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Abstract

The rate of convergence of weighted kernel herd-
ing (WKH) and sequential Bayesian quadrature
(SBQ), two kernel-based sampling algorithms for
estimating integrals with respect to some target
probability measure, is investigated. Under verifi-
able conditions on the chosen kernel and target
measure, we establish a near-geometric rate of
convergence for target measures that are nearly
atomic. Furthermore, we show these algorithms
perform comparably to the theoretical best possi-
ble sampling algorithm under the maximum mean
discrepancy. An analysis is also conducted in a dis-
tributed setting. Our theoretical developments are
supported by empirical observations on simulated
data as well as a real world application.

1 INTRODUCTION

Estimating expectations is a common problem fundamental
to many applications in statistics and machine learning, such
as the estimation of sufficient statistics, prediction after
marginalization of latent variables, and calculation of risk.
The goal is the computation of integrals of the form

Eπf(x) =
∫
X
f(x)dπ(x), (1)

where f is a given function f and π a probability measure
over Rd. In the vast majority of cases, the integral is not
analytically computable, necessitating numerical approxima-
tion. If π is absolutely continuous with density p, classical
Gaussian quadrature techniques achieve exponential rates of
convergence, but these are known to suffer from the curse of
dimensionality. Instead, one often adopts probabilistic tech-
niques. The simplest of these is crude Monte Carlo (MC)
integration: generating independent samples {xi}mi=1 from
π, and returning the empirical average of {f(xi)}mi=1. This

method converges at a prohibitively slow rate of O(m−1/2)
in L2. If one cannot easily generate independent samples
from π, Markov Chain Monte Carlo (MCMC) is often used
instead. This method generates approximate samples from
π as iterates of an ergodic Markov chain. Under certain
assumptions on the chain, this approach will also converge
at rate O(m−1/2).

To achieve “super-root-m” rates of convergence, alterna-
tive non-random sampling techniques have been proposed.
Quasi Monte Carlo is a classic example with dimension-
dependent O(m−1 logm) convergence. More recently, the
herding algorithm [Welling, 2009a,b, Welling and Chen,
2010] was proposed to learn Markov Random Fields
(MRFs). First applicable to discrete finite-dimensional
spaces, it was later extended to continuous spaces and in-
finite dimensions through the kernel trick by Chen et al.
[2010], who called the resulting algorithm Kernel Herding
(KH). A general convergence rate of O(m−1/2) was also
provided, showing that KH performs, asymptotically, at least
as well as crude Monte Carlo methods. However, in practice,
KH typically exhibits faster convergence, suggesting these
rates can be improved.

Chen et al. [2010] also suggested a moment matching inter-
pretation of the algorithm: kernel herding is equivalent to
choosing samples {xi}mi=1 minimizing the Maximum Mean
Discrepancy (MMD) metric (see Chen et al. [2010], Huszar
and Duvenaud [2012]) between π and the empirical measure
of {xi}mi=1. In an alternative Bayesian approach, O’Hagan
[1991] and Ghahramani and Rasmussen [2003] assume a
GP prior on f . Each sample xi is generated by minimizing
the mean squared error of the posterior of f , conditioned on
the points {xj}j<i already sampled. This was shown to be
equivalent to KH (with kernel dictated by the covariance of
the GP), but with an additional step of also minimizing the
weights attached to the sampled points (that is, instead of us-
ing uniform weights of 1/m [Huszar and Duvenaud, 2012]).
Empirically, it was observed that this new algorithm—called
Sequential Bayesian Quadrature (SBQ)—converges faster
than KH due to the additional weight optimization step.
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 A partial explanation for faster convergence was given
by Bach et al. [2012]. While KH and SBQ both choose
the next sample point to minimize MMD, SBQ also opti-
mizes for the weights. Alternatively, once a sample point
is selected, the weights themselves can be optimized. We
refer to this procedure as Weighted Kernel Herding (WKH).
For the case when the weights are constrained to lie in the
unit simplex, Bach et al. [2012] noted that WKH is equiv-
alent to the classic algorithm of Frank and Wolfe [1956]
on the marginal polytope. Exploiting this connection, they
were able to use existing convergence results to analyze
constrained WKH. Specifically, if the optimum lies in the
relative interior of the marginal polytope with distance b
away from the boundary, the convergence rate is O(e−bm).
For infinite dimensional kernels, b = 0 (i.e., exponential
convergence does not hold). On the other hand, b > 0 for
finite dimensional kernels, but it could be so close to zero
that the global O(m−1/2) bound proves tighter. Bach et al.
[2012] also point out these issues, suggesting that another
approach is required to fully justify the improved empirical
performance of WKH.

Here, we attempt to address this deficiency by providing an
analysis for near-exponential convergence of unconstrained
WKH and SBQ. As noted by Huszar and Duvenaud [2012],
the weights in WKH do not lie on the unit simplex in many
applications, and so the correspondence to Frank–Wolfe
does not hold. Instead, we study the convergence behavior
of WKH and SBQ with respect to the best possible algo-
rithm under MMD for generating m samples from the target
measure — a feat that is almost certainly unachievable in
practice. Our analysis effectively says that WKH and SBQ
are “good enough,” in the sense that one only requires to
pick a few more atoms using WKH or SBQ than any other
possible algorithm to get close to the performance of the
latter. This result is encapsulated in Theorem 1. Within
this understanding, we find that the relevant assumption for
investigating convergence is realizability: that the mean em-
bedding in the kernel space can be exactly reproduced by
a linear combination of r samples {xi}ri=1. This amounts
to assuming that π is comprised of finitely many atoms —
for any distribution that can be closely approximated by
such a measure, this may well be reasonable to consider. In
this case, we show that realizability guarantees O(e−rm)
convergence.

1.1 CONTRIBUTIONS

Our contributions in this work include:

• An analysis of two algorithms for approximating ex-
pectations — WKH and SBQ — highlighting near
exponential decay with respect to the best possible
sampling algorithm under MMD. Our results provide
theoretical justifications for empirical observations al-
ready made in the literature.

• The introduction of the assumption of realizability in
the context of KH algorithms, enabling tighter analysis
for distributions close to a finitely atomic measure.

• A distributed algorithm for approximating expectations
for large scale computations, together with a short anal-
ysis of its convergence properties. To the best of our
knowledge, herding has not yet been applied in large-
scale distributed settings.

• Finally, we present empirical studies to validate rapid
convergence. Since there is ample empirical evidence
supporting the good performance of the KH/SBQ algo-
rithms in earlier works [Huszar and Duvenaud, 2012,
Chen et al., 2010, Bach et al., 2012], we focus instead
on demonstrating the empirical performance of the
distributed algorithm.

1.2 NOTATION

We represent vectors as small letter bolds, e.g., u. Matrices
are represented by capital bolds, e.g., X,T. Sets are repre-
sented by sans serif fonts, e.g., S; and the complement of a
set S is Sc. A dot product in a reproducing kernel Hilbert
space with kernel k(·, ·) is represented as 〈·, ·〉k, and the
corresponding norm is ‖ · ‖k. The dual norm is written as
‖ · ‖k∗. We denote {1, 2, . . . , d} by [d].

2 BACKGROUND

In this section, we discuss some relevant background for the
algorithms and methods at hand.

Maximum Mean Discrepancy (MMD). MMD measures
the worst-case error between two probability measures π
and ν over the unit ball of a reproducing kernel Hilbert
space (RKHS)H with kernel k:

MMD(π, ν) := sup
f∈H
‖f‖≤1

∣∣∣∣∫ f(x)dπ(x)−
∫
f(x)dν(x)

∣∣∣∣
=

∣∣∣∣ ∫∫ k(x, y)dπ(x)dπ(y) +

∫∫
k(x, y)dν(x)dν(y)

− 2

∫∫
k(x, y)dπ(x)dν(y)

∣∣∣∣ (2)

= ‖µπ − µν‖k (3)

where µπ and µν are the respective mean kernel embed-
dings of π and ν. MMD(π, ν) ≥ 0; and if H is universal,
then MMD(π, ν)= 0 if and only if π ≡ ν. We refer to Sripe-
rumbudur et al. [2010], Gretton et al. [2007] for further
details. The sampling algorithms we consider approximate
π by constructing an empirical measure ν that is close to π
under MMD.



 Algorithm 1 Weighted Kernel Herding : WKH(X , m), or
Sequential Bayesian Quadrature : SBQ(X , m)

1: INPUT: kernel function k(·, ·), number of iterations m
2: S = ∅. // Build solution set S greedily.
3: for n = 1 . . .m do
4: Use (5) for WKH, or Use (7) for SBQ, to get xn.

S = S ∪ {xn}
5: Update weights w = K−1z,

where Krs = k(xr,xs) for r, s ∈ [1, n]
6: end for
7: return S, w

Weighted Kernel Herding. Recall that our goal is to ap-
proximate the expectation of a function f over some proba-
bility measure π using a weighted empirical measure:

Eπf(x) =
∫
X
f(x)dπ(x) ≈

n∑
i=1

wif(xi), (4)

where wi are the weights associated with function evalu-
ations at xi. For example, taking weights wi = 1/n and
samples xi to be independent recovers crude MC integra-
tion. Both Kernel Herding [Chen et al., 2010] and Quasi
Monte Carlo [Dick and Pillichshammer, 2010] use wi = 1/n
with dependent samples xi. For brevity, in the sequel, we
let Sj := {x1,x2, . . . ,xj} be the collection of the first j
samples, and z(Sj) :=

∑
j wjf(xj).

Here, we present a brief overview of WKH and SBQ, and
point the reader to Huszar and Duvenaud [2012], Chen
et al. [2010] for further details. As mentioned, these algo-
rithms construct a weighted empirical measure by minimiz-
ing MMD to the target measure π. Greedy algorithms for
constructing approximations of the form (4) — including
WKH and SBQ — typically involve two alternating steps:
(1) generate a sample xi; and then (2) compute the weights
wj across all drawn samples {xj}j≤i. KH chooses the next
sample by minimizing MMD, taking all weights to be uni-
form, that is, wi = 1/n for i = 1, . . . , n. More precisely,
given n samples {xi}ni=1, the next sample xKHn+1 is generated
according to

xKHn+1 = argmin
x∈X

n

n+ 1

n∑
i=1

wik(x,xi)−2Ex′∼π[k(x,x
′)].

(5)
The SBQ algorithm is slightly more involved. Consider
imposing a functional Gaussian Process (GP) on f with
covariance kernel k, that is, f ∼ GP (0, k). Doing so, the
quantities in (4) become random variables. The sample xi
is then chosen to minimize posterior variance, while the
corresponding weights are calculated from the resulting
posterior mean. More precisely, suppose x1, . . . ,xn are
previously drawn samples. A standard result in the theory
of GPs asserts that the posterior of f , conditioned on the

evaluations {f(xi)}ni=1, has expectation

f̂(x) = k>K−1f ,

where f is the vector of function evaluations (f(xi))
n
i=1,

k is the vector of kernel evaluations (k(x,xi))
n
i=1, and

K := (k(xi,xj))
n
i,j=1 is the kernel Gram matrix. Con-

sequently, inserting f̂ into (4), it becomes clear that
Ez(Sn) = z>K−1f , where zi :=

∫
k(x,xi)dπ(x). In

particular, observe that the weights in (4) are given by
wi =

∑
j zj [K

−1]ij . The posterior variance becomes

cov(x,y) = k(x,y)− k>K−1k.

Therefore, we can write the variance of z(Sn) as

var(z(Sn)) =
∫∫

k(x,y)dπ(x)dπ(y)− z>K−1z. (6)

Given n samples {xi}ni=1, the SBQ algorithm generates the
next sample xSBQn+1 by minimizing the posterior variance of
the approximated integral z(Sn):

xSBQn+1 = argmin
x∈X

var(z(Sn ∪ {x})). (7)

It has been shown that SBQ is equivalent to minimizing
MMD with respect to both samples and weights [Huszar
and Duvenaud, 2012].

In this work, we first analyze WKH (Algorithm 1) which
performs the update (5) for the samples while also updating
weights using SBQ’s wi =

∑
j zj [K

−1]ij . The same objec-
tive xKHn+1 was also considered by Bach et al. [2012], with
the additional constraint that the weights wi are positive and
sum to unity. They use the connections to the classic algo-
rithm of Frank and Wolfe [1956] to establish convergence
rates under this additional constraint.

3 RELATED WORKS

The connection between WKH and the Frank–Wolfe algo-
rithm was further studied in Briol et al. [2015], providing
new variants and rates. Other variants of the Frank–Wolfe al-
gorithm [Jaggi, 2013, Lacoste-Julien and Jaggi, 2015] enjoy
faster convergence at the cost of additional memory require-
ment. Specifically, instead of just selecting sample points,
one can think of removing bad points from the set already
selected. This variant of Frank–Wolfe, known as FW with
away steps, is one of the more commonly used in practice,
because it is known to converge faster. If the weights are
not restricted to lie on the simplex, the analogy to match-
ing pursuit algorithms is obvious — we refer to Locatello
et al. [2017] for corresponding convergence rates. However,
the linear rates for these algorithms require bounding cer-
tain geometric properties of the constraint set, and this may
not be straightforward for RKHS-based applications that



 usually employ KH and/or SBQ. There have been some
recent works that provide sufficient conditions for fast con-
vergence of SBQ under additional assumptions on sufficient
exploration of point sets [Kanagawa and Hennig, 2019], or
special cases of kernels (e.g. the ones generating Sobolev
spaces [Santin and Haasdonk, 2016]). Our setting is more
general. Other studies discuss dimension-dependent conver-
gence rates [Briol et al., 2019] for infinitely smooth func-
tions. Such rates often take the form O(n−1/d) for dimen-
sion d— our results have no explicit dimension-dependence.
More recently, Kanagawa et al. [2020] study convergence
properties in misspecified settings. Applying our ideas to
these settings may provide an interesting direction for future
work.

With the goal of interpreting blackbox models, Khanna et al.
[2019] recently exploited connections with submodular op-
timization to provide the weaker forms of convergence we
discuss (in Section 4.1), in the form of an approximation
guarantee for SBQ for discrete π. Our result is more general,
allowing for arbitrary probability measures. In fact, we do
not make use of submodular optimization results. A similar
proof technique was also used by Khanna et al. [2017] for
proving approximation guarantees of low rank optimization.
The proof idea for the distributed algorithm was inspired
from tracking the optimum set, which is a common theme
in analysis of distributed algorithms in discrete optimization
(see, e.g., Altschuler et al. [2016] and references therein).

4 CONVERGENCE RESULTS

In this section, we present our convergence results. The start-
ing point of our analysis is the following re-interpretation
of the posterior variance minimization (6) as a variational
optimization of MMD [Huszar and Duvenaud, 2012]. We
can re-write (6) as a function of a set of chosen sample
indices S and weights w:

g(S,w) := ‖µπ −
∑
i∈S

wiφ(xi)‖2k, (8)

where φ is the respective feature mapping, i.e., k(x,y) =
〈φ(x), φ(y)〉, and where µπ :=

∫
y∼π φ(x)dπ(x) is the

mean embedding in the kernel space.

Before presenting our results, we delineate the assumptions
we make on the cost function (8). There is an implicit as-
sumption that f lies within the chosen RKHS corresponding
to the kernel k. Otherwise, there is no guarantee that any al-
gorithm can approximate f within ε error, and the discussion
of convergence rates is meaningless.

Assumption 1 (Convexity/Smoothness). We assume that
the loss function g(·) is mω-restricted strongly convex and
MΩ-smooth over S?⊥ ∪ Sn, with mω > 0 and MΩ < ∞.
In other words, for S1,S2 ⊂ S?r ∪ Sn, with Z(Sj) =∑

j wjφ(xj), Z12 = Z(S1) − Z(S2), and D(S1,S2) =
g(S1)− g(S2)− 〈∇g(S2), Z(S1)− Z(S2)〉k,

mω

2
‖Z12‖2k ≤ D(S1,S2) ≤

MΩ

2
‖Z12‖2k.

Assumption 1 is standard for characterizing geometric rates
in optimization; e.g., see Wainwright [2019, Section 9.3.1],
and is often implicitly assumed, e.g., by Bach et al. [2012],
when drawing upon the Frank–Wolfe connection. This as-
sumption or a slight variation of it, is not only sufficient
but also necessary to bound geometric convergence rates.
For our case, one can equivalently view the assumption as
enforcing that the kernel matrix of the atoms S?⊥ ∪ Sn has
a minimum eigenvalue bounded away from zero for any
fixed n.

Assumption 2 (Standardization). We assume that the fea-
ture mapping is standardized, i.e., k(x,x) = 1∀x ∈ X , as
assumed in previous works [Huszar and Duvenaud, 2012],
for ease of exposition.

Assumption 2 is not restrictive. Rather, it is enforced to avoid
otherwise unnecessary terms. Any kernel can be standard-
ized over its support, and remain a kernel. Assumptions 1
and 2 are satisfied by many commonly used kernels. Any
finite dimensional normalized kernel satisfy them, includ-
ing the cosine kernel or polynomial kernels; and general
normalized RBF kernels on compact supports. We are now
ready to present our main result regarding the near linear
convergence of the discrepancy metric g.

Theorem 1 (Approximation Guarantee). Suppose that
Assumptions 1 and 2 are satisfied. Let Tr :=
argmin|S|≤rminw g(S,w). For 0 < ε < 1, consider
s = (rMΩ

mω
log 1

ε ) iterations of Algorithms 1 (WKH or
SBQ), returning the set Ss. Then, minw g(Ss,w)) ≤ (1−
ε)[minw g(Tr,w)] + ε‖µπ‖2k.

The proof for WKH is presented in Appendix A.2. Theo-
rem 1 is general, and it is applicable to kernels of any di-
mension, including infinite dimensional kernels. Intuitively,
it may be hard to claim that an infinite dimensional em-
bedding can be closely approximated by a finite number of
atoms without additional strong assumptions. However, our
analysis gets around this complexity by comparing the per-
formance of the algorithm at hand with best possible finite
set of r atoms. Indeed, Theorem 1 is somewhat weaker than
a classical convergence result. Instead of providing a rate
on closeness to the optimum after k iterations, it provides
a contraction factor on how close the algorithm gets to the
best possible r steps that any algorithm could have taken.
The theoretical best possible r samples could even come
from an exhaustive combinatorial and computationally hard
search over the entire space. However, by choosing only
a multiplicative O(log 1

ε ) number of extra atoms through
the greedy selection processes in WKH or SBQ, we can get
provably close to best-case performance.



 The SBQ algorithm is equivalent to Algorithm 1, after re-
placing (5) in Step 4 with (7). Thus, WKH solves a linear
program every iteration, while SBQ solves a kernel `2 mini-
mization problem. The decrease in the cost function (8) per
iteration of SBQ is more than its decrease per iteration of
WKH. Thus, Theorem 1 also recovers the special case of
SBQ for discrete densities studied by Khanna et al. [2019]
by exploiting connections to weak submodularity. Their
result is also an approximation guarantee (not global con-
vergence guarantee), and only applies for SBQ. Our result
is also valid for WKH and provides an alternative proof for
SBQ without exploiting weak submodularity.

4.1 REALIZABILITY

Theorem 1 in itself is quite general – it holds for any ker-
nel of arbitrary dimensionality. Here, we further specialize
Theorem 1 and provide a sufficient condition under which
the convergence rate is geometric (instead of being near-
geometric). We encapsulate this sufficient condition as the
assumption of realizability.

Assumption 3 (Realizability). There exists a set S?r of r
atoms, and weights w∗, such that g(S?r ,w

∗) = 0.

Assumption 3 posits that there exists a set of atoms in the
mapped domain φ(X ) whose weighted average exactly eval-
uates to the expectation µπ so that the discrepancy g is 0. If
the RKHS is universal, this is equivalent to assuming that π
is finitely atomic. Otherwise, realizability can be achieved
with finite-dimensional kernels. By considering the assump-
tion of realizability, we are able to investigate convergence
rates independently from the capacity of the target measure
π to be approximated (under MMD) by an atomic distribu-
tion. Furthermore, in some common use-cases, such as the
data summarization task in Section 6, the target measure π is
finitely atomic, in which case, realizability is automatically
satisfied.

Theorem 2. Under Assumptions 1 through 3, if Si is
the sequence of iterates produced by Algorithm 1 (WKH
or SBQ), the function g converges as minw g(Si,w) ≤
exp(− imω

rMΩ
)g(∅, 0).

Proof Outline. The central idea of the proof is to track and
bound the selection of a sample at each iteration, compared
to the ideal selection S?r that could have provided the op-
timum solution. For this purpose, the properties of the se-
lection subproblem (5) and the assumptions are used. The
detailed proof is presented in the Appendix A.1.

Theorem 2 provides a linear convergence rate for WKH un-
der the conditions specified in Assumptions 1 through 3.
Recall that Bach et al. [2012] also provided a linear rate for
finite dimensional kernels by drawing on the equivalence of
the herding algorithm to the Frank–Wolfe algorithm. Their

rate is O(exp (−b2m/R2)), where b is the distance of the
optimum from the boundary of the marginal polytope and R
is the width of the marginal polytope. Our result is indepen-
dent of these constants. As long as Assumption 3 is satisfied,
our work shows that exponential convergence is guaranteed.
To the best of our knowledge, such a sufficient condition for
these harder cases has not been previously been established.

Let us also briefly discuss the case where Assumption 3
is not satisfied, but π is ε-close under MMD to a finitely
atomic measure π̃ that does satisfy Assumption 3. Using the
triangle inequality for MMD, it is straightforward to show
that minw g(Si,w) ≤ exp(− imω

rMΩ
)g(∅, 0) + 2ε, suggesting

near-exponential convergence in these settings. Indeed, in
cases where ε is small relative to g(∅, 0), this could explain
the excellent empirical performance seen for WKH and
SBQ.

5 DISTRIBUTED KERNEL HERDING

In many cases, the search over the domain X can be a
severe computational bottleneck to practical use. In this
section, we develop a new herding algorithm that can be
distributed over multiple machines and run in a streaming
map-reduce fashion. We also provide a quick convergence
analysis, using techniques presented in Section 4.

The algorithm proceeds as follows. The domain X is split
onto s machines uniformly at random. Each of the s ma-
chines has access to only Xi ⊂ X , such that

⋃
i Xi = X and

Xi ∩ Xj = ∅ for i 6= j. Each machine runs its own herding
algorithm (Algorithm 1) independently, by restricting the
search space in (5) to Xi, instead of X . Finally, the iterates
generated by each machine are sent to a central server ma-
chine. The server collates the samples by running another
copy of the same algorithm, with X replaced by the discrete
set of samples received. Finally, the best solution out of all
the s+1 solutions is returned. The pseudo-code is illustrated
in Algorithm 2. In what follows, we provide a convergence
guarantee in the case of realizability for a single atom.

Algorithm 2 Distributed Kernel Herding: Dist(X , k)

1: INPUT:kernel function k(·, ·), number of iterations k
2: Partition X ⊃ Xi, i ∈ [s] uniformly at random and

transmit Xi to machine i
3: //Receive solution sets
4: Gi,wi ←WKH(Xi, k) // run in parallel ∀i ∈ [s]
5: Y = ∪iGi
6: Gs+1,ws+1 ←WKH(Y , k)
7: i? ← argmini∈[s+1] g(Gi,wi)
8: return Gi? , wi?

Theorem 3. Under Assumption 1 with r = 1, and As-
sumptions 2 and 3, if Si is the sequence of iterates pro-
duced by Algorithm 2, the function g(·) converges as



 Eminw g(Si,w) ≤ exp(− imω

rMΩ
)g(∅, 0).

Proof Sketch: Note that the final set of filtered iterates out-
putted are the best out of (s+ 1) possible sequences. The
proof tracks the possibilities for S?1 when X is split. The
goal is to then show that under all possible scenarios, at least
one of the sequences converges linearly. The convergence of
individual sequences is based on the proof techniques used
in proof of Theorem 2. The proof is in Appendix A.4.

We remark that, for the more general case of r > 1, our
proof technique does not give a non-trivial convergence rate.
This is likely an artifact of our proof technique, and improv-
ing it is an interesting open question for future research.
Nevertheless, as we shall see in the following section, the
algorithm displays improved performance in practice.

6 EXPERIMENTS

We refer the readers to earlier works for empirical evidence
of the relative performance of the Herding and SBQ algo-
rithms [Bach et al., 2012, Chen et al., 2010, Welling and
Chen, 2010, Welling, 2009a,b, Huszar and Duvenaud, 2012,
Ghahramani and Rasmussen, 2003]. In this section, we fo-
cus on studying the distributed versions of these algorithms
to illustrate the speed / accuracy tradeoff.

6.1 MATCHING A DISTRIBUTION

In this study, our goal is to show the tradeoff between per-
formance and scalability when WKH/SBQ are distributed
over multiple machines. Towards this end, we extend an
experiment considered in Chen et al. [2010], Huszar and
Duvenaud [2012]. In this experiment, the target density is a
mixture of 20 two-dimensional Gaussian distributions. Sam-
ples are chosen by the contending algorithms, and the MMD
distance of the sample distribution to the target distribution
is reported for different number of samples.

The sampling subroutine (step 4 in Algorithm 1) requires
solving an optimization problem over a continuous domain.
To make the problem easier, Chen et al. [2010] and Huszar
and Duvenaud [2012] first select 10000 points uniformly at
random as the set of potential candidates. They note that this
does not affect the performance of chosen samples by much.
We also adopt the same methodology with the additional
step of arbitrarily partitioning these points over s machines
for s = 1, 5. Our objective is to illustrate the degradation of
performance due to partitioning in Algorithm 2.

The results are reported in Figure 1. SBQ-5 and WKH-5
are distributed versions of SBQ and WKH respectively, run
over 5 machines. The labels SBQ and WKH are for their
respective single machine versions. Since the search space is
split and the search step is parallelized, we receive a five-fold
speedup in the algorithms, with a graceful degradation in the
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M
M
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Figure 1: Simulated data results for distributed SBQ/WKH.
Herding is WKH with uniform weights. SBQ/WKH are
single machine algorithms, while SBQ-5/WKH-5 are their
respective distributed versions.

reported MMD. We notice a similar pattern of degradation
for larger number of machines, but this is omitted from the
graph to avoid overcrowding.

6.2 DATA SUMMARIZATION

In this study, we apply Algorithm 2 to the task of data sum-
marization under logistic regression, as considered by Hug-
gins et al. [2016]. The task of data summarization is as
follows. The goal is to select a few data samples that repre-
sent the data distribution sufficiently well, so that a model
built on the selected subsample of the training data does
not degrade too much in performance on unseen test data.
More specifically, we are interested in approximating the
test distribution (i.e., discrete π) using a few samples from
the training set. Hence, algorithms such as SBQ and WKH
are applicable, provided we have a reasonable kernel func-
tion. Recently, Khanna et al. [2019] used SBQ with Fisher
Kernels [Jaakkola and Haussler, 1999] for this task. By us-
ing the distributed SBQ/WKH over s machines, we obtain a
roughly s-times speedup on the run time with minimal loss
in the log-likelihood of the selected sample when compared
to the results of Khanna et al. [2019] for this task across
three different datasets namely ChemReact, CovType
and WebSpam.

Fisher kernels: For completion, we provide a brief overview
of constructing the Fisher kernels. Suppose that we have a
parametric model that we learn using maximum likelihood
estimation, i.e., θ̂ := argmax log p(X|θ), where θ repre-
sents the model parameters and X represents the data. The
notion of similarity that Fisher kernels employ is that if two
objects are structurally similar as the model sees them, then
slight perturbations in the neighborhood of the fitted param-
eters θ̂ would impact the fit of the two objects similarly. In
other words, the feature embedding fi :=

∂ log p(Xi|θ)
∂θ |θ=θ̂,

for an object Xi → fi can be interpreted as a feature map-
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Figure 2: Performance for logistic regression over three
datasets for variants of sampling methods. ‘Full’ reports the
numbers for training with the entire training set. For the
algorithms s-SBQ and s-WKH, s represents the number
of machines used to select the samples. WKH and SBQ
represent single machine versions of the algorithms for the
smallest dataset, the other two datasets were too big to run
on a single machine. The s-WKH-1 experiment is obtained
by using only the output of a single split out of s of the
dataset run on only one of the machines. Across the three
different datasets, the distributed versions of SBQ/WKH
proposed in this paper show minimal loss in accuracy while
achieving almost linear speedup.

ping which can then be used to define a similarity kernel by
a weighted dot product:

κ(Xi,Xj) := f>i I−1fj ,

where the matrix I := Ep(X)

[
∂ log p(X|θ)

∂θ

> ∂ log p(X|θ)
∂θ

]
is the Fisher information matrix. The information matrix
serves to re-scale the dot product, and it is often taken as
identity as it loses significance in limit [Jaakkola and Haus-
sler, 1999]. The corresponding kernel is then called the
practical Fisher kernel, and it is often used in practice.

Another method that also aims to do training data summa-
rization is that of coreset selection [Huggins et al., 2016],
albeit with a different goal of reducing the training data
size for optimization speedup while still maintaining guar-
anteed approximation to the training likelihood. Since the
goal itself is optimization speedup, coreset selection algo-
rithms typically employ fast methods, while still trying to
capture the data distribution by proxy of the training likeli-
hood. Moreover, the coreset selection algorithm is usually
closely tied with the respective model, as opposed to being
a model-agnostic.

We employ different variants of WKH/SBQ to the problem
of training data summarization under logistic regression,
as considered by Huggins et al. [2016] using coreset con-
struction. We experiment using three datasets ChemReact,
CovType and WebSpam. ChemReact consists of 26, 733
chemicals each of feature size 100. Out of these, 2500 are
test data points. The prediction variable is 0/1 and signifies
if a chemical is reactive. CovType has 581, 012 examples
each of feature size 54. Out of these, 29, 000 are test points.
The task is to predict whether a type of tree is present in each
location or not. WebSpam has 350,000 webpages each hav-
ing 127 features. Out of these, 50, 000 are test data points.
The task here is to predict whether a webpage is spam or not.
We refer to Huggins et al. [2016] for source of the datasets.

In each of the datasets, we further randomly split the train-
ing data into 10% validation and 90% training. We train the
logistic regression model on the new training data, and we
use the validation set as a proxy to the unseen test set distri-
bution. We build the kernel matrix K and the affinity vector
z, and we run different variants of sampling algorithms to
choose samples from the training set to approximate the
discrete validation set distribution in the Fisher kernel space.
Once the training set samples are extracted, we rebuild the
logistic regression model only on the selected samples, and
we report negative test likelihood on unseen test data to
show how well has the respective algorithm built a model
specific dataset summary.

ChemReact is small enough to fit on a single machine, so
we run WKH and SBQ on a single machine. To present the
tradeoff, we also run 5-WKH and 5-SBQ. These are about 5
times faster than their single machine counterparts, but they
degrade in predictive performance. Our aim is to compare



 distributed WKH/SBQ against their single machine coun-
terparts. For completeness, we also include the results of
coreset selection algorithm and random data selection as im-
plemented by Huggins et al. [2016], since these algorithms
were tested by Khanna et al. [2019] on the same problem.
To keep the focus on our goal of distributing WKH/SBQ,
we do not compare against other coreset algorithms, since
coreset construction is not the central goal of this paper. We
note that generally SBQ has better performance numbers
than WKH for same k across different values of k. Note that
WebSpam and CovType were too big to run on a single
machine, and they are thus perfect examples to illustrate the
impact and usefulness of the distributed algorithm. All the
experiments were run on 12-core 16Gb RAM machines. For
all the experiments we conducted, the variance over multiple
runs of the distributed algorithm was very low (almost 0),
and the trend of relative performance remained the same.

The results are presented in Figure 2. The algorithms we run
are WKH, SBQ, s-SBQ and s-WKH, where s represents the
number of machines used to select m samples for different
values of m. The s-WKH-1 experiment is obtained by using
only the output of a single split out of s of the dataset run
on only one of the machines (as was done by Khanna et al.
[2019] to scale up since they do not have the distributed
algorithm to work with). For completeness, we also include
“Random” which selects the data points uniformly at random,
and “Coreset” which was proposed by Huggins et al. [2016].

7 CONCLUSION

We have analysed two existing algorithms — WKH and
SBQ — as well as a new distributed algorithm for estimat-
ing expectations. Our results help to bridge the gap between
theory and empirical performance by showing that these
algorithms perform comparably to the theoretical best pos-
sible sampling method over MMD, and exhibit geometric
convergence rates for finitely atomic target measures. Our
realizability assumption is the key insight that allows us to
improve upon previous results. However, we were unable
to develop convergence rates for the distributed algorithm
over arbitrary atomic target measures using the techniques
presented. Developing new methods to address this is the
subject of future work.
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