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Abstract

Sequential Monte Carlo (SMC) is a general-
purpose methodology for recursive Bayesian in-
ference, and is widely used in state space model-
ing and probabilistic programming. Its resample-
move variant reduces the variance of posterior esti-
mates by interleaving Markov chain Monte Carlo
(MCMC) steps for particle “rejuvenation”; but this
requires accessing all past observations and leads
to linearly growing memory size and quadratic
computation cost. Under the assumption of ex-
changeability, we introduce sequential core-set
Monte Carlo (SCMC), which achieves constant
space and linear time by rejuvenating based on
sparse, weighted subsets of past data. In contrast to
earlier approaches, which uniformly subsample or
throw away observations, SCMC uses a novel on-
line version of a state-of-the-art Bayesian core-set
algorithm to incrementally construct a nonparamet-
ric, data- and model-dependent variational repre-
sentation of the unnormalized target density. Exper-
iments demonstrate significantly reduced approxi-
mation errors at negligible additional cost.

1 INTRODUCTION

Sequential Monte Carlo (SMC) [Del Moral et al., 2006,
Naesseth et al., 2019, Chopin and Papaspiliopoulos, 2020]
is a class of algorithms for sampling from a sequence of
target probability distributions that are each known up to
normalization. Originally developed for filtering of time
series [Handschin and Mayne, 1969], SMC has become
a mainstay in a wide variety of applications, from phylo-
genetic inference to universal probabilistic programming
languages [van de Meent et al., 2018, Bouchard-Côté et al.,
2019]. SMC creates a set of samples (or particles) repre-
senting each distribution in the sequence by iterating three

SCMC

SMC

CPF

tt-1
reweight

append

resample & rejuvenate

update1 stabilize2

population

recompress

core-set

data

Figure 1: Sequential core-set Monte Carlo (SCMC) main-
tains a hybrid belief representation, consisting of a particle
population (blue) and a core-set memory (green). Their
coupling (purple) establishes two innovations: the core-set
rejuvenation kernel for SMC (Section 3.2) and the core-
set projection filter (CPF) – an online version of Bayesian
core-set construction (Section 3.1). During each observation
step, (1) the update phase takes in new data, reweights the
particles and expands the core-set; while (2) the stabiliza-
tion phase resamples and rejuvenates particles to counteract
degeneracy and impoverishment, and recompresses the core-
set to bound time and space complexity.

key operations: particles may be reweighted to account for
the next distribution in the sequence, resampled to remove
particles of very low weight, and rejuvenated (or moved)
by a random perturbation from a Markov kernel to ensure
that the population of particles is representative of the next
distribution in the sequence.

In this work, we consider SMC in the setting where there
is an additional challenge: the sequence of probability den-
sities (pt)

T
t=0 becomes more expensive to evaluate as the

length T increases. This is the case, for example, in sequen-
tial Bayesian inference [Chopin, 2002], where the sequence
of probability densities is a set of posterior densities pt given
t batches of data (Xs)

t
s=1. In this setting, the reweighting

and resampling steps are typically still straightforward to
implement and computationally inexpensive. They both in-
cur a constant O(K) cost for each step in the sequence,
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 given K particles; equivalently, their overall cost scales lin-
early as O(KT ) with the number of steps in the distribution
sequence T (see Section 2 for details). Therefore, these
steps typically remain tractable as T increases. In contrast,
the cost of rejuvenation generally accumulates over time,
because the Markov kernel needs to adapt to the target distri-
butions pt. This effect is demonstrated in Figure 5 for the se-
quential Bayesian inference setting, where the rejuvenation
kernel accesses all past observations. Past work addresses
this issue generally by approximate rejuvenation based on a
uniformly weighted subset of data [Börschinger and John-
son, 2012, May et al., 2014]; but the subset is selected
and constructed without consideration of the model or data
itself, leading to poor posterior approximations. While adap-
tive subsampling ideas [Bardenet et al., 2017, Quiroz et al.,
2019] have been applied in the context of pseudo-marginal
methods such as particle MCMC, this work focuses on SMC
because of its suitability for streaming inference.

We propose a novel variant, sequential core-set Monte Carlo
(SCMC), which rejuvenates based on a Bayesian core-set—
i.e., an optimized weighted subset [Huggins et al., 2016,
Campbell and Broderick, 2019])—of all past observations
(Figure 1, right-pointing purple arrow). In contrast to pre-
vious core-set methods formulated as pre-processing steps
for Bayesian inference (see Figure 2), we use the SMC
particles themselves to construct the core-set online in a
“distributionally-aware” manner (Figure 1, left-pointing pur-
ple arrow), which minimizes the overall posterior error in-
curred by the approximate rejuvenation. As the number of
observations grows, we iteratively recompress the core-set,
resulting in bounded space and time complexity per step. In
practice, this enables a consistently better trade-off between
computational cost and inference accuracy.

The remainder of the paper proceeds as follows. In Sec-
tion 2, we first provide a brief overview of SMC. Section 3
introduces the core-set projection filter (CPF), the main
technical contribution of this work and key component of
SCMC, which enables core-set rejuvenation, with bounded
resources. After a brief discussion of related work in Sec-
tion 4, we provide empirical results on both synthetic and
real data that demonstrate that SCMC significantly improves
posterior approximation accuracy in comparison to subsam-
pling baselines1.

2 SEQUENTIAL MONTE CARLO

In the setting of the present work, the goal is to take samples
from a sequence of probability distributions with densities
(pt)

T
t=0 starting from a base density p0, where each prob-

ability update log(pt/pt−1) stems from a log-density or
potential `t. The moving target is hence expressed as an

1Our code is available at https://github.com/
plai-group/scmc
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Figure 2: Traditional view of Bayesian core-set compression
as a pre-processing step for Monte Carlo inference. Instead,
as depicted in Figure 1, we interpret populations and core-
sets as complementary online belief representations.

increasing sum across time t,

pt(θ) ∝ p0(θ) exp

(
t∑

s=1

`s(θ)

)
. (1)

This general setting includes Bayesian posterior inference
in a wide range of models with prior p0(θ) on a latent pa-
rameter θ. For example, it encompasses all models with
conditionally independent data xt having log-likelihoods
`t(θ) = log p(xt | θ), such as logistic regression, mix-
ture models and conjugate exponential family models. It
also generalizes many models with non-i.i.d. data, such
as order-k auto-regressive time series data xt with tran-
sition log-likelihoods `t(θ) = log p(xt | xt−k:t−1, θ)
[Robert and Casella, 2013], and edge-exchangeable network
sequences with edges xt,in, xt,out having log-likelihoods
`t(θ) = log p(xt,in, xt,out |θ) [Cai et al., 2016]. In the tech-
nical discourse we will focus on the conditionally i.i.d. data
setting for concreteness.

A popular family of methods for sampling from a sequence
of unnormalized distributions such as (pt)

T
t=0 is sequential

Monte Carlo (SMC). Such algorithms generally follow the
same pattern, summarized in Section 1.1 and described here
specifically for the setting of conditionally i.i.d. data. One
begins by simulating or sampling a collection of K param-
eter values from p0—often referred to as “particles”—and
endowing them with uniform weights,

∀ k ∈ [K] : π
(0)
k =

1

K
, θ

(0)
k ∼ p0 , (2)

where [K] := {1, . . . ,K}. This is generally assumed to be
tractable, e.g., when p0 is a pre-defined Bayesian prior dis-
tribution. For each new observation batch X(t) = (x

(t)
b )Bb=1,

whose size B reflects a trade-off between computation and
posterior estimate variance, three steps occur in sequence.
First, the particles are reweighted by the batch likelihood to
account for the information in the new data, and the weights
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 are renormalized,

∀ k ∈ [K] : π̄
′(t)
k = π

(t−1)
k

B∏
b=1

p(x
(t)
b |θ

(t−1)
k ) ,

π̄
(t)
k =

π̄
′(t)
k∑K

l=1 π̄
′(t)
l

. (3)

This step requires O(KB) computation and memory, which
does not increase over time and remains tractable. Next, we
check for particle degeneracy—i.e., a severe imbalance in
particle weights—using a criterion such as effective sample
size (ESS) [Liu, 2008]. If the check passes, we simply keep
the same particles and weights,

∀ k ∈ [K] : π̂
(t)
k = π̄

(t)
k , θ̂

(t)
k = θ

(t−1)
k , (4)

and otherwise resample them uniformly,

∀ k ∈ [K] : π̂
(t)
k =

1

K
, θ̂

(t)
k ∼

K∑
j=1

π̄
(t)
j δ

θ
(t−1)
j

, (5)

where δθ is the Dirac measure at θ. This step requires O(K)
computation, which again remains tractable. Finally, in order
to ensure that the set of particles is always able to represent
the current distribution in the sequence pt, we allow them
to rejuvenate (or move or mutate) via a Markov kernel κ
applied to each particle,

∀ k ∈ [K] : π
(t)
k = π̂

(t)
k , θ

(t)
k ∼ κ(· | θ̂(t)

k ) , (6)

completing the recursion. Rejuvenation is a critical vari-
ance reduction technique for SMC in this setting [Gilks and
Berzuini, 2001]. Ideally, one would choose the Markov ker-
nel κ to consist of some number of steps of any Markov
chain Monte Carlo (MCMC) algorithm with stationary dis-
tribution equal to the target pt at the current step t. This
is motivated by the fact that in the limit of infinitely many
steps, the particle set will converge to an i.i.d. sample from
pt [Gilks and Berzuini, 2001]. However, this is computation-
ally intractable as it requires access to all previous data even
for a single step, and rejuvenation gets more expensive over
time. In particular, applying rejuvenation at a single step
s requires both O(s) computation and memory, yielding
a growing memory cost of O(t) and computation cost of
O(t2) to obtain samples from pt when starting from p0. For
example, one step of Metropolis-Hastings (Section 1.2) for
a single particle involves computing the log-joint probability
ratio of two parameters θ, θ′ across all past data,

log
pt(θ

′)
pt(θ)

= log
p0(θ′)
p0(θ)

+

t∑
s=1

B∑
b=1

log
p(x

(s)
b |θ′)

p(x
(s)
b |θ)

. (7)

In this work, we address this computational challenge by
reducing the number of observations involved in evaluating
the data-dependent term in Equation (7). It is common prac-
tice in prior work on rejuvenation to use a subset of data

rather than all past data. The data points are usually chosen
by random subsampling or reservoir sampling algorithms
[May et al., 2014]. Denoting M � TB to be the available
computational and memory budget for rejuvenation, and
u1, . . . , uM to be the selected data subset, all of these cases
amount to the following approximation:

log
pt(θ)

p0(θ)
≈

M∑
m=1

tB

M
log p(um |θ) . (8)

While computationally efficient, note that the uniform
weighting by tB/M in past approaches ignores both the
data (some data may better represent the larger collection
than others) and the model (some data may not be relevant
for inference), resulting in poor approximations in practice.
In contrast, in Section 3.1, we provide a method that both
selects and weights the data subset adaptively, with the goal
of better approximating the total data log-likelihood.

3 SEQUENTIAL CORE-SET MONTE
CARLO

3.1 CORE-SET PROJECTION FILTER

In this section, we introduce the key technical innovation
that maintains and updates an approximation to the total
data log-likelihood — the core-set projection filter (CPF),
and specify in Algorithm 1 its precise interleaving with
SMC. We are given a memory budget M ∈ N, representing
how many total data points we are able to store persistently
as SMC proceeds, and we will use core-set techniques to
weight them so as to approximate the full likelihood for
efficient rejuvenation. We begin with an empty core-set
memory of size

C(0) = 0 . (9)

Now suppose that at time t− 1, we have a core-set memory
with C(t−1) ≤M data points u(t−1)

j and weights w(t−1)
j ≥

0, j = 1, . . . , C(t−1), that approximates the log-likelihood
of past data, i.e.,

log
pt−1(θ)

p0(θ)
≈

C(t−1)∑
j=1

w
(t−1)
j log p(u

(t−1)
j |θ) . (10)

Equivalently, w(t−1) ∈ RC(t−1)

and the component poten-
tials (log p(u

(t−1)
j | ·))C(t−1)

j can be interpreted as the natu-
ral parameter and the sufficient statistic of an exponential
family, the core-set posterior family, which includes the
exact posterior at w? = ~1 ∈ R(t−1)·B .

Much like in SMC, upon receiving the next batch of data
(x

(t)
b )Bb=1, two steps occur in sequence. First, the core-set

memory is temporarily expanded to encompass the new



 Algorithm 1 Sequential core-set Monte Carlo (SCMC) for
data tempering in exchangeable models

1: procedure SCMC(pop. size K, mem. size M ,
proc. REJUV, proc. SNNLS)

. initialize particles & core-set memory
2: (π

(0)
k , θ

(0)
k ), C(0) ← Equations (2) and (9)

3: for t← 1, . . . , T do
. reweight particles & expand core-set
. with new data batch X(t)

4: (π̄
(t)
k )Kk=1 ← Equation (3)

5: C̄(t), (w̄
(t)
j , ū

(t)
j )C̄

(t)

j=1 ← Equation (11)
. resample particles

6: if ESS(π̄(t)) ≥ threshold then
7: (π̂

(t)
k , θ̂

(t)
k )Kk=1 ← Equation (4)

8: else
9: (π̂

(t)
k , θ̂

(t)
k )Kk=1 ← Equation (5)

10: end if
. rejuvenate particles using core-set
. (Section 3.2)

11: (π
(t)
k , θ

(t)
k )Kk=1← REJUV

(
(π̂

(t)
k , θ̂

(t)
k )Kk=1,

(w̄
(t)
j , ū

(t)
j )C̄

(t)

j=1

)
. recompress core-set using particles

12: if C̄(t) ≤M then
13: C(t), (w

(t)
j , u

(t)
j )C

(t)

j=1 ← Equation (12)
14: else
15: A(t), b(t), ŵ(t) ← Equations (14) to (16)
16: C(t), (w

(t)
j , u

(t)
j )C

(t)

j=1 ← Equation (17)
17: end if
18: end for
19: return (π

(T )
k , θ

(T )
k )Kk=1, (w

(T )
j , u

(T )
j )C

(T )

j=1

20: end procedure

observations with unit weights,

C̄(t) = C(t−1) +B , (11)

(w̄
(t)
j , ū

(t)
j ) =

{
(w

(t−1)
j , u

(t−1)
j ) : 1 ≤ j ≤ C(t−1)

(1, x
(t)

j−C(t−1)) : C(t−1) < j ≤ C̄(t) ,

such that the expanded memory maintains the approxima-
tion in Equation (10) for pt. Second, the core-set is recom-
pressed to fit within the memory budgetM . If we are able to
store all of the new data in addition to the previous core-set
memory — i.e., C̄(t) ≤M — then recompression involves
no operation,

C(t) = C̄(t) ,

∀ j ∈ [C(t)] : (w
(t)
j , u

(t)
j ) = (w̄

(t)
j , ū

(t)
j ) . (12)

On the other hand, if C̄(t) > M , we are required to reduce
the amount of stored data before continuing. As opposed to
past subsampling methods, we formulate this recompression
as a sparse nonnegative least-squares (SNNLS) optimization
problem proposed in earlier work on data summarization

via Bayesian core-sets [Huggins et al., 2016, Campbell and
Broderick, 2018, 2019],

argmin
ŵ∈RC̄(t)

Ept


C̄(t)∑
j=1

(ŵj − w̄(t)
j ) · f (t)

j (· ; pt)

2
 (13)

s.t. ŵ ≥ 0 , ‖ŵ‖0 ≤M ,

f
(t)
j (θ ; q) := log p(ū

(t)
j |θ)− Eq

[
log p(ū

(t)
j | ·)

]
,

where the objective is the squared L2-norm w.r.t. the cur-
rent posterior pt, the number of nonzero entries in a vec-
tor is denoted as ‖·‖0, and f (t)

j (· ; q) represents the log-

likelihood function for the data point ū(t)
j , centered in terms

of some weighting distribution q. Note that subsampling and
reweighting methods of the form in Equation (8) generate a
feasible (but suboptimal) solution to this optimization prob-
lem. Intuitively, the optimization problem in Equation (13)
attempts to approximate the current estimate of the total log-
likelihood function, as represented by weights w̄(t)

j , with
a sparser set of weights ŵj , while prioritizing regions of
the latent space where the current posterior pt has signif-
icant mass and where the potential deviates strongly from
its posterior marginal; Campbell and Beronov [2019] have
provided an information-geometric foundation for this type
of approach.

Although evaluating the objective in Equation (13) is typ-
ically intractable, a key insight in this work is that we can
obtain a tractable Monte Carlo approximation from the cur-
rent rejuvenated SMC posterior approximation with parti-
cles (θ

(t)
k )Kk=1 and weights (π

(t)
k )Kk=1. This corresponds to

the sum of squared errors of the log-likelihood function at
discretization points (θ

(t)
k )Kk=1. In particular, setting

A(t) ∈ RK×C̄
(t)

, A
(t)
kj =

√
π

(t)
k · f

(t)
j (θ

(t)
k ;π(t)) , (14)

b(t) ∈ RK , b(t) = A(t)w̄(t) , (15)

the Monte Carlo approximation of Equation (13), in which
the population q := π(t) ≈ pt is substituted for the true pos-
terior pt, is equivalent to the following sparse non-negative
least squares problem:

SNNLS: argmin
ŵ∈RC̄(t)

∥∥∥A(t)ŵ − b(t)
∥∥∥2

2
(16)

s.t. ŵ ≥ 0 , ‖ŵ‖0 ≤M .

Although the cardinality constraint ‖ŵ‖0 ≤M makes this
optimization problem intractable to solve exactly, there are
numerous efficient off-the-shelf algorithms such as GIGA
[Campbell and Broderick, 2018] and orthogonal matching
pursuit [Tropp, 2004] which provide computationally effi-
cient approximations with theoretical guarantees, and CPF is
agnostic to precisely which approximation algorithm is used.



 Rejuvenation Memory Time Error

full O(T ) O(T 2) none

subsampling O(T ) O(MT ) stoch.
reservoir O(M) O(MT ) stoch.

core-set O(M) O(MT ) det.

Table 1: Overview of SMC rejuvenation density approxima-
tions, for T filtering steps and memory bound M .

The recursion is completed by removing the zero-weight
data points from the core-set memory, i.e.,

C(t) =
∥∥∥ŵ(t)

∥∥∥
0
,

∀ j ∈ [C(t)] : (w
(t)
j , u

(t)
j ) = (ŵ

(t)
ij
, ū

(t)
ij

) , (17)

where i1, . . . , iC(t) represent the indices of nonzero ele-
ments in ŵ(t). Note that the potential evaluations at the
particles θ(t)

k in Equation (14) can be reused directly from
the last rejuvenation step of SMC in Equation (6). The
asymptotic cost of SNNLS solvers is algorithm-specific, but
using GIGA for Equation (16) incurs only an additional
cost of O(KM(M +B)) per filtering stage, independently
of parameter and observation dimensions. This is optimal
for compressing M +B observations into M via pairwise
comparisons on K particles. In contrast, reservoir sampling
via Algorithm L achieves the data-agnostic optimum of
O(M(1 + log(TB/M))) for T stages. In practice, GIGA
consists of efficient linear algebra operations and was neg-
ligible in relative runtime across all of our experiments.
In general, the ratio of GIGA vs. SMC wall-clock times
strongly depends on the model likelihood and the efficiency
of the SMC implementation.

3.2 CORE-SET REJUVENATION

Sequential core-set Monte Carlo (SCMC) replaces the total
data log-likelihood in the rejuvenation step with the approx-
imation from the expanded core-set memory defined recur-
rently in Equations (10) and (11). If rejuvenation occurs
using the Metropolis-Hastings algorithm with proposal dis-
tribution g, for example, we use the approximate acceptance
ratio

α(θ′, θ) := min

1,
g(θ |θ′)
g(θ′ |θ) ·

p0(θ′)
p0(θ)

·
C̄(t)∏
j=1

p(ū
(t)
j |θ′)w̄

(t)
j

p(ū
(t)
j |θ)w̄

(t)
j

 ,

(18)
see Section 1.2. This term can be evaluated in O(C̄(t)) =
O(M + B) time, independently of the data set size O(T ).
Two details are worth highlighting regarding the numerical
precision of SCMC: First, the reweighting steps are unaf-
fected by the core-set approximation, and second, core-set
compression is performed using the rejuvenated population
π(t) with lower variance than π̄(t) and π̂(t).

Under suitable regimes, core-set rejuvenation achieves lower
error than subsampling rejuvenation by introducing a bias
which depends on the memory size. We defer to future work
the extension of theoretical error bounds from the batch
pre-processing [Campbell and Broderick, 2018, 2019] to
the online setting of CPF, but note that SCMC behavior
depends strongly on the intrinsic compressibility of the po-
tential, as reflected in the constants in GIGA’s convergence
analysis Campbell and Broderick [2018]. Essential failure
regimes for SCMC are too small memory size (projection
error of SNNLS), too few particles (discretization error of
potential functions) and numerical instability of SMC (e.g.,
maladapted transition or rejuvenation proposals). Adding
memory is a simple mitigation when possible, and corre-
sponds to an isometric immersion of the core-set posterior
manifold, but the problem of estimating a sufficient core-
set size is of comparable difficulty to assessing variational
approximations. In practice, approximation quality can be
improved during SCMC by including tempering steps, and
at the end by recomputing a fresh core-set using GIGA on
the final population and by adding further MCMC steps.

4 RELATED WORK

Bayesian Sparsity Subsampling has been proposed as a
way to reduce the cost of internal representations in various
approximate Bayesian inference methods [van de Meent
et al., 2014, Franck and Koutsourelakis, 2016, Bardenet
et al., 2017, Quiroz et al., 2019, Gunawan et al., 2020, Pran-
gle, 2020]. Within restricted model families, several meth-
ods have been suggested for sparsity-inducing Bayesian
learning by means of greedy or regularized optimization, in-
cluding sparse online Gaussian processes [Csató and Opper,
2002], which construct representative data subsamples for
GP models using an RKHS norm, relevance vector machines
[Tipping, 2001] and Wasserstein barycenters [Srivastava
et al., 2015] for sparse combinations of subset posteriors. In
[Campbell and Beronov, 2019], Bayesian core-set construc-
tion was reformulated as a sparse variational inference prob-
lem suitable for Riemannian stochastic gradient descent, in
the batch setting for arbitrary exchangeable models. SCMC
instead is incremental both in the core-set construction and
in the underlying MC method.

Recursive Inference Streaming variational inference
methods [Friston, 2008, Broderick et al., 2013, Marino et al.,
2018] achieve constant cost updates, but are asymptotically
inconsistent and non-adaptive in the general setting by re-
lying on model-specific, conjugate or stochastic gradient
updates in variational families, except for non-parametric
variants [Campbell et al., 2015]. SMC methods are non-
parametric and asymptotically consistent, but practitioners
typically need to choose between quickly diverging online
methods [Kitagawa, 1998], increasing population sizes or
rejuvenation costs [Chopin et al., 2011]. The closest frame-
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Figure 3: (left) Comparison of approximation errors for a 6-dim. normal-inverse-Wishart (NIW) model on 1,000 synthetic
data points using 2,000 particles and a memory size of 100, depicting the median of 10 runs for each configuration, see
Section 5.2. The accuracy of SCMC is indistinguishable from unbounded SMC. (middle) Online core-set posterior errors
from SCMC match the oracle, i.e., the sequence of errors for core-sets of equal size, constructed in batch mode using true
posterior samples. (right) Scaling of approximation error with the cost of potential evaluations for varying memory sizes.
SCMC achieves higher accuracy and even lower runtime than the baseline of reservoir sampling rejuvenation, see text.

works to SCMC are information geometric nonlinear filter-
ing [Kulhavý, 1996, Newton, 2018] and projection filtering
[Brigo et al., 1995], which recursively project posterior
updates onto finite-dimensional exponential or mixture fam-
ilies or more general statistical manifolds. The essential in-
novation in SCMC is the use of dual belief representations,
comprising mixture (particle populations) and exponential
families (core-set posteriors), which are adapted online in
mutual recursion. This eliminates the need for up-front con-
struction of approximation bases or summary statistics, and
enables a flexible choice both of the rejuvenation kernel
inside SMC and of the SNNLS solver for CPF.

Continual Learning Recently, several Bayesian contin-
ual learning models were proposed based on the idea of
adaptively selecting past observations Nguyen et al. [2017],
Pan et al. [2020]. The comparison to our method is similar
as above, i.e., both SMC and CPF allow for more general
model classes.
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Figure 4: Comparison of approximate posteriors for the
AR(1) model in Section 5.1, using Gaussian kernel density
estimates from 1,000 particles. Reservoir sampling signifi-
cantly deteriorates rejuvenation even in this simple scenario.

5 EXPERIMENTS

We evaluate SCMC for sequential inference, using a slight
generalization of GIGA [Campbell and Broderick, 2018]
as the SNNLS solver (see Section 1.3), on two illustrative
synthetic experiments, on real data for Bayesian logistic
regression and for filtering in stationary time series models.
In all cases, our method is compared against two variants
of SMC rejuvenation: the full data oracle (SMC-full) and
a reservoir sampling baseline (SMC-reservoir) of the same
memory size as SCMC. Details and tuning parameters for
all experiments are provided in Section 2.

5.1 AUTO-REGRESSIVE PROCESS

As explained in Section 2, apart from static i.i.d. data,
SCMC is also suitable for inference in more general models
in which the likelihood can be factorized into exchange-
able terms. We provide a simple demonstration on a 1-
dim. AR(1) model [Robert and Casella, 2013],

φ ∼ U([0, 1])

x0 ∼ N (0, σ0)

εt+1 ∼ N (0, 1)

xt+1 = φ · xt + εt+1 .

In this model, the posterior over φ is independent of the
initial state x0 and can be written as

p(xt+1 |xt, φ) = N (φ · xt, 1)

p(φ |{xt}Tt=0) ∝ exp

(
T∑
t=0

log p(xt+1 |xt, φ)

)
. (19)

Therefore, core-set compression can be applied to the pairs
(xt, xt+1) of the sum in Equation (19). For simplicity, we
choose the distribution over x0 to be the stationary distri-
bution of the process with variance σ0 = 2

1−φ2 . 200 pairs
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Figure 5: Potential evaluations per filtering stage of the NIW experiment in Section 5.2, which occur only in the reweighting
and rejuvenation steps of SMC, as the SNNLS problem construction in Equation (14) reuses the rejuvenated samples. (left)
unbounded, (middle) reservoir sampling, and (right) core-set rejuvenation. See text for an explanation of the jigsaw pattern.

(xt, xt+1) are sampled from the model with true parameter
φ = 0.05, and inference is performed using 1,000 particles
and a memory size of only 5. Figure 4 demonstrates that
on this model, SCMC is very close in performance to SMC
with full rejuvenation, and the reservoir sampling baseline
performs considerably worse.

5.2 NORMAL-INVERSE-WISHART

The next synthetic experiment is performed on a 6-
dim. normal-inverse-Wishart model with 27 parameters,
using 1,000 observations in batches of B = 20, which
are sampled from a ground truth distribution in the conju-
gate family. SCMC is allocated K = 2,000 particles and
memory sizes M = 50, 100, 200. Approximation error is
measured in terms of maximum mean discrepancy (MMD)
[Gretton et al., 2012] using a Gaussian RBF kernel. See
Section 2.2.3 for details.

Figure 3 displays the posterior approximation error of the se-
quential inference methods, as a function both of the number
of batches and of the cumulative number of log-likelihood
evaluations. As expected, in early steps with few total obser-
vations, all methods perform identically; whereas after about
20 steps, the reservoir sampling baseline becomes visibly
less accurate than both full-rejuvenation SMC and SCMC.
Moreover, the chain of core-set posteriors from SCMC ob-
tains significantly lower MMD than the particle population
it was constructed with, and is indistinguishable from the
behaviour of batch core-set construction on the entire data
set when provided with exact posterior samples.

Figure 5 highlights the significant cost reduction provided
by SCMC for this experiment in terms of log-likelihood
evaluations. While the cost of the full rejuvenation kernel
dominates SMC and grows linearly with the number of ob-
servations, resampling rejuvenation and SCMC respect a
constant bound. As evidenced by the jigsaw pattern alter-
nating between linear filling up and recompression steps,
as well as by the lower number of potential evaluations in
Figure 3, the computation time in SCMC sometimes can be
reduced even further, as core-set compression reaches its

numerical tolerance threshold before saturating the memory
budget. Such behavior is observable in the regimes of simple
models, high data redundancy or too few particles.

5.3 LOGISTIC REGRESSION

We compare the same procedures on a Bayesian logistic
regression model for the ChemReact2 binary classification
data set (10 features, 25,000 entries). Inference is performed
in batches of size B = 50, using population sizes K =
1,500; 3,000; 6,000, and memory sizes M = 75; 150; 300.
Approximation error is measured in terms of the symmetric
KL divergence between Gaussian fits to the SCMC posterior
populations and to the ground truth posteriors obtained using
10,000 MCMC samples from STAN [Carpenter et al., 2017].

The empirical results in Figure 6 indicate asymptotic con-
sistency both in population and memory size under suitable
conditions. While increasing amounts of data will inevitably
introduce increasing approximation error into SMC reju-
venation for any fixed-size memory compression scheme,
CPF demonstrates a significant improvement over reservoir
sampling, establishing a new trade-off between inference ac-
curacy and computation cost. Notably, the overall numerical
accuracy shows a much stronger dependency on memory
size than on population size, and in contrast to the high vari-
ance in the unbiased reservoir sampling baseline, SCMC
converges gracefully towards the SMC oracle.

5.4 MLP TIME SERIES PREDICTION

We now extend the demonstration in Section 5.1 of inference
over stationary time series model parameters to a more
challenging scenario: online posterior inference in a multi-
layer perceptron (MLP) model on real data. Specifically, we
provide a sequence of time windows to SCMC, performing
inference over parameters of the linear output layer, based
on a feed-forward NN feature embedding trained beforehand
by MLE with an L2 loss. Furthermore, rejuvenation uses
weighted NUTS instead of weighted MH, showcasing the

2http://komarix.org/ac/ds/

http://komarix.org/ac/ds/
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Figure 7: Approximate samples from the posterior over linear output layers of an MLP time series model, see Section 5.4
(input/output: 10/1 months, hidden layers: 20/20, activations: ReLU, initialization: Xavier, fixed std. of Gaussian observation
model / std. of input: 10−1), tested on the Keeling Curve data set of CO2 measurements from the Mauna Loa Observatory.
Features (hidden layers) are trained via MLE on months 0-490, and samples are shown as expected recurrent roll-outs over
months 501-750, taking as input the months 491-500. K = 300,M = 20, B = 20. Shown are typical behaviors of: (a)
NUTS on core-set from SCMC, (b) SMC-reservoir and (c) SCMC with NUTS rejuvenation.

flexibility of SCMC.

For a single data set, the Keeling Curve of CO2 measure-
ments from the Mauna Loa Observatory, Figure 7 depicts
typical behavior of the samplers under comparison, now
also including as a benchmark the No-U-Turn Sampler
(NUTS), on the core-set output from SCMC. Measured
in terms of posterior marginal likelihood and averaged
over 10 independent runs each, we observe more plausi-
ble uncertainty calibration on held-out data using SCMC
(−1.9088 · 106 ± 71.0 · 103) than using SMC-reservoir
(−1.9090 · 106 ± 345.7 · 103). SCMC with NUTS rejuve-
nation performs nearly identically to NUTS on the full data,
whereas SMC-reservoir has higher variance, and NUTS
alone on the core-set result of SCMC incurs higher error
than SCMC, highlighting the benefit of our dual belief rep-
resentation.

6 CONCLUSION

This work introduced sequential core-set Monte Carlo
(SCMC), a streaming algorithm for recursive Bayesian in-
ference in a broad class of models that significantly in-
creases the level of accuracy obtainable within fixed re-
source bounds. SCMC uses a novel rejuvenation kernel of
constant cost, constructed by iteratively recompressing past
observations into Bayesian core-sets. This core-set projec-
tion filtering (CPF) procedure is the first streaming algo-
rithm in the family of general-purpose Bayesian core-set
methods. Potential directions for future work include gener-
alizations to non-exchangeable and non-stationary Bayesian
models, online adaptation based on a theoretical analysis of
the cost–accuracy trade-off among belief representations in
SMC and CPF, and distributed streaming inference using
core-sets for communicating compressed updates.
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