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Abstract

Quantifying the probability of a label prediction
being correct on a given test point or a given sub-
population enables users to better decide how to
use and when to trust machine learning derived pre-
dictors. In this work, combining aspects of prior
work on conformal predictions and selective classi-
fication, we provide a unifying framework for con-
fidence requirements that allows for distinguishing
between various sources of uncertainty in the learn-
ing process as well as various region specifications.
We then consider a set of common prior assump-
tions on the data generating process and show how
these allow learning justifiably trusted predictors.

1 INTRODUCTION

Quantifying the certainty in the output of a predictor is
important for instilling (and justifying) trust in decision
making that is based on machine learning. Standard (statisti-
cal) techniques for ensuring and measuring the quality of a
learned predictor fall short of providing reliable and easily
interpretable notions of confidence for specific predictions.
Bayesian statistical tools often come with confidence scores
on predictions. However, these rely on having chosen a good
prior and are easily misinterpreted by users that are not well-
versed in Bayesian decision making. On the other end of
the spectrum, PAC-type learning theoretic frameworks are
designed to provide general, ideally assumption-free guar-
antees. They ensure low mistake probability over the data-
generating process. However, arguably, such a promise can
be void when called to provide confidence in the predictions
on specific instances or specific sub-regions of the space.
In this work, we provide a (non-Bayesian, PAC-inspired)
framework for learning predictors that come with instance
or region-wise guarantees. While much of the earlier work
in the PAC-inspired setup (Shafer and Vovk [2008], Lei

and Wasserman [2014], Lei [2014], Foygel Barber et al.
[2020]) took a distribution-free approach, the insight that
drives our investigations is that confidence in any prediction
of unknown information inherently relies on prior domain
knowledge. In a PAC-type setup, such knowledge can be
expressed as a restriction on the data generating process
and a suitable choice of hypothesis class. We examine the
problem of confidence in predictions under several common
types of such assumptions.

Our setup can be viewed as inspired by two lines of research
of similar aim: as in the framework of conformal predictions
(Shafer and Vovk [2008]) our confidence-instilling predic-
tors provide coverage sets (subsets of the output space) for
the possible labeling of instances. And as the framework of
selective classification or learning with abstentions [Bartlett
and Wegkamp, 2008, Yuan and Wegkamp, 2010, Freund
et al., 2004, Herbei and Wegkamp, 2006, Kalai et al., 2012],
we distill out a trade-off between the validity of the pro-
vided prediction (in the case of coverage sets, a prediction
is valid, if the coverage set includes the true target) and the
non-triviality of such a coverage-set-predictor (validity can
be trivially achieved by outputting the full set of possible
targets; a coverage set therefore should only be considered
useful if on many instances the coverage set is a singleton
or at least sufficiently small).

In this work we consider binary classification tasks, and
provide a unifying framework for confidence requirements
that allows for distinguishing between various sources of
uncertainty as well as various region specifications. Sources
of uncertainty in statistical learning include the randomness
of the chosen training sample, the randomness in the choice
of a test-point, as well as the stochasticity in the label gener-
ation at some instance. To account specifically for the latter,
we introduce coverage set learning not only for the labels in
the classification task, but also for the conditional labeling
function (CLF). A user may require confidence in predic-
tions over the whole domain, only for a specific sub-region,
a collection of such regions or specific points. We model
this by defining notions of domain-wide, region-wide or
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 point-wise validity and non-triviality.

Finally, we provide a variety of (standard) scenarios where
the success requirements of our framework can be realized.
We present successful CLF-coverage set learners under as-
sumption of the CLF satisfying a Lipschitz condition for
user specified regions. Under some mixture model scenar-
ios we identify scenarios of domain-wide successful CLF-
learning. Additionally, we show how to identify regions for
successful label-coverage set predictors under an assump-
tion low approximation error by some hypothesis class.

1.1 RELATED WORK

Quantification of confidence in predictions are often derived
in Bayesian learning setups. Such quantification inevitably
rely on the quality of and confidence in the priors applied
in the Bayesian reasoning framework [Barber, 2012]. In
this work, we take a non-Bayesian perspective and therefore
focus on discussing prior work that also developed notions
of confidence in statistical learning theoretic setups. There
is one recent paper that developed confidence scores in a
non-Bayesian framework [Jiang et al., 2018]. The theoreti-
cal results in that study differ from our work. It suggests one
algorithmic approach to generating confidence scores. The
validity of these confidence scores relies on several technical
assumptions on the data-generating process. In this work, we
take a step back and aim at developing a general framework
for the meaning and validity of confidence in learned predic-
tion and then provide several concrete scenarios where such
confident predictions can be derived. The two lines of prior
work that are most relevant to our setup are learning con-
formal predictors [Lei and Wasserman, 2014, Vovk, 2013,
Foygel Barber et al., 2020] and the PAC-type framework of
learning with abstention or selective classification [Bartlett
and Wegkamp, 2008, Yuan and Wegkamp, 2010, Freund
et al., 2004, Herbei and Wegkamp, 2006, Kalai et al., 2012].
We here briefly outline how our work differs from existing
literature in these setups. An extended discussion can be
found in Section B in the appendix.

As we do in this work, conformal mappings also provide
coverage sets (instead singleton predictions), that is, regions
in the label space that are guaranteed, with high probability,
to contain the true label value. In brief, the conformal map-
pings literature differs from our work in several key aspects:
In most setups the probability there is the joint probability
over the training data and the probability over a newly arriv-
ing test-point. Most guarantees there are distribution-free,
requiring only that the data is exchangable (the common i.i.d.
assumption is a special case of exchangeablility). Further-
more, most of the conformal prediction literature considers
online-settings and focuses on multiclass classification or
regression. In our setup, we distinguish the randomness that
comes from the sampling of the training set and the random-
ness that comes from sampling a new instance. Furthermore,

we consider a binary classification setting. In addition to
analysing point-wise and region-specific guarantees for la-
bel coverage sets we also propose the use of coverage sets
for the conditional labelling function (CLF) instead of the la-
bel itself. Some prior work on conformal prediction also ex-
plores guarantees conditioned on subsets or elements of the
domain [Lei and Wasserman, 2014, Vovk, 2013, Foygel Bar-
ber et al., 2020]. The probabilities here, however, are still
aggregated over the generation of the training set and on the
randomness of the instance to be classified. Several stud-
ies have provided impossibility results for distribution free
point-wise or general region-wise guarantees [Vovk, 2013,
Lei and Wasserman, 2014, Foygel Barber et al., 2020]. The
latter study poses the question of whether the impossibility
of non-trivial point-wise guarantees or region-specific guar-
antees for greater collections of subsets can be overcome by
additional distributional assumptions. We explicitly address
this question here.

In selective classification, a classifier is allowed to abstain
from making a prediction. Many works in this line provide
accuracy guarantees that hold with high probability over the
domain [Bartlett and Wegkamp, 2008, Yuan and Wegkamp,
2010, Freund et al., 2004, Herbei and Wegkamp, 2006, Kalai
et al., 2012]. However, in contrast to our work, that line of
work generally does not aim at point-wise or region-wise
guarantees, does not consider learning of the conditional
labeling rule and does not distinguish uncertainty from train-
ing data or in the labeling rule. Some point-wise guarantees
are provided in earlier work [El-Yaniv and Wiener, 2010,
Wiener and El-Yaniv, 2015]. The former study gave a theo-
retical analysis of the selective classification setup in which
a classification function and a selective function are learned
simultaneously [El-Yaniv and Wiener, 2010]. They also
study the trade-off between (in our terminology) validity
and non-triviality and develop an optimal learning strategy
for learning classifiers that are perfectly valid. However,
those results are derived under the rather restrictive realiz-
ability assumption and thus do not allow for stochasticity in
the labeling rule as our setup and analysis does.

We instantiate our notions under three different types of
standard assumptions on the data-generating process: Ac-
cess to a hypothesis class that has low approximation error,
Lipschitzness of the CLF and a generative (for example
Gaussian) mixture mode. Low approximation error is a stan-
dard assumption in statistical learning theory (e.g., Shalev-
Shwartz and Ben-David [2014]). Smooth behaviour of the
CLF (such as Lipschitzness and related notions) is com-
monly assumed in non-parametric learning setups, for ex-
ample nearest neighbor type learning (Shakhnarovich et al.
[2008]). Learning of mixtures, Gaussian mixtures specifi-
cally, has been extensively studied in terms of parameter
estimation [Kwon and Caramanis, 2020, Moitra and Valiant,
2010], classification [Li et al., 2017] and density estimation
[Ashtiani et al., 2020], see also appendix Section B.



 1.2 SUMMARY OF CONTRIBUTIONS

In this work, we study a variety of distributional assumptions
under which we can identify regions (these could be the full
space, a set of sub-regions of the space or a collection of
points) where valid and non-trivial coverage set predictions
can be learned. We demonstrate how these scenarios allow
for identification of regions for trusted predictions. Addition-
ally, in several of these setups we also show how unlabeled
data can be employed to improve the non-triviality of our
learned predictors. Our contributions can be summarized as
follows:

• Formal framework for coverage set learnability We
adapt notions of coverage set learning for classifica-
tion and learning of CLF-functions and introduce a
PAC-like framework of learning success. Our defi-
nitions allow for distinguishing between the various
sources of uncertainty (the training data, its relation
to the test point and stochasticity in label-generation
given a point), and allow for various types of regions
where trusted predictions may be required (domain-
wide, region-wise, point-wise). Our definitions further
make explicit the trade-off between validity and non-
triviality. We then instantiate our notions under three
different scenarios for the data-generating process.

• Lipschitzness of the CLF The first scenario that we
consider is that the CLF-function of the data-generating
process satisfies a Lipschitz condition. This is a stan-
dard assumption in non-parametric learning settings.
We present a successful CLF-coverage learning algo-
rithm that achieves point-wise validity and domain-
wide non-triviality (with coverage intervals that de-
crease with the size of the input sample).

• Low approximation error by a hypothesis class H
Under prior knowledge of a learnable hypothesis class
of low approximation error, given a collection of re-
gions, we show how to construct coverage sets satis-
fying region-conditional validity with respect to that
collection. We show how to identify regions that al-
low for non-trivial validity. More specifically, we show
that identifying regions that have sufficient probability
mass or are areas of high decisiveness (a novel notion
that we introduce) of the class H suffices for region-
wise validity and non-triviality guarantees. Further, we
demonstrate that these can be identified with the use of
unlabeled data.

• Mixture models We show how the problem of valid
and non-trivial CLF-coverage set learning can be re-
duced to CLF-learning in L1-distance and also to the
notion of p-concept learning. We then show that the
problem of constructing coverage sets with domain
validity and domain non-triviality can be reduced to
the problem of learning the positive and negative com-
ponents of a mixture model in total variation distance.

• Reductions We also systematically analyze the (infor-
mation theoretic) difficulties of various related learning
problems. We show that sample complexities of binary
classification, coverage-set learning, and marginal dis-
tribution learning are in strictly increasing order.

2 SETUP

We use a standard learning theoretic setup. We let X denote
some domain or feature space and Y = {0, 1} a binary label
space. We assume that data is generated by a probability
distribution P over X × Y , let lP (x) = P(X,Y )∼P [Y =
1|X = x] denote the corresponding conditional labeling
function (CLF) (a real valued function) and PX denote
the corresponding marginal distribution over the domain
X . A hypothesis or classifier is a function h : X → Y
and a hypothesis class H is a set of hypotheses. In a stan-
dard learning setting, a learner A takes in a sequence
S = ((x1, y1), (x2, y2), . . . , (xn, yn)) of labeled domain
points and outputs a hypothesis h = A(S). The quality of
prediction of a hypothesis h on sample (x, y) is measured
by a loss function `. For classification tasks we typically use
the binary loss

`0/1(h, x, y) = 1 [h(x) 6= y] .

The goal for the learner is to output a hypothesis h of low
expected loss L0/1

P (h) = E(X,Y )∼P
[
`0/1(h,X, Y )

]
over

the data-generating distribution. We let L0/1
S (h) denote the

empirical loss with respect to data S (that is, the expected
loss with respect to the uniform distribution over S).

For a distribution P over X × {0, 1}, we let h∗P denote
the Bayes classifier, that is the classifier with minimal ex-
pected binary loss with respect to P . We have h∗P (x) = 1
if lP (x) ≥ 1/2 and h∗P (x) = 0 otherwise. For a hypothe-
sis class H , we let optP (H) = infh∈HL0/1

P (h) denote the
approximation error of the class H .

In our setting, we would like to learn functions that output
sets of labels (that are aimed to contain the true labels),
rather than single values. A label-coverage-hypothesis is a
function c : X → {{0}, {1}, {0, 1}}.

Definition 1 (Label Coverage Set Learner). A label cov-
erage set learner A takes as input a labelled training set
S = {(x1, y1), . . . , (xn, yn)} and outputs a label-coverage-
hypothesis.

We are also interested in learning functions that can provide
coverage guarantees for the the conditional labeling function.
A CLF-coverage-hypothesis is a function r : X → {[a, b] :
a ≤ b ∈ [0, 1]}

Definition 2 (CLF-Coverage Set Learner). A CLF-coverage
set learner A takes as input a labelled training set
S = {(x1, y1), . . . , (xn, yn)} and outputs a CLF-coverage-
hypothesis.



 We use coverage set, coverage hypothesis and coverage set
learner as umbrella terms for the label and CLF-coverage
set learning settings. Success for a coverage set hypothesis
is a combination of two competing requirements. Firstly,
we would like the output set for a domain point x to be a
valid coverage, in the sense that it contains the true/observed
label (or the true conditional label probability in the case of
CLF learning). This requirement however can be trivially
met by a coverage set hypothesis that always outputs the
full set of options (all of Y in the case of label coverage or
the full interval [0, 1] in the case of CLF-coverage). Such a
hypothesis would be valid everywhere, however at the same
time pretty useless. To provide meaningful information, we
need to additionally require that the coverage hypothesis,
on a substantial portion of the space, outputs a small set of
of options. For label coverage, we will require a coverage
set to be a singleton to be considered meaningful, while
for CLF-coverage we will require the output to be a short
interval. Below, we formalize these notions of validity and
non-triviality requirements.

For validity requirements, we will distinguish three levels:
We may require that the output coverage sets are valid over
the full domain (with high probability), conditioned on being
in a region or point-wise.

Definition 3 (Validity). Let c and r denote a label and
a CLF-coverage set hypotheses, respectively. Let P be a
distribution over X × Y and α > 0 a confidence parameter.

• We say the coverage set hypothesis satisfies α-domain-
validity (are α-domain-valid) with respect to P if we
have

P(X,Y )∼P [Y ∈ c(X)] ≥ α and

PX∼PX [lP (X) ∈ r(X)] ≥ α

respectively.

• For a subset B ⊆ X of the domain, we say that they
satisfy α-region-conditional validity in B with respect
to P if we have

P(X,Y )∼P [Y ∈ c(X)|X ∈ B] ≥ α and

PX∼P [lP (X) ∈ r(X)|X ∈ B] ≥ α

respectively.

• We say that the label coverage hypothesis c satisfies
α-point-wise validity at point x ∈ X with respect to P ,
if we have

P(Y∼P (Y |x))[Y ∈ c(x)] ≥ α

and we say that CLF-coverage hypothesis r satisfies
point-wise validity at x ∈ X if lP (x) ∈ r(x).

For a collection B ⊆ 2X , we also speak of region-wise
validity for B if the above condition holds for all regions

B ∈ B. Similarly, we simply refer to point-wise validity if
the above condition holds for (almost) all x ∈ X .

Similarly, non-triviality can be required (with high probabil-
ity) over the full domain or conditioned on sub-regions of
interest. For the output interval [a, b] = r(x) ⊆ [0, 1] of a
CLF-coverage function, we let µ([a, b]) = |b−a| denote the
length of the output interval. While a label coverage output
would be considered non-trivial if contains a unique label,
this is too strong a requirement for CLF-coverage function.
For the latter, we introduce an additional parameter γ cor-
responding to a to bound on the length of an interval that
would be considered a non-trivial prediction.

Definition 4 (Non-triviality). Let c and r be label- and CLF-
coverage set hypotheses, P be a distribution over X × Y ,
β > 0 a confidence parameter and γ > 0 a length-tolerance
parameter. We say that c satisfies β-domain-non-triviality
with respect to P , if

PX∼PX [c(X) 6= {0, 1}] ≥ β.

and that r has (β, γ)-domain-non-triviality if

PX∼PX [µ(r(X)) ≤ γ] ≥ β.

Analogously to validity, non-trivality can also be defined
for a specified region B ⊆ X by using the appropriate
conditional probabilities.

These quality criteria for coverage set hypotheses give rise
to the following notion of success for a coverage set learner:

Definition 5 ((α, β, δ)- and (α, β, γ, δ)-successful coverage
set learning). Let P be a class of distributions. A label
coverage set learner A is domain wide (α, β, δ)-successful
for P if for all triples of parameters (α, β, δ) ∈ (0, 1]3,
there exists an m(α, β, δ) such that for all m ≥ m(α, β, δ)
and all P ∈ P the probability over the generation of an i.i.d.
S of size m that A(S) is α-domain-valid and β-domain-
non-trivial is greater than 1- δ.

Analogously, we can define region successful (with respect to
a collection of regions B ⊆ 2X ) and point-wise successful
(α, β, δ) label coverage set learners. Additionally, we can
analogously phrase the requirements for CLF-coverage set
learner to be (α, β, γ, δ)-successful ((β, γ, δ)-successful in
the case of point-wise CLF-coverage learning) by adding
an the additional tolerance parameter γ.

The sample complexity of domain wide/region/point wise
coverage set learning is the (point-wise) smallest function
for which there exists a learner A satisfying the above defi-
nition.

We note that the standard PAC-learning setup can be viewed
as an extreme case of (α, β, δ)-successful learning. Here,
a standard hypothesis that outputs just one label for every
point is required to be correct with confidence (1−δ) except



 for an error allowance of ε. Thus the output is everywhere
non-trivial, and our notion of validity corresponds to the
usual notion of accuracy. The trade-off between domain-
validity and non-triviality has been discussed earlier for a
PAC-type setting of “selective classification” (classification
with a reject option) [El-Yaniv and Wiener, 2010]. While the
original PAC framework incorporated requirements on com-
putational complexity of the learning algorithms [Valiant,
1984], in this work we focus on its component of statistical
(sample) complexity, as is common [Shalev-Shwartz and
Ben-David, 2014].

We also note that label coverage and CLF coverage are re-
lated. Given a label coverage hypothesis we can construct a
CLF coverage hypothesis and vice versa. The label coverage
hypothesis constructed from the CLF coverage hypothesis
is close to optimal in terms of validity/non-triviality if the
CLF coverage hypothesis fulfills point-wise validity and has
good levels of non-triviality. For a more detailed discussion
we refer the reader to the appendix.

3 LIPSCHITZNESS

In this section, we assume that the generating distribution
satisfies Lipschitzness, which we define below. We also
assume that the domain X is [0, 1]d

Definition 6. A distribution P over X × {0, 1} satisfies λ-
Lipschitzness for λ > 0, with respect to a metric d(., .) over
X if for every x, x′ ∈ X , |lP (x)− lP (x′)| ≤ λd(x, x′).

Under the assumption that the generating distribution is Lip-
schitz and that an upper bound on the Lipschitz constant λ
is known, we provide a CLF-coverage learner (Algorithm 1)
for which we show the strongest validity and non-triviality
guarantees – point-wise validity and domain non-triviality.
We also identify conditions on points that lead to more nar-
row CLF-coverage sets.

The CLF-coverage learner is defined as Algorithm 1. This
algorithm partitions the domain into cells. The input pa-
rameter r to the algorithm determines the size of the cells.
For each cell t, the algorithm then calculates the average
label ˆ̀[t] of samples in the cell. This is an estimate of the
expected label conditioned upon membership in the cell.
The algorithm calculates a confidence interval (of width
w[t]) for this estimate, based on the number of samples in
the cell. The confidence interval is more narrow for cells
containing many samples. The algorithm assigns all points
in a cell the same CLF-coverage. The CLF coverage for a
point x contained in a cell tx is an interval centered at ˆ̀[tx]
and having width w[tx] + rλ

√
2.

Theorem 1 now states the point-wise non-triviality guarantee
of the CLF-coverage sets provided by Algorithm 1.

Algorithm 1 Lipschitz CLF-coverage learner

Input: Test point x, Labelled samples S = (xi, yi)
m
i=1,

Radius r, Estimation parameter δ,
Lipschitz constant λ

Output: Labelling probability estimate, confidence
width of estimate
Split the domain X = [0, 1]d into a grid of (1/r)d hyper-
cube cells each of side length r.
Find the cell tx containing the test point x.
p̂[tx] := fraction of samples in tx.

wp(m, δ) :=
√

1
2m ln 2

δ .

w`(m, δ, p̂[tx]) :=
2wp(m,δ/2)

p̂[tx]−wp(m,δ/2)

ˆ̀[tx] := fraction of samples in the cell tx with label 1.
w[tx] := 1
if p̂[tx]− wp(m, δ/2) > 0 then

w[tx] := w`(m, δ, p̂[tx])
end if

IS,r,λ(x) :=

(
max(0, ˆ̀[tx]− w[tx]− rλ

√
2),

min(1, ˆ̀[tx] + w[tx] + rλ
√

2))

)
Return IS,r,λ(x)
Namely, the CLF-coverage set for x is the interval
IS,r,λ(x) centered at ˆ̀[tx] with width 2(w[tx] + rλ

√
2).

Theorem 1. Let the domain be [0, 1]d. Suppose the data
generating distribution P satisfies λ-Lipschitzness. For any
r > 0, δ > 0, with probability at least 1− δ over the gener-
ation of the sample S, Algorithm 1 with input parameters
S, r, δ, λ yields a CLF-coverage set having point-wise valid-
ity (see definition 3).

We now show in Theorem 2 that as sample size increases,
for an appropriately chosen input parameter r, Algorithm 1
returns a CLF-coverage hypothesis with large domain non-
triviality. Theorem 2 shows that for large enough sample
sizes, most domain points have CLF-coverage sets with
small widths.

Theorem 2. For every λ-Lipschitz distribution, for ev-
ery εx, εc, δ > 0, there is a sample size m(εx, εc, δ)
such that with probability at least 1 − δ over samples S
of size m(εx, εc, δ), Algorithm 1 with input parameters
S, r = 1/m

1
8d , δ, λ yields a CLF-coverage set having

(1− εc, 1− εx)-domain non-triviality (see definition 4).

Further, we note that Algorithm 1 runs in time polynomial in
the sample complexity. With standard arguments (replacing
the grid type partition in Algorithm 1 with a more efficient



 coverage with cells of small diameter), it can be seen that
the sample complexity’s dependence on the dimension d can
be replaced with the intrinsic dimension of data generating
distribution’s support.

4 FUNCTION CLASS WITH LOW
APPROXIMATION ERROR

We assume that the function class H has approximation
error – optP (H) less than εapprox. That is, we know that
minh∈H L0/1

P (h) ≤ εapprox. Under this assumption, given
a collection B of subsets of the domain and given a target
α parameter of validity, we construct a semi-supervised la-
bel coverage set learner based on labelled samples Sl and
unlabelled samples Su, drawn i.i.d. from the underlying
distribution and the underlying marginal distribution respec-
tively. We show that, with high probability over the sample
generation, the learner yields a label coverage hypothsis
with α-region-conditional validity relative to B. We identify
conditions on regions that yield non-trivial coverage-sets.

Let hH(Sl) denote an empirical risk minimizer, from
the class H , for the sample Sl. That is, hH(Sl) ∈
argminh∈HL

0/1
Sl

(h). The error of a classifier h w.r.t. the dis-
tribution P , conditioned upon membership in a set B ⊆ X
is defined as

L0/1
P |B(h) = P(X,Y )∼P [h(X) 6= Y |X ∈ B].

We start by showing how to obtain an upper bound on
L0/1
P |B(hH(Sl)), for a given B ⊆ X . We later show how

to use the region-conditional generalization bound to find
valid label coverage sets for the collection B. Regions with
low conditional generalization errors (lower than the valid-
ity parameter 1 − α) are given non-trivial coverage sets.
We identify niceness conditions for regions that allow for
low conditional generalization bounds and hence non-trivial
coverage sets. We also show how to test if these conditions
are satisfied using Sl and Su.

The first condition that allows for low conditional-
generalization bounds is high probability weight of the re-
gion. For any B ⊆ X , we can use the unlabelled data (Su)
to estimate its probability weight. The following theorem
shows how to obtain a region-conditional generalization
bound for a region B based on the fraction of samples that
lie in B. Here, a larger fraction of points in the region leads
to a smaller generalization bound.

Theorem 3. For every B ⊆ X , for any classifier h : X →
{0, 1}, let

L0/1
Sl,B

(h) =
|(x, y) ∈ Sl : x ∈ B, h(x) 6= y|

|Sl|
.

For any δ > 0, with probability at least 1 − δ over the

generation of Sl and Su, if |Su∩B||Su| >
√

1
2|Su| ln

4
δ , then

L0/1
P |B(hH(Sl)) ≤

L0/1
Sl,B

(hH(Sl)) + εUC(|Sl|, δ/2)

|Su∩B|
|Su| −

√
1

2|Su| ln
4
δ

.

Here εUC(|Sl|, δ/2) = C
√

VCdim(H)+log(2/δ)
|Sl| for a univer-

sal constant C.

We now define another sample-dependent property of re-
gions that results in low region-conditional generalization
error bounds. We call this the decisiveness of the function
class on the subset. We say that the function class H is deci-
sive on a set B ⊆ X , based on Su and Sl, if all classifiers
in H with low empirical error on Sl, label the points in
Su ∩B similarly. For a set with probability weight too low
to get non-trivial conditional generalization bounds by using
Theorem 3, we can still get non-trivial bounds when the set
has high decisiveness.

Definition 7 (Disagreement between classifiers in a region).
We define the disagreement between two classifiers h1, h2 :
X → Y in a set B ⊆ X as

∆P (h1, h2, B) = PX∼PX [h1(X) 6= h2(X), X ∈ B].

We empirically estimate the disagreement of classifiers in B,
using Su as

∆Su(h1, h2, B) =
|{x ∈ Su ∩B : h1(x) 6= h2(x)}|

|Su|
.

Definition 8 (Decisiveness of function class in a region).
For any γ > 0, let Hγ denote the set of classifiers with
empirical error within γ of the least empirical error of
any classifier in H i.e., Hγ(Sl) = {h ∈ H : L0/1

Sl
(h) ≤

L0/1
Sl

(hH(Sl)) + γ}. The γ-decisiveness of H in a set B ⊆
X is

DCB,H(Sl, Su, γ) = sup
h1,h2∈Hγ(Sl)

∆Su(h1, h2, B).

The following theorem provides conditional generalization
bounds for sets in terms of their probability weights and
decisiveness. When a set has high probability weight and
high decisiveness, the conditional error of the empirical risk
minimizer is low.

Theorem 4. For every B ⊆ X , for any δ > 0, with
probability 1 − δ over the generation of Sl and Su, if
|Su∩B|
|Su| >

√
1

2|Su| ln
4
δ , then

L0/1
P |B(hH(Sl)) ≤
εapprox +DCB,H (Sl, Su, 2εUC(|Sl|, δ/4)) + εUC(|Su|, δ/4)

|Su∩B|
|Su| −

√
1

2|Su| ln
8
δ

.

Here, for any m ∈ N, εUC(m, δ/4) =

C
√

VCdim(H)+log(4/δ)
m for a universal constant C.



 Now we show how to assign label coverage sets to guarantee
(α)-region-conditional validity for a collection of subsets B,
with probability at least 1− δ over sample generation. First
we construct a collection B̄ of disjoint sets that cover all sets
in B. That is,

⋃
B∈B B =

⋃
B̄∈B̄ B̄ and B̄1 ∩ B̄2 = φ for

every B̄1, B̄2 ∈ B̄. For each B̄ ∈ B̄,

1. Calculate the upper bound on LP |B̄(hH(Sl)) provided
by Theorem 4. For this calculation, set the probability
of failure of samples parameter (δ) to be δ

|B̄| .

2. If the upper bound on LP |B̄(hH(Sl)) is bigger than
1− α, then assign each point in B̄ the trivial coverage
set of {0, 1}.

3. If the upper bound on LP |B̄(hH(Sl)) is smaller than
1 − α, then assign each point in B̄ the non-trivial
coverage set of {hH(Sl)}. From the definition of
region-conditional coverage, we can see that region-
conditional coverage is satisfied for B̄. B̄ has maxi-
mum region non-triviality equalling one.

By construction, each B̄ ∈ B̄, has α-region-conditional
validity. This implies α-region-conditional validity for the
collection B. This is due to the following lemma:

Lemma 1. If label coverage sets satisfy α-region-
conditional coverage with respect to a collection of disjoint
sets {B1, B2}, then the coverage sets also satisfy α-region-
conditional coverage with respect to {B1 ∪B2}.

We note that a low approximation is a natural assumption
that models the quality of match between a chosen type
of predictor and the learning task at hand. Our analysis
here shows that a suitable match indeed yields improved
guarantees. To show this we compare the guarantee from
Theorem 4 to baseline methods that do not make use of any
prior knowledge (See Appendix F for a detailed discussion).
In particular we compare the method yielded by Theorem 4
to the split conformal prediction algorithm which was intro-
duced for a distribution-free setting [Vovk et al., 2005] (See
Appendix E). Furthermore, we show the improvement we
get from decisiveness by comparing the method yielded by
Theorem 3 to the method yielded by Theorem 4.

5 GENERATIVE MODELS

The next type of prior assumption about the data generating
distribution that we consider is that it belongs to some family
of distributions known to the learner. We consider two ways
of defining such families. The first is that the family is
described by a restriction on the behavior of the induced
conditional labeling rule (lP (x) = P [y = 1|x]). Families
defined in this way restrict only the labeling rules and are
distribution free with respect to the underlying marginal
distribution. The second representation is as mixture models.
Namely, for some family of probability distributions that is

known to the learner, the data is generated by a mixture of
homogeneously-labeled members of that family. This kind
of assumption about the data generating distributions is most
commonly used for the family of Gaussian distributions.

For this problem we will focus on learning CLF coverage
sets. As a first step to achieve this, we look at the learning the
CLF. That is, our tool for obtaining coverage sets will be to
learn an L1 approximation of the label generating function.
Namely, let the expected CLF-loss of a function f w.r.t. a
distribution P be LCLFP (f) = EX∼PX [|f(X)− lP (X)|]

Definition 9 (Supervised CLF-learning). A CLF-learner
A is a function that takes a labeled sample S as input
and outputs a function l̂ : X → [0, 1]. We say a family
of distributions P is CLF-learnable with sample complexity
m : (0, 1)2 → N if for any ε, δ > 0, any m ≥ m(ε, δ) and
any distribution P ∈ P we have

PS∼Pm [LCLFP (A(S)) ≤ ε] ≥ 1− δ

One should note that this is different than the task of learning
a regression (real-valued) function. Whereas in the common
setup of regression function learning, the training consists
of pairs (x, g(x)) labeled by the real value of the function
g one wishes to approximate, here we only get binary la-
beled samples (where the binary label is drawn according
to the real valued target function lp). This setup is known
as Learning Probabilistic Concepts (Kearns and Schapire
[1994]).

The following observation explains how one can construct a
CLF-coverage learner from a CLF learner.

Observation 1. LetA be a CLF-learner for P with sample
complexity mCLF (ε, δ). Let ε(m, δ) = min{ε′ ∈ (0, 1) :
m ≥ m(ε′, δ)}. Then we can define a respective CLF-
coverage set learner A′c,δ by A′c,δ(S)(x) = [A(S)(x) −
ε(|S|,δ)

c ,A(S)(x)+ ε(|S|,δ)
c ]. Then for any constant c ∈ [0, 1]

the learner A′c,δ is (c, 1, 2cε, δ)-successful on i.i.d. samples
of size m ≥ mCLF (ε, δ).

5.1 CLF- LEARNING UNDER VARIOUS
GENERATIVE ASSUMPTIONS

The problem of CLF-learning under a restricted family of
distributions can be reduced to different previously analysed
learning tasks (depending on the representation of the family
of generating distributions).

5.1.1 Learning CLF’s as Probabilistic Concepts

As described above, when the prior assumptions can be ex-
pressed as a restriction on the family of the labeling rule
functions, the CLF- learning task is equivalent to the proba-
bilistic concepts learning. Kearns and Schapire [1994] offer



 efficient learning algorithms for several families of proba-
bilistic concepts. Among those families are the family of
non-decreasing functions, the family of probabilistic deci-
sion lists and some classes motivated by the assumption
that the labeling is deterministic but some of the relevant
variables are not observable to the learner.

Alon et al. [1997] take a purely statistical approach (without
any algorithmic and computational complexity considera-
tions) and provide a characterization of the learnability of
families of such functions in terms of combinatorial dimen-
sions that have become known as fat shattering dimensions.

5.1.2 Learning CLF’s under the Mixture Model
Representation

We show that CLF-learning can be achieved whenever there
is an unsupervised learner for the family of underlying
marginal distributions. Furthermore, we bound the sample
complexity of learning a mixture of homogeneously labeled
distributions as a function of the (unsupervised) sample
complexity of learning the family of distributions used in
the mixtures with respect to the total variation distance.

Definition 10 (Total Variation (TV) distance). The total
variation distance between two distributions, represented
by their probability density functions (PDFs) p1 and p2 is
defined by: dTV (p1, p2) =

∫
|p1(x)− p2(x)|dx.

Definition 11 (Distribution learner). A distribution-learner
A is a function that takes an unlabeled sample S as input
and outputs a density function p : X → [0, 1].

Definition 12 (TV distance learning of distributions). We
say a family of distributions P is TV-learnable with sample
complexity mTV,P : (0, 1)2 → N if there exists a distribu-
tion learner A such that for any ε, δ > 0, any m ≥ m(ε, δ)
and any distribution P ∈ P we have

PS∼Pm [dTV (A(S), P ) ≤ ε] ≥ 1− δ

In this case we say A is a TV-learner of P .

Theorem 5. Let F be a family of distributions (identi-
fied by their PDFs) over X that can be learned with re-
spect to total variation distance with sample complexity
mTV,F that fulfills mTV,F ( εc , δ) ≤ cmTV,F (ε, δ) for all
c ∈ (0, 1). Then the family of distributions P = {aP1 ×
{1} + (1 − a)P0 × {0} : P0, P1 ∈ F , a ∈ (0, 1)} can
be CLF-learned with sample complexity mCLF,P(ε, δ) =

max{mTV,F ( ε3 ,
δ
3 ),
−9 ln( δ2 )

2ε2 }

Labeled Gaussian Mixture Models A labeled Gaussian
Mixture model in Euclidean space Rd is defined by

• A collection of Gaussians, G1 = (µ1,Σ1), . . . Gk =
(µk,Σk), where the µi’s are the means of the Gaussians
and the Σi’s their covariance matrices’

• A weight vector (w1, . . . wk) with
∑k
i=1 wi = 1.

• A binary label vector (y1, . . . yk).

The data is generated by the following procedure: an index
i ≤ k is picked with probability wi, a point x is then gen-
erated by Gi and labeled yi. Under such an assumption the
probability of a point x being labeled y is fully determined
by these model parameters.

Ashtiani et al. [2020] show that for the family of (unla-
beled) mixtures of Gaussians in Rd there is an unsupervised
learning algorithm that requires Õ(kd

2

ε2 ) samples (where k
is the number of Gaussians in the mixture and ε is the TV
approximation guaranteed).

Corollary 1. The family of mixtures of k label-
homogeneous Gaussians in Rd can be CLF-learned with
sample complexity Õ(kd

2

ε2 ).

6 COMPARING SAMPLE
COMPLEXITIES OF TASKS

In this section, we compare the CLF-coverage learning prob-
lem, the CLF-learning problem, and the problem of learning
the Bayes classifier, in terms of sample complexity. We con-
struct classes of distributions for which the following hold
(see appendix for elaborations).

• The hardest CLF-coverage learning problem requiring
point-wise validity has lower sample complexity than
the problem of learning the CLF in TV distance.

• The easiest CLF-coverage learning problem requiring
domain validity has higher sample complexity than the
problem of learning the Bayes optimal classifier.

6.1 CONNECTING CLF-LEARNING TO
CLASSIFICATION

We also examine the connection between CLF learning and
learning a good classification rule.

We first show that CLF learning implies learning the classi-
fication problem up to excess risk.

Observation 2. If a family of distributions P is CLF-
learnable with sample complexity mCLF,P(ε, δ), then P
is learnable with respect to excess risk with sample com-
plexity at most m(ε, δ) ≤ mCLF,P(2ε, δ).

Now we show that learning CLF-coverage sets can be harder
than learning the Bayes classifier. In the appendix we define
classes Fµ such that the Bayes classifier for any distribution
in any class Fµ is the classifier that thresholds at zero. We
do not need any samples to learn the Bayes classifier for
the classes Fµ. However, to provide CLF-coverage sets,
we will need samples. This holds even for the easiest CLF-
covering problem requiring domain validity and domain
non-triviality.



 7 CONCLUSION

This paper investigated the problem of confidence in pre-
dictions of a statistical learning algorithm on sub-domains
or specific instances of the data. We address the problem
from a theory perspective and provide formal definitions and
provable results (rather than experimental evidence). It is im-
portant to realize that any non-trivial guarantees concerning
the confidence in predicting some unknown label inevitably
rely on prior knowledge about the learning task at hand.
For formal analysis of statistical learning such prior knowl-
edge is typically modeled in form of assumptions on the
data-generating process, the type of predictors used and the
quality of match between these components. We consider
three common types of such assumptions, namely Lischitz-
ness of the labeling rule, a given generative model (such as a
Gaussian mixture model), or the availability of a hypothesis
class (a.k.a. concept class) that is a suitable match with the
data-generating process (technically, this is stated as the
hypothesis class having a low approximation error). Under
each of these assumptions we derive confidence guarantees
that depend on the parameters of the assumptions made as
well as on the relationship between the region of interest and
the available training data. We hope that these results will
inspire follow up work on identifying more general types
of prior knowledge (assumptions) that allow for the type of
confidence guarantees set out in our framework. Addition-
ally, it would also be important to derive complementing
lower bounds on the type of guarantees here. Finally, future
work may explore the role that requirements for computa-
tional efficiency play for the type of coverage guarantees
we analyze here.
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