables X , treated as confounders in our case,
may play other roles in general graphical models, for exam-
ple as mediators or colliders (in both cases with an arrow
from T into X). For the purposes of two-sample testing of
treatment effects however we may rule out both of these
cases because of temporal precedence, i.e. we cannot have
an arrow going from T into X because group (treatment)
assignment is done after observation of X . In others, if T
represents a pre-existing characteristic of individuals (such
as gender in the in the example of the introduction) we must
validate the causal graph to ensure correct conclusions.

5.2 EMPLOYMENT PROGRAM EVALUATION

The problem is to determine the effectiveness of an employ-
ment program implemented in the mid-1970s in the U.S. to
individuals who had faced economic and social hardship
[21]. The outcome of interest is earnings two years after
the end of the employment program. Our null hypothesis is
no difference in earnings with the program, with respect to
earnings without the program. Posterior earning in treated
and control populations are not directly comparable because
the populations differ systematically in their education level,
prior earnings, age, ethnicity and marital status: all plausi-
ble confounders. The data contains 614 individuals, 185 of
whom were included in the employment program.

p 0.05 0.10 0.15 0.20
MMD 0.95 1 1 1
Block-MMD 0.051 0.055 0.070 0.083
ANCOVA 0.045 0.040 0.056 0.096
WMMD 0.051 0.043 0.052 0.060

Table 1: Type I error at level α = 0.05 as a function of artificially
introduced bias p.

Experiment design. With real data, the ground truth rela-
tionship between two populations is unknown. To compare
the performance of our test, however, we can simulate a
distribution under the nullH0 by shuffling all variables into
two populations, and subsequently introducing bias by selec-
tively removing observations based on a set of confounding
covariates. To remove observations, we build a linear re-
gression model to predict earnings based on confounding
variables and remove those observations with high predicted
earnings in one group and those with low predicted earn-
ing in the other group. After adjusting for this bias the two
populations should be equal in distribution and performance
comparisons are then made in terms of type I error. A sim-
ilar approach is used for conventional two sample testing,
see for example the experiments in [24].

Results. Type I error as a proportion p of observations re-
moved (that is increasing bias) is given in Table 1. On the
original data, all tests returned significant difference in earn-
ings with and without the employment program. This is an
important result in its own right as it demonstrates an effect
independent of selection bias.

6 CONCLUSIONS

We have proposed a test statistic for the two-sample problem
that expands the toolkit of statisticians to make inference on
treatment effects with selection-biased data. Bias in the sam-
ple selection mechanism creates distributional shift which
leads to bias in the treatment effect if unaccounted for. Mak-
ing inference on the significance of treatment effects in this
context is challenging and under-explored. To our knowl-
edge, our test is the first to consider two-sample testing in
biased groups of data.

Our proposal is a generalization of the MMD to adjust for
this bias. We have demonstrated our test to be consistent in
the presence of selection bias, derived its asymptotic distri-
bution and derived large deviation bounds of approximations
in practice. In empirical comparisons, we have shown our
test to be more powerful than existing alternatives while
controlling approximately for type I error.



 The weighting strategy and proof techniques presented in
this paper are not specific to the two sample problem and
may be applied to kernel-based tests for other problems,
such as independence testing [12], conditional independence
testing [39] and three variable interaction testing [30]. Sim-
ilarly, one may extend the proposed approach to test and
adjust for selection bias in other structured spaces where
kernels are known to be characteristic such as other compact
metric spaces [2].
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