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Abstract

Generating succinct summaries (also known as
sketches) of massive data streams is becoming in-
creasingly important. Such a task typically requires
fast, accurate, and small space algorithms in order
to support the downstream applications, mainly in
areas such as data analysis, machine learning and
data mining. A fundamental and well-studied prob-
lem in this context is that of estimating the frequen-
cies of the items appearing in a data stream. The
Count-Min-Sketch |Cormode and Muthukrishnan
[2005]] and Count-Sketch Charikar et al.|[2004] are
two known classical algorithms for this purpose.
However, a limitation of these techniques is that the
variance of their estimate tends to be large. In this
work, we address this problem and suggest a tech-
nique that reduces the variance in their respective
estimates, at the cost of little computational over-
head. Our technique relies on the classical Control-
Variate trick |Lavenberg and Welch| [[1981]] used for
reducing variance in Monte-Carlo simulation. We
present a theoretical analysis of our proposal by
carefully choosing the control variates and comple-
ment them with experiments on synthetic as well
as real-world datasets.

1 INTRODUCTION

Many real-life applications such as managing web clicks and
crawls, sensor/IoT readings Madden and Franklin| [2002]],
real-time IP traffic analysis [Estan and Varghese| [2002],
email/tweets/SMS, time-series dataZhu and Shashal[2002],
metagenomics |[Elworth et al.|[2020] and other text sources
are instances of massive data streams. In these applications,
new data arrives at a rapid rate, and often there is not enough
space available to store all the data. Therefore, managing
such a large stream of data requires algorithmic techniques

that maintain a small footprint of the data stream with the
facility of incorporating fast updates. Such a small footprint
is also known as the sketch of the entire data stream which
is used for getting important statistics of the data stream for
post-hoc queries Muthukrishnan| [2005]).

In this work, we focus on the problem of estimating the
frequency of items appearing in the data stream. Formally,
suppose we have a stream ¢ = {ay,az,...,a;} of length m,
where each element of the stream is drawn from the uni-
verse [n] :={1,2,...,n}, that s, Vi € [m], we have g; € [n].
Given a query item (say a) the problem is to give an es-
timate of the number of times the item a has appeared in
the stream. Of course, the problem can be solved exactly
by creating a histogram over each element of the universe.
However, given the space constraint this is not a feasible
approach. Therefore, the aim is to develop a space-efficient
sketch (data structure) that outputs an accurate estimate of
the frequency of the query point. This problem has been
studied extensively in the literature and there are two clas-
sical techniques available for this problem — Count-Min-
Sketch (CMS) (Cormode and Muthukrishnan| [2005]] and
Count-Sketch (CS) |Charikar et al.|[2004]. These techniques
have been applied successfully in computing sketches of
many large scale streaming datasets that enable post-hoc
frequency estimation queries (Cormode and Muthukrishnan
[2005], |Charikar et al.| [2004]. However, a major limitation
of these techniques is that the variance of their estimate is
large due to which the predicted frequency of a query item
can be far from its ground truth frequency. In this work,
we address this challenge and suggest a technique that can
reduce the variance in their respective estimates and as a
consequence leads to a more accurate estimation.

1.1 OUR APPROACH - VARIANCE REDUCTION
USING CONTROL VARIATE TRICK

Our technique relies on utilizing the control variate (CV)
trick for reducing the variance that occurs while comput-
ing the estimate of the frequency of a query item from the
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sketches obtained by the sketching algorithm mentioned
above. The control variate trick is a classical technique
used for reducing variance in Monte-Carlo simulations, by
looking at correlated errors from the same random num-
bers|Lavenberg and Welch|[1981]]. Suppose there is a ran-
dom number generator that generates a random variable X,
and we are interested in estimating the E[X]. Suppose that
the random number generator is used to generate another
random variable Z, and we know its true mean E[Z]. Then,
for a constant ¢, the term X + ¢(Z — E[Z]) is an unbiased
estimator of X,

E[X +c¢(Z—-E[Z])] = E[X]+cE[Z-E[Z]] = E[X]. (1)
The variance of X + c(Z — E[Z]) is given by
Var[X + ¢(Z —E[Z])]
= Var[X] 4 ¢*Var[Z] 4 2cCov (X, Z]. 2)
By elementary calculus we can find the appropriate value of

¢ which minimise the above expression. Suppose we denote
that value by ¢, then

. Cov[X,Z]
T T Vaz] 3)
Equations (2), (3) give us the following
2
Var[X + (Z — E[Z])] = Var[X] — C"Jgf[z]z] @

Thus, for a random variable X, we are able to generate an-
other random variable X + ¢(Z — E[Z]) such that both of
these have the same expected value — latter is an unbiased
estimator of the former. Further, due to Equation (Ef[) the ran-
dom variable X + ¢(Z — E[Z]) has lower variance than that
of X, as the term Cov[X, Z]?/Var[Z] is always non-negative,
with the equality if there is no correlation between X and
Z. The random variable Z is called the control variate, and
the term ¢ is called the control variate correction. Of course,
there are some practical considerations that need to be ad-
dressed carefully such as for a given application defining an
appropriate random variable Z, and computing the term c,
etc.

1.2 OUR RESULTS

Exploiting the control variate trick, we are able to show sig-
nificant variance reductions that occur in the frequency esti-
mation of Count-Min-Sketch and Count-Sketch algorithms.
Suppose we have a stream ¢ = {aj,as,...,a,} of length
m, where each element of the stream is drawn from the uni-
verse [n]:= {1,2,...,n}, that is Vi € [m] we have, a; € [n].
This also implicitly define the frequency vector over the
elements of the stream f = (f, f>, ..., fu), where f; denotes
the occurrence of the element q; in the stream o. Further, let
||f]|1 denotes the ¢; norm of the frequency vector f, we have
||f]|1 = m. We present our theoretical results as follows:

Theorem 1. For a fixed a, let X be the random variable
denoting the estimate of frequency f, obtained using Count-
Min-Sketch |Cormode and Muthukrishnan| [2005|] having
(sketch) size k. Then there exists a control variate random
variable Z, and the corresponding control variate coefficient
¢ such that

E[X +é(Z —E[Z])] = E[X] :fa+&|lk_ﬁ, (5)
R B (Ifl]1 = fa)? 1
Var(X +¢(Z—E[Z])) = Var(X) — -1k (1 - k(>6;

2 2
where Var(X) = M (1— 1) follows from |Cormode and.
Muthukrishnan| [2005]] (Theorem [3).

Theorem 2. For a fixed a, let X be the random variable
denoting the estimate of frequency f, obtained using Count-
Sketch|Charikar et al.| [[2004] having (sketch) size k. Then
there exists a control variate random variable Z, and the
corresponding control variate coefficient ¢ such that

EX +&(Z-E[Z])] = EX] = fa,

R (1f]]1 — fa)?
X Z—-E|Z])) = X)— ——F7—
Var(x + 62~ E[2]) = Var(x) - L
2 2
where Var(X) = WHZ% follows from |Charikar et al.
[2004)] (Theorem|[).

Comment on the overhead of our estimates: For both
Count-Min-Sketch and Count-Sketch algorithms, our con-
trol variate random variable Z is independent of the ac-
tual values of the stream. Therefore, our new estimate
X 4+ ¢é(Z — E[Z]) can be estimated with a small computa-
tional overhead, that is, O(logn) space and O(n) time, to
Count-Min-Sketch/Count-Sketch algorithm.

The Count-Min-Sketch gives a biased estimator of the fre-
quency, and it is known to overestimate f,, whereas Count-
Sketch gives an unbiased estimate of the same. For both
Count-Min-Sketch and Count-Sketch algorithms, we can ex-
actly compute the true mean of their respective control vari-
ate random variable Z, which gives E[X +¢(Z —E[Z])] =
E[X]. Therefore, our new estimate does not introduce any ad-
ditional bias to the respective estimate of Count-Min-Sketch
and Count-Sketch.

The optimum value of ¢, given by ¢ in Equation (3] turns
out to be
Cov[X,Z]
Var[Z]

LI

&=
n—1

)

for both Count-Min-Sketch and Count-Sketch (see Equa-
tions (21) and [30). In practice, we choose an approximation
for ¢, where the f, is approximated using an estimate from
Count-Min-Sketch/Count-Sketch, respectively as a proxy.



The value of ||f]|; is the length of the stream o and its value
is m are already known to us. Therefore, the overall complex-
ity remains the same as that of Count-Min-Sketch/Count-
Sketch.

Comment on the variance reduction: Note that when
the original variance in Count-Min-Sketch/Count-Sketch
is large, i.e., when (||f||5 — f2) is large (see Theorems ,
then (||f]|1 — f,) is also expected to be large. Hence we
would expect bigger variance reduction in absolute terms

given by M (17 l) for Count-Min-Sketch, and

(n—1) k
—£)? .
% for Count-Sketch, respectively. If the value of
the term (||f||3 — f2) is small, then we would expect lesser
variance reduction in absolute terms. Thus when the original
variance is large, our method will mitigate the problem by
bigger amount and when the original variance is small, our

method will only mitigate the problem by a small amount.

We further give a pictorial comparison of the theoretical
variance reduction obtained by our results on the Count-
Min-Sketch and Count-Sketch. Note that for a query item
a both (i) variance occurred in its estimation using Count-
Min Sketch/Count Sketch, (ii) and the variance reduction
obtained via our methods depends only on frequency of the
remaining items (see Theorems E], @) We, therefore, wish
to understand the behaviour of variance reduction with the
frequency of the remaining items. To do so, we synthetically
generate a vector such that each entry is randomly sampled
between 1 — 10. We consider this as our frequency vector.
We steadily increase the frequency of all but one feature
(which we consider as the frequency of our query item — f,).
We note the original variance obtained via Count-Sketch
and Count-Min-Sketch, and the corresponding variance re-
duction obtained via our methods using the expression men-
tioned in Theorems [T} [2] We plot it with respect to the ¢,
norm of the frequency vector. We summarise our results
in Figure [T} The results indicate that the variance of our
proposal is significantly smaller w.z#. the variance of Count-
Sketch and Count-Min-Sketch. Moreover, the variance of
Count-Sketch and Count-Min-Sketch increases rapidly with
the increase of frequency of other items, whereas our vari-
ance of our estimate somewhat remains constant.

Importance of variance reduction and its implication on
the space saving: We note that the standard way to achieve
the variance reduction, in the pairwise similarity estimation,
is to generate several i.i.d. copies of the sketches (or hash val-
ues) of given pairs of data points. Needless to say that this is
an expensive task. A major advantage of our approach is that
it significantly reduces the variance occurred in the similar-
ity estimation by proposing a new estimator and exploiting
the available sketches. Therefore, we require generating a
smaller number of i.i.d. copies of the sketches in order to
achieve the same accuracy during the similarity estimation.
We state that the sketch sizes required by our control vari-
ate estimators for Count-Min Sketch and Count-Sketch are
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Figure 1: Comparison of the variance reduction achieved
via our method w.r.t. Count-Min-Sketch/Count-Sketch in the
estimation of the frequency of item a. X-axis corresponds to
the ¢; norm of frequency vectors with increase in frequency
of all but item a.

much lesser than their respective vanilla estimates while
offering the same concentration guarantee. We quantify it
in Corollaries of Theorems [I] 2] respectively. For both
Count-Min Sketch and Count-Sketch the ratio of the sketch
size for CV estimate with the corresponding vanilla estimate
is given as follows:

Sketch ratio
sketch size of CV estimate for CMS (resp. CS)

sketch size of vanilla CMS (resp. CS) estimate

-
= oD (R @

We further pictorially illustrate the space saving (Figure [2)
by computing it on the synthetic datasets described above. It

is evident that with increase of ||f|||, we achieve significant
savings on the space required to store the sketch.
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Figure 2: Comparison of the space reduction achieved via
our method w.r.t. Count-Min-Sketch/Count-Sketch in the
estimation of the frequency of item a. X -axis corresponds to
the ¢ norm of frequency vectors with increase in frequency
of all but item a, and Y-axis corresponds to the ratio of
sketch size illustrated in Equation (7). A lower value is an
indication of better performance.

Known applications of control variates: Control variate



technique has been used recently for reducing the variances
of the estimates obtained in several Monte-Carlo simula-
tions. Kang et. al. Kang and Hooker| [2017]], Kang| [2017]]
used it for improving the estimates for inner product and Eu-
clidean distance obtained from random projection. However,
to the best of our knowledge this approach has not been
tried for reducing the variance of the sketching algorithm.
In this work, we initiate this study.

Organisation of the paper: The rest of the paper is orga-
nized as follows: in Section [2] we state some definitions
which are used in the paper, also for the sake of complete-
ness we briefly revisit the Count-Min-Sketch |Cormode and
Muthukrishnan| [2005]], and Count-Sketch |Charikar et al.
[2004] algorithms and their analysis; in Section 3] we give
proofs of our results stated in Theorems|[I] 2} in Section 4]
we complement our theoretical results with experiments
on synthetic and real-world datasets; finally in Section [5]
we conclude our discussion and state some potential open
questions of the work.

2 BACKGROUND

Notations: We denote a stream of data points by ¢ =
{a1,...,anm} of length m, where each element of the stream
is drawn from the universe [n] := {1,...,n}, that is Vi €
[m]we have, a; € [n]. This data stream also implicitly de-
fines the frequency vector over the elements of the stream
f={(f1,..., fx), where f; denotes the occurrence of the ele-
ment g; in the stream o. Further, we denote ||f||; as the £;
norm of the frequency vector f. We consider the turnstile
model to illustrate the Count-Min-Sketch/Count-Sketch al-
gorithms. In this model, an item a; € o arrives in the fol-
lowing tuple format (j,¢), and upon arrival of the item, the
following update operation is performed f; < f; +c.

Definition 3 (2-Universal Hashing Cormen et al.[[2001]]). A
randomized function h : [n] — [k] is 2-universal if Vi, j € [n]
with i # j, we have the following property for any z1,7 € [k|,
we have

Pr(h(i)=z1 and h(j) = 2] = %

A simple universal hash function example would be, for ran-
dom numbers a and b and a prime number p > k, compute:
h(x) = (ax+b mod p) mod k.

Fact 4 (Facts from probability theory). Let X,Y,X;, and Y;
are the random variables and a,b,a;, and b; are the con-
stants. Then, we have the following:

ElaX] = aE[X].
Var[aX] = a*Var[X], and Var[a+ X] = Var[X].

Var( Z Xi) = Z Var (X;) + Z Cov[X;, X;].
i€(n] i€[n] i#j,i,j€[n]

Cov[aX,Y] = aCov|X,Y];Cov[a+ X,Y] = Cov[X,Y].

COV[ Z aiXi, Z b,Yl] = Z Z aibjCOV [Xi,Yj] .
]

i€n i€[m] i€[n] je[m]

2.1 REVISITING COUNT-MIN-SKETCH [Cormode
and Muthukrishnan|[2005]]

The Count-Min Sketch suggests a space efficient data struc-
ture which answers the (approximate) frequency of the query
element from the stream. It is a two dimensional array ¢ X k
of counters. We discuss it in Algorithm I}

Initialize: C[1,....7][1,... k] < 0;

Choose ¢ independent hash function Ap,... 5 : [n] — k,
each from a 2-universal family;

Process(j,c):

fori=1rtdo
| Clil[hi ()] = Clil{hi( )] + c;

end

Output: On query of item a, report its estimated
frequency fu = min; <<, C[i] [l (a)].

Algorithm 1: Count-Min Sketch |Cormode and

Muthukrishnan| [2005]]

We now give an analysis on the guarantee offered by Count-
Min-Sketch. For a query item a, the counter C[i][;(a)] gives
an overestimate of the actual frequency f, of the item a.
Therefore, f, < f,, where £, is the estimate of the frequency
outputted by the Count-Min-Sketch algorithm. For a fixed
query item a, we analyse its estimate using one hash func-
tion say /(.). Let the random variable X denote the estimate
of the frequency of query item a using the hash function
h(.) . For j € [n], let ¥; denote the indicator of the event
“h(j) = h(a)”, in particular we have, ¥, = 1. Also, note that
J makes a contribution to the counter iff Y; = 1, and then it
add f; to this counter. Thus,

X=Y fYi=fYat Y fY;
J€ln] j€ml/{a}
=fut Y, 1Y (8
Jj€n]/{a}

We state the guarantee on the expectation and variance of
the estimate obtained from Count-Min-Sketch algorithm in
Theorem 5] We defer its proof to the appendix.

Theorem 5 (Adapted from the results of (Cormode and
Muthukrishnan| [2005]]). The frequency estimate of the
Count-Min Sketch algorithm captured by variable X, men-
tioned in Equation (8)), has the following properties:

E[X} :fa+ Hf‘llk_fa7
VEII[X} _ HfH%k_faz (1 ]l()

Discrimilar: We adapt a similar notation and writing style as



Initialize: C[1,....,7][1,...,k] < 0;

Choose ¢ independent random hash functions
hi,...,h : [n] — [k], each from a 2-universal family;

Choose ¢ independent random hash functions
81,8 - [n] — {—1,+1} each from a 2-universal
family;

Process(j,c):

fori=11rtdo
| Cllh()] = Clil[hi ()] + cgi();

end

Output: On query of item a, report its estimated
frequency f, = median;c; g:(a)Cli][hi(a)].
Algorithm 2: Count-Sketch Charikar et al.| [2004]].

2.2 REVISITING COUNT-SKETCH

The Count-Sketch (Charikar et al.|[2004] suggests a space
efficient data structure which answer the (approximate) fre-
quency of the query element from the stream. Similar to
Count-Min-Sketch, the Count-Sketch is a two dimensional
array 1 X k of counters. We discuss this in Algorithm[2]

For a fixed query item a, we analyse the estimate of Count-
Sketch using one pair of hash functions 4(.), and g(.). Let
the random variable X which denotes the corresponding
output f,. For each item j € [n], let ¥; denote the indicator
of the event h(j) = h(a). Notice that an item j contributes to
Clh(a)] iff h(j) = h(a), and the amount of the contribution
is its frequency f; times the random sign g(j). Thus,

X = g(a) ilf,»gwj.

=g’ fYa+ Y, figa)g(i)Y;. )
Jj€ln]/{a}

fig()Y;. (10
Jj€ln)/{a}

For each j € [n]/{a} we have the following two equalities,
which we will repeatedly use.

E[g(j)] =0, and

E[Y}] = E[¥;] = Pr[h(j) = h(a)] = 1/k.  (11)

= fa+g(a)

Equation (TT)) holds as g(.) is from 2-universal family and
can take sign between {—1,+41} each with probability 1/2.
Equation holds since g and £ are independent. We have

Elg(j)Y;] =E[g(/)]E[Y;] =0 xE[Y;] =0. (12)

We state the guarantee on the expectation and variance of
the estimate obtained from Count-Sketch algorithm in The-
orem [6] We defer its proof to the appendix.

of [Chakrabarti| [2020] to describe Algorithms|[I} [2]and their proof
of correctness stated in Theorem [5} 6}

Theorem 6 (Adapted from the results of |Charikar et al.
[2004]). The frequency estimate of the Count-Sketch algo-
rithm captured by variable X, mentioned in Equation (IED,
has the following properties:

]E[X] = fua

_ B4

Var[X] .

3 ANALYSIS

We would like to emphasize that the frequency estimation
in the Count-Min-Sketch algorithm (done via the random
variable X, Equation (8)) has been repeated ¢ times, and the
overall minimum was taken as the final estimate. Similarly,
in the Count-Sketch algorithm, the frequency estimation
step done via random variable X (Equation (9)) was repeated
t times, and the median of all the estimates was taken. If
we set £ = log1/d, then the estimated frequency is well
concentrated around its actual value with probability at least
1 — 8. However, for both these algorithms in order to have a
fair comparison, we perform the variance reduction analysis
for one estimate only. Of course, one can repeat this step
several times and can take minimum/median of the estimates
for Count-Min-Sketch and Count-Sketch, respectively, and
could possibly give further improvements.

3.1 PROOF OF THEOREM I:

Proof. Recall that for Count-Min Sketch, we define the
indicator random variable Y; of the event i(j) = h(a), for
the query point a. We now define our control variate random
variable as follows:

z=Y v, (13)
Jj€ln]
=Y.+ Y Yv=1+ ) v
j€ln) Ha} j€ln)/{a}

In the following analysis we will repeatedly use the two
equalities:

ElY;|=1/k, ElY;Y]=1/k*, E[]]=E[y).

We calculate the expected cost of random variable Z

E[Z]=E[1+ Y Y]=1+E Y VY
J€ln]/{a} j€ln)/{a}

—1
14

(14)

We calculate the variance of the random variable Z.

Var[Z] = Var[1+ Y vj]=Var[ Y Y] (15
j€ln)/{a} j€ln)/{a}



= ) Valy)+ Cov[Y;,Y)]. (16)
jeln/{ay 1#j,j€ln)/{a}
= Y (BY]]-Ey]*)+
jeln]/{a}
+ )Y  (EYY]-E[EY)).
1#j,j€ln)/{a}
= Y (B -Ey?)+
jeln/{ay
+ Y (EYy-EYEN]).
1#j.j€ln)/{a}
1 1) (1 1)
- Y ce)r X (e e)
2 2 2
mww<k ) i\ K
_ (=1
=—(1-7) a7

Equations (I3) and (I6) hold due to Fact[d] We now calcu-
late the covariance between the term X and Z.

Z ijj71+ Z Yj) .

Cov[X,Z] = Cov (fa +
J€lnl/{a} j€lnl/{a}

= Cov ( Z ijja Z Yj) . (18)
Jj€lnl/{a}

Jj€ln/{a}

= Y Y fiCov(t,y). (19)
i€[n]/{a} j€[nl/{a}
_ fi (EB[Y;Y;] - E[Y]E[Y))).
i€[n]/{a} j€[n]/{a}
= Y [fiENXY]-EEX])+
i€[n]/{a}
+ Y f(EXY)-EXEW)]).
i#].i,j€n)/{a}
= Y AEN-EFP)+
i€[n]/{a}
+ Z fi (E[Y,YJ] - E[Yt]E[YJD -
i#j,i,j€n]/{a}

1 1 1 1
= ) fi(—z)+ ) fi(z_z)'
i€[n]/{a} ko k i# i, j€n)/{a} k=K

fll, — £, 1
LS 0

Equations and (I9) hold due to Fact[d] Equations

and give the control variate coefficient ¢ as follows:

Covix.z] __|Iflli ~ fu
Var[Z] '

2y

é:
n—1

Equations (20), (T7) give the variance reduction as follows:

2
Variance Reduction = M.
Var[Z]
(I1f]]1 = fu)* 1
= (1—-=]. 22
(n— 1)k k) #2

O

In the following corollary, using Chebyshev’s inequality,
we show that the sketch size of our CV estimator is much
smaller than that of the vanilla CMS estimator while simul-
taneously offering the same concentration guarantee. We
illustrate a pictorial comparison on this in Figure 2]

Corollary 7. If we set k = 3/&” in Algorithm|l| then for
a query item a with actual frequency f,, its estimated fre-
quency f, outputted by the algorithm satisfies the following:

Pl (s L) > ez 2] < 5.

R 2 — (Il — f)2
Further; if we set k = 2 - ((" 1)((szﬂi)(]\crf\)\§£”fgl)l fo) ) as

the sketch size of our control variate estimate, then for the
query item a, its estimated frequency f, by our CV estimate
satisfies the following:

b7 (e 22 2 e i8] <

How to compute Z for Count-Min-Sketch: Recall that
for a query item a, the CV estimate requires computing the
quantity Z =} ;c(,) ¥, where ¥ is the indicator of the event
h(j)=h(a), and h is a 2-universal hash function % : [n] — [k].
As we know the universe [n], we can maintain a count-array
of size k that keeps a count on the number of elements j € [n]
that fall in each bin € [k] under the mapping of A(.). Note
that this count-array, only requires the value of n (size of
the universe), is independent of the data stream ¢, and can
be easily computed during the preprocessing. We use this
count-array to compute Z: for query item a € [n] all we need
to check is the count of bin i(a) € [k].

3.2 PROOF OF THEOREM 2:

Proof. Recall that for Count-Sketch, we define the indicator
random variable Y; of the event /() = h(a), for the query
point a. We now define our control variate random variable
as follows:

Z=g(a) ) g(j)Y;. (23)
Jj€ln]
=g+ Y sG)yi=1+ Y g0y
Jj€ln]/{a} Jj€ln]/{a}

In the following analysis we repeatedly use the following:

¢(j)’=1, E[g(j)]=0, and

E[Y?] = E[Y;] = PrlA(j) = h(a)] = 1 /k.

We calculate the expectation of the term Z

EZ]=E[l+ Y} gyl
jebf{a}



=1+ ) El()y)
jebnf{a}
—140=1.

We calculate the variance of the random variable Z

Var[Z] = Var (1 + ) g(j)Yj> :
J€ln/{a}

= Var ( Y g(j)Yj> :
Je€l

j€[n]/{a}

(24)

= Y wvalg()vil+ Y Covig(j)Y;.g(DY).

Jjelnl/{a} 1#j,l,j€n/{a}

Jjelnl/{a}

(25)

+ Y (EBlg()e)yyi] —Elg()YE[g(1)Y]).

141, /{a)
— Y (E[Y]-0)+0—0.
jelnl]{a)
(1)
-

(26)

We calculate the covariance between the random variables

X and Z that is Cov[X,Z]

(g(a) _Z[]fjg(j)Y/) : (g(a) Z]g(j)YJ)]
JEIn

Jj€ln

= Cov
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= Cov
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(28)

+ Y fi(Elg()g()VY] —E[g()YIE[g(j)Y)])

i# i€/ {a}
= Y FE[)]-0+0-0.
i€[n]/{a}
I~ fa
k

(29)

Equation and hold due to Fact[d] Equations (29),
and (26) give the control variate coefficient ¢ is

_CoviX,Z] _ |Iflh — fa
Var[Z] -1

o= (30)
Equations (29), and (26) give the variance reduction term is
the following

Cov[X,Z]? fll, — f.)?
Variance Reduction = o\\/lir[,Z]] = (”(’Ull{z) . (3D

O

In the following corollary, using Chebyshev’s inequality,
we show that the sketch size of our CV estimator is much
smaller than that of the vanilla CS estimator while simul-
taneously offering the same concentration guarantee. We
illustrate a pictorial comparison on this in Figure[2]

Corollary 8. If we set k = 3/&” in Algorithm 2, then for
a query item a with actual frequency f,, its estimated fre-
quency f, outputted by the algorithm satisfies the following:

A 1
Pl —sil 2 e/ IR 2] < -

COIRR— 2= ([l — £
Further; if we set k = % - ((" 1>((sz!i)({rﬂ)‘%£‘jgl)‘ fo) ) in

the sketch size of our control variate estimate, then for the
query item a, its estimated frequency f, by our CV estimate
satisfies the following:

PVl 2 e/ I3 - 72 < 5.

How to compute Z for Count-Sketch: Recall that for a
query item a, our CV estimate requires computing the quan-
tity Z = g(a) ¥je(n 8(J)Y;, where Y; is the indicator of the
event h(j) = h(a), h and g are 2-universal hash functions
such that h : [n] — [k] and g : [n] — {—1,+1}. Similar to
CMS, we can maintain a count-array of size k that keeps
a count on the number of elements j € [n] that fall in each
bin € [k]. Note that this count-array, only requires the value
of n, is independent of the data stream o, and can be easily
computed during the preprocessing. For a query item a, we
can use this count-array to compute Z: all we need to check
is the count of bin A(a) € [k] and multiply it with g(a).

How to choose a good control-variate function: For
higher variance reduction one should choose the control
variate such that it has a low variance, and simultaneously
also has high co-variance with the random variable which
is used to measure the estimate. Further, in order to en-
sure the applicability of the approach, the control variate,
its expected value, variance, and co-variance with original
random variable should be easily computed/estimated from
the given dataset. We don’t claim that the control variates



used in this work are the best possible for the task. It is
conceivable that one might be able to come up with a better
control variate for the purpose of frequency estimation. Our
work leaves the question of investigating the best control
variate for frequency estimation problems as an intriguing
open question.

4 EXPERIMENTS

Datasets: We use two datasets for our experiments —
synthetic, and password-frequency dataset. In
the synthetic dataset, we generate a stream of 100000 inte-
gers such that each number is randomly sampled between 0
and 100. We consider each number as an item of the stream.
The password-frequency dataset consists of three en-
tries — the password, its hashcode, and the frequency of the
password. For each password, we generate a unique inte-
ger hashcode using the classical Rabin fingerprint
string hashing algorithm Rabin|[[1981], and we consider this
hashcode as an item of the stream. The dataset consists of
683039 distinct passwords. The link of the dataset is avail-
able here rob) [la], and we combine all the files into one and
make it available here [rob) [b]].

Methodology: Let X be the random variable denoting the
estimate obtained from the Count-Min-Sketch and Count-
Sketch algorithms. Then the updated estimate proposed by
our algorithm is X + ¢(Z — E[Z]), where ¢ is the control vari-
ate correction, and Z is the control variate random variable.
The optimum value of ¢, for both Count-Min-Sketch and
Count-Sketch given by ¢ turns out to be

£l — fa

n—1

Cov[X,Z]
 Var[Z]

6:

(see Equations (21)) and (30)). For Count-Min-Sketch recall
that control variate random variable Z =} ;c,; ¥; (see Equa-
tion (T3)). This value can be easily computed by examining
the hash function A(.). Further, the expected value of Z is
E[Z] = 1+ (n—1)/k from Equation (T4).

For Count-Sketch the control variate random variable Z =
g(a)Xjejn &(/)Y; from Equation @3). This value can be
easily computed by examining the hash functions A(.) and
g(.). Further, the expected value of Z is E[Z] = 1 due to

Equation (24).

For both Count-Min-Sketch and Count-Sketch our new es-
timate is given by the following expression our estimate =
X +é(Z—E[Z]). We can compute the respective values of
Z and E[Z] of Count-Min-Sketch and Count-Sketch men-
tioned above. Finally, in the above estimate we require the
value of [|f||; and f,. The value of ||f||; is the length of
the stream o and its value is m. In order to compute the
fa » we use the estimate obtained by the vanilla version
of Count-Min-Sketch and Count-Sketch, respectively, as a

proxy.

Evaluation Metric: We evaluate the performance of our
approach with vanilla Count-Min-Sketch and Count-Sketch
algorithms on root-mean-square-error (RMSE) measure. To
do so, for the given data stream, we first create its sketches
using Count-Min-Sketch and Count-Sketch methods. For
every item in the stream, we estimate its frequency using
vanilla Count-Min-Sketch, Count-Sketch, and our methods.
We compute the square of the difference between the esti-
mated frequency and the ground truth frequency. We repeat
this for all the distinct items available in the stream, add all
such numbers obtained from squared difference, compute
their mean, and then compute the square root. We report
this as RMSE. Note that lower RMSE indicates that our
estimator closely approximates the ground truth frequency.
We repeat this for several values of k (size of sketch) and
report the corresponding values of RMSE.

Insight: We run our experiments on the datasets and sum-
marise our results in Figures [3|and ] for Count-Min-Sketch
and Count-Sketch, respectively. In comparison with both
methods, for every value of k, our methods report lower
RMSE - that is closer to the ground-truth frequency. The
running time of our method is almost the same as the cor-
responding baseline methods. We observed this pattern for
both the datasets.

S CONCLUSION

We consider the problem of frequency estimation in a large
stream data, and show variance reduction in the estimates
of the classical algorithms — Count-Min-Sketch |(Cormode
and Muthukrishnan! [2005]] and Count-Sketch |Charikar et al.
[2004] — for the task. Our technique relies on the classical
Control-Variate trick Lavenberg and Welch| [1981]] used for
reducing variance in Monte-Carlo simulation. We present a
theoretical analysis of our proposal and complement it with
experiments on synthetic and real-world datasets. We notice
that our estimate outputs lower variance as compared to
their respective variance, at the cost of little computational
overhead. Our work leaves the possibility of several open
questions and research directions — improving the variance
reduction shown in this work by choosing a better control
variate random variable, how to choose a good control vari-
ate estimator for the given task, exploring the applicability
of control variate trick for reducing the variance of other fun-
damental randomized algorithms. Recently, Hsu et. al|[Hsu
et al. [2019] suggests learning based frequency estimators.
They propose a new class of algorithms that learn distribu-
tion of the items in the data stream and use them to improve
its frequency estimates. An interesting research direction
is to combine this with our method and compe up with
improved frequency estimators.

Finally, as Count-Min-Sketch |Cormode and Muthukrishnan
[2005]] and Count-Sketch |Charikar et al. [2004] have been
widely used in a variety of applications such as kernel den-
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Figure 3: Comparison between vanilla Count-Min-Sketch and our estimate obtained via Control variate correction on RMSE
measure for Synthetic and Password-frequency datasets. A lower value of RMSE is an indication of better performance.
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Figure 4: Comparison between vanilla Count-Sketch and our estimate obtained via Control variate correction on RMSE

measure for Synthetic and Password-frequency datasets.

sity estimation|Coleman and Shrivastaval [2020], compress-
ing gradient optimizers[Spring et al|[2019], extreme classi-
fication [Talukdar and Cohen| [2014]), [Tai et al.l [2018]], low-
rank approximation [Clarkson and Woodruff| [2013]], com-
pressed matrix multiplication [2013]], sketching poly-
nomial kernel Pham and Paghl [2013]], large scale feature
selection|Aghazadeh et al|[2018]], anomaly detection
[and Shrivastaval [2018]}, sparse recovery |Gilbert and Indyk]
(20101, clustering [2004], computing synopsis of a
massive dataset|Cormode et al.|[2012] (also see references
therein, and|[CMS) to name a few. We hope that our proposal
can potentially benefit these applications by providing a
more accurate estimate of the frequency count.
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