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Abstract

Variational inference has had great success in scal-
ing approximate Bayesian inference to big data by
exploiting mini-batch training. To date, however,
this strategy has been most applicable to models
of independent data. We propose an extension to
state space models of time series data based on a
novel generative model for latent temporal states:
the neural moving average model. This permits a
subsequence to be sampled without drawing from
the entire distribution, enabling training iterations
to use mini-batches of the time series at low com-
putational cost. We illustrate our method on autore-
gressive, Lotka-Volterra, FitzHugh-Nagumo and
stochastic volatility models, achieving accurate pa-
rameter estimation in a short time.

1 INTRODUCTION

State space models (SSMs) are a flexible and interpretable
model class for sequential data, popular in areas including
engineering [Elliott et al., 2008], economics [Zeng and Wu,
2013], epidemiology [Fasiolo et al., 2016] and neuroscience
[Paninski et al., 2010]. SSMs assume a latent Markov chain
xwith states x1, x2, . . . , xT , with data as noisy observations
of some or all of these.

Standard inference methods for the parameters, θ, of an
SSM require evaluating or estimating the likelihood under
various choices of θ e.g. using a Kalman or particle filter
[Särkkä, 2013]. Each such evaluation has O(T ) cost at best,
and even larger costs may be required to control the variance
of likelihood estimates. These methods can thus be imprac-
tically expensive for long time series (e.g. T � 106), which
are increasingly common in applications such as genomics
[Foti et al., 2014] and geoscience [Foreman-Mackey et al.,
2017].

In contrast, for models of independent data, one can esti-
mate the log-likelihood using a short mini-batch, at an O(1)
cost only. This allows scalable inference methods based on
stochastic gradient optimisation e.g. maximum likelihood
or variational inference. The latter introduces a family of
approximate densities for the latent variables indexed by
φ. One then selects φ to minimise the Kullback-Leibler
divergence from the approximate density to the posterior.

We propose a mini-batch variational inference method for
SSMs, for the case of continuous states i.e. xi ∈ Rd. This
requires a family of variational approximations q(θ, x;φ)
with a crucial locality property. It must be possible to sample
a subsequence (xi)a≤i≤b, to be used as a mini-batch, from
the middle of the x sequence at a O(1) cost. Much existing
work on flexibly modelling sequence data (e.g. van den
Oord et al. 2016, Ryder et al. 2018, Radev et al. 2020)
uses an autoregressive model for x. Here xi is generated
from some or all xjs with i < j, so sampling xa requires
sampling (xi)i<a, and the locality property is not met.

To achieve the locality property we introduce the neural
moving average (nMA) model. This is a generative model
for sequence data in which a learnable convolutional neural
network (CNN) processes (1) an underlying sequence of
base N(0, 1) variables and (2) the sequence of observed
data. The CNN’s receptive field has a limited size, rather
than encompassing the entire input sequences. Therefore a
sample from the nMA model is a type of moving average
of the input sequences (1) and (2): xi is produced from a
window of values in the input sequences close to position
i. This achieves the locality property. Also, by viewing
the nMA model as a type of normalising flow [Rezende
and Mohamed, 2015, Papamakarios et al., 2019], we show
later that the mini-batch samples can be used to unbiasedly
estimate the log-density of the whole x chain, which is
crucial to implement variational inference.

A trade-off for producing the locality property is that, un-
der a nMA model, xi and xj are independent for |i − j|
sufficiently large i.e. if they are far enough apart that their
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 CNN receptive fields do not overlap. Hence using a nMA as
the variational approximation assumes no long-range depen-
dence in the posterior for x. Despite this, we demonstrate
that our approach works well in several examples. These
include various challenging observation regimes: sparse ob-
servation times, partial observation of xi, low observation
variance and a large number of observations. Our flexible
variational family produces good posterior estimates in these
examples: at best our variational output is indistinguishable
from the true posterior.

The remainder of our paper is as follows. Section 2 de-
scribes state space models. Section 3 reviews relevant ma-
terial on normalising flows and presents the nMA model.
Section 4 sets out our variational inference method. The
nMA model and the resulting inference algorithm are our
novel methodological contribution. Section 5 presents our
experiments, and Section 6 gives conclusions and oppor-
tunities for future work. Code for the paper is available at
https://github.com/Tom-Ryder/VIforSSMs.

Related Work Bayesian inference for SSMs commonly
uses sampling-based Markov chain Monte Carlo (MCMC)
methods, involving repeated use of Kalman or particle filters
[Doucet et al., 2001, Cappé et al., 2010, Särkkä, 2013]. As
discussed above, these methods typically become expensive
for long time series, with each likelihood estimate requiring
an O(T ) pass through the data. A recent O(1) sampling-
based scheme using a related strategy to ours for scalable
SSM inference is Aicher et al. [2019]. This approach uses
stochastic gradient MCMC with buffered gradient estimates,
which are based on running a particle filter on a short subse-
quence of data. Like our contribution, this approach neglects
long-range dependence.

Aicher et al. [2019], in common with several other papers
discussed here, requires an observation for each xi. However
many applications involve missing or sparsely observed data.
Our generative model can be applied to such settings as it
learns to impute xi values between observations.

Several stochastic optimisation variational inference meth-
ods for SSMs have previously been proposed, with different
variational families for x, including: a multivariate normal
distribution with tridiagonal covariance structure [Archer
et al., 2016], a recurrent neural network [Krishnan et al.,
2017], an autoregressive distribution [Karl et al., 2014, Ry-
der et al., 2018], a particle filter [Hirt and Dellaportas, 2019].
However, all of these methods have an O(T ) cost for each
iteration of training and/or require storing O(T ) parameters.

Foti et al. [2014] also propose an O(1) variational inference
method based on mini-batch updates. They consider hidden
Markov models – SSMs with discrete states – which allows
the x posterior to be derived using a forward-backward algo-
rithm [Rabiner, 1989]. This would usually require forward
and backward passes over the full dataset, at cost O(T ), but

they show that approximating these on short subsequences
suffices to perform variational inference. In contrast our pa-
per explores SSMs with continuous states, where a forward-
backward algorithm is not available in general [Briers et al.,
2010]. Another difference is that Foti et al. [2014] use a
variational approximation with independence between θ and
x, while our approach avoids this strong assumption.

Parallel Wavenet [van den Oord et al., 2018] similarly uses
a normalising-flow-based generative model for sequence
data. This incorporates long-range dependence using dilated
convolutions, while we use only short range dependence
to allow mini-batch inference. Our local normalising flow
is also similar at a high level to a masked convolutional
generative flow (MACOW) [Ma et al., 2019]. The novelty
of our approach is that we develop this idea to allow fast
variational inference for time series, while Ma et al. [2019]
focus on density estimation and sampling for image data.

Finally, Ward et al. [2020] successfully apply our method to
mechanistic models with Gaussian process priors placed on
unobserved forcing terms, including a multi-output system
using real-world data, and Gaussian process regression using
a Poisson observation model.

2 STATE SPACE MODELS

Notation Throughout we use xi to denote an individual
state, x to denote the whole sequence of states and xa:b to
denote a subsequence (xi)a≤i≤b. We use similar notation
for sequences represented by other letters. More generally
we use a:b to represent the sequence (a, a+ 1, . . . , b).

2.1 DEFINITION

A SSM is based on a latent Markov chain x = x1:T . We
focus on the case of continuous states xi ∈ Rd. States evolve
through a transition density p(xi|xi−1, θ), with parameters
θ ∈ Rp. We assume the initial state is x0(θ), a deterministic
function of θ. (This allows examples with initial state known
– x0 is a constant – or unknown – x0 depends on unknown
parameters.) Observations yi ∈ Rdy are available for i ∈
S ⊆ 0:T following an observation density p(yi|xi, θ).
In the Bayesian framework, after specifying a prior density
p(θ), interest lies in the posterior density

p(θ, x|y) ∝ p(θ, x, y) = p(θ)

T∏
i=1

p(xi|xi−1, θ)
∏
i∈S

p(yi|xi, θ).

(1)
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 2.2 DISCRETISED STOCHASTIC
DIFFERENTIAL EQUATIONS

One application of SSMs, which we use in our examples, is
as discrete approximations to stochastic differential equa-
tions (SDEs), as follows:

xi+1 = xi + α(xi, θ)∆t+
√
β(xi, θ)∆tεi, (2)

where εi ∼ N(0, Id) are independent random vectors. Here
α is a d-dimensional drift vector, β is a d × d positive-
definite diffusion matrix and

√
β denotes its Cholesky factor.

The state xi approximates the state of the SDE process at
time i∆t. Taking the limit ∆t → 0 in an appropriate way
recovers the exact SDE [Øksendal, 2003, Särkkä and Solin,
2019].

3 THE NEURAL MOVING AVERAGE
MODEL

Section 1 gave an intuitive description of the nMA model.
In this section we present a formal description. First Section
3.1 presents background material on inverse autoregres-
sive flows (IAFs). Then Sections 3.2–3.3 describe the nMA
model as a special case of an IAF. Section 3.2 describes the
case where xi (a state of the SSM) is scalar, and Section 3.3
extends this to the multivariate case.

3.1 INVERSE AUTOREGRESSIVE FLOWS

A normalising flow represents a random object x as gm ◦
. . . g2◦g1(z): a composition of learnable bijections of a base
random object z. Here we suppose x = x1:T and xi ∈ R.
(Later we consider xi as a vector.) We take z = z1:T as
independent N(0, 1) variables. By the standard change of
variable result, the log-density of x is

log q(x) =

T∑
i=1

ϕ(zi)−
m∑
j=1

log |det Jj | (3)

where ϕ is the N(0, 1) log-density function and Jj is the
Jacobian matrix of transformation gj given input gj−1 ◦
. . . g2 ◦ g1(z).

The bijections in an IAF are mainly affine layers, which
transform input zin to output zout by

zout
i = µi(z

in
1:i−1) + σi(z

in
1:i−1)zin

i , (4)

with σi > 0. This transformation scales and shifts each
zin
i . The shift and scale shift values, µi and σi, are typically

neural network outputs. An efficient approach is to use a
single neural network to output all the µi, σi values for
a particular affine layer. This network uses masked dense
layers so that (µi, σi) depends only on zin

1:i−1 as required
[Germain et al., 2015, Kingma et al., 2016, Papamakarios

et al., 2017]. In the resulting IAF each affine layer is based
on a different neural network of this form. We’ll refer to this
as a masked IAF.

The shift and scale functions for zout
i in (4) have an autore-

gressive property: they depend on zin only through zin
j with

j < i. Hence the Jacobian matrix of the transformation is
diagonal with non-zero entries σ1:T . The log-density of an
IAF made of m affine layers is

log q(x) =

T∑
i=1

ϕ(zi)−
m∑
j=1

T∑
i=1

log σji (5)

where σji is the shift value for the ith input to the jth affine
layer.

IAFs typically alternate between affine layers and permuta-
tion layers, using order reversing or random permutations.
Such layers have Jacobians with absolute determinant 1.
Thus the log-density calculation is unchanged (interpreting
j in (5) to index the jth affine layer not the jth layer of
any type). The supplement (Section G.1) details methods to
restrict the output of a IAF e.g. to ensure all xis are positive.

IAFs are flexible and, for small T , allow fast sampling and
calculation of a sample’s log-density. However they are
expensive for large T as large neural networks are needed
to map between length T sequences.

3.2 THE NEURAL MOVING AVERAGE MODEL

Our neural moving average (nMA) model reduces the num-
ber of weights that IAFs require by using a CNN to calculate
the µi and σi values in an affine layer. Thus it can be thought
of as a kind of local IAF. Here we explain the main idea by
presenting a version for scalar xi. Section 3.3 extends this
to the vector xi case.

To define the nMA model we describe how a single affine
layer produces its shift and scale values. The affine layer
uses a CNN with input zin, a vector of length T . Let hk

represent the kth hidden layer of the CNN, a matrix of
dimension (T, nk) where nk is a tuning choice. The first
layer applies a convolution with receptive field length `.
This is an off-centre convolution so that row i of h1 is a
transformation of zin

i−`:i−1. We use zero-padding by taking
zin
i = 0 for i < 0. The following hidden layers are length-1

convolutions, so row i of hk+1 is a transformation of row
i of hk. The output, hn, is a matrix of dimension (T, 2)
whose ith row contains µi and σi. The final layer applies a
softplus activation to produce the σi values, ensuring they
are positive. An identity activation is used to produce the µi
values. The µi and σi values are used in (4) to produce the
output of the affine layer.

A nMA model composes several affine layers of the form
just described. Some properties of the distribution for the
output sequence x are:



 1. No long-range dependence: xi and xj are independent
if |i− j| > m`, where m is the number of affine layers.

2. Stationary local dependence: the distributions of xi:j
and xi+a:j+a are the same for most choices of a. (Sub-
sequences near to the start of x can differ due to zero-
padding.)

To improve the flexibility of the nMA model, affine layers
can be alternated with order-reversing permutations. (Ran-
dom permutations would not be suitable, as they would
disrupt our ability to sample subsequences quickly, as de-
scribed in Section 3.4.) Throughout the paper we consider
nMA models without order reversing permutation layers,
as we found these models already sufficiently flexible for
our examples. (The supplement, Section C, details how to
incorporate these layers.)

We relax stationary local dependence by injecting local side
information to the CNN i.e. giving an extra feature vector
si as input for each position i in the first CNN layer. We
also use global side information to allow x to depend on
the parameter values θ i.e. giving θ as extra input for every
position i. See the supplement (Sections D, E) for details of
the side information we use in practice.

3.3 MULTIVARIATE CASE

Here we generalise the nMA model to the case where
xi ∈ Rd. We now let z be a sequence z1, z2, . . . , zT of
independent random N(0, Id) vectors. A nMA affine layer
makes the transformation

zout
i = µi + σi � zin

i , (6)

scaling the vector zin
i (elementwise multiplication by vector

σi) then shifting it (adding vector µi).

In the scalar case it was important to allow complex de-
pendencies between zout

i values. Now we must also allow
dependencies within each zout

i vector. To do so we use cou-
pling layers as in Dinh et al. [2016].

We use an extra k subscript to denote the kth component of
a vector e.g. zin

ik. We select some a ≈ d/2. For k ≤ a, we
take µik = 0 and σik = 1, so that zout

ik = zin
ik. For k > a,

we compute µik and σik using a CNN, modifying the scalar
case as follows. Now row i of h1 is a transformation of
zin
i−`:i−1 (the ` vectors preceding zin

i ), and also zin
ik for k ≤ a

(the part of zin
i not being modified). The output hn is now

a tensor of dimension (T, d− a, 2) containing µik and σik
values for k > a.

This affine layer does not transform the first a components
of zin

i . To allow different components to be transformed in
each layer, we permute components between affine layers.
For example, a d = 2 permutation layer transforms zin to

zout by zout
i1 = zin

i2, zout
i2 = zin

i1. The log-density is now

log q(x) =

T∑
i=1

λi, λi = ϕ(zi)−
d∑
k=1

m∑
j=1

log σjik, (7)

where ϕ is the N(0, Id) log-density function and σjik is the
kth entry of the shift vector for position i output by the jth
affine layer. Decomposing log q(x) into λi contributions
will be useful in Section 4.

3.4 SAMPLING

Sampling from a nMA model is straightforward. First sam-
ple the base random object z. This is a sequence of length
T (of scalars or vectors – the sampling process is similar in
either case). Now apply the IAF’s layers to this in turn. To
apply an affine layer, pass the input (and any side informa-
tion) through the layer’s CNN to calculate shift and scale
values, then apply the affine transformation. The final output
is the sampled sequence x. The cost of sampling in this way
is O(T ).

In the next section, we will often wish to sample a short
subsequence xu:v. It is possible to do this at O(1) cost
with respect to T . Algorithm A in the supplement gives the
details. In brief, the key insight is that xu:v only depends on
z through zu−m`:v . Therefore we sample zu−m`:v and apply
the layers to this subsequence. The output will contain the
correct values of xu:v .

4 VARIATIONAL INFERENCE FOR
SSMS

This section describes how we use nMA models to perform
variational inference (VI) efficiently for SSMs. Section 4.1
reviews standard details of VI. See e.g. Blei et al. [2017]
for more details. We then present our novel VI derivation
involving nMA models in Section 4.2 and the resulting
algorithm in Section 4.3.

4.1 VARIATIONAL INFERENCE BACKGROUND

We wish to infer the joint posterior density p(θ, x|y). We in-
troduce a family of approximations indexed by φ, q(θ, x;φ).
Optimisation is used to find φ minimising the Kullback-
Leibler divergence KL[q(θ, x;φ)||p(θ, x|y)]. This is equiv-
alent to maximising the ELBO (evidence lower bound) [Jor-
dan et al., 1999],

L(φ) = Eθ,x∼q[r(θ, x, y, φ)], (8)
for r(θ, x, y, φ) = log p(θ, x, y)− log q(θ, x;φ). (9)

Here r is a log-density ratio. The optimal q(θ, x;φ) approx-
imates the posterior density. It is typically overconcentrated,



 unless the approximating family is expressive enough to
allow particularly close matches to the posterior.

Optimisation for VI can be performed efficiently using
the reparameterisation trick [Kingma and Welling, 2014,
Rezende et al., 2014, Titsias and Lázaro-Gredilla, 2014].
That is, letting (θ, x) be the output of an invertible deter-
ministic function g(ε, φ) for some random variable ε with
a fixed distribution. Then the ELBO gradient and unbiased
Monte Carlo estimate are

∇L(φ) = Eε[∇r(θ, x, y, φ)], (10)

∇̂L(φ) =
1

n

n∑
j=1

[∇r(θ(j), x(j), y, φ)], (11)

where (θ(j), x(j)) = g(ε(j), φ) and ε(1), . . . , ε(n) are inde-
pendent ε samples. This gradient estimate can be used in
stochastic gradient optimisation algorithms.

4.2 ELBO DERIVATION

Our variational family for the SSM posterior (1) is

q(θ, x;φ) = q(θ;φθ)q(x|θ;φx), (12)

where φ = (φθ, φx). We use a masked IAF for q(θ;φθ) and
a nMA model for q(x|θ;φx). For the latter we inject θ as
side information. See the supplement (Sections D and E) for
more details.

The masked IAF maps a base random vector zθ to θ using
parameters φθ, as described in Section 3.1. The nMA model
maps θ and a sequence of vectors zx to x using parameters
φx as described in Section 3.3. Hence we have a mapping
from ε = (zθ, zx) to g(ε, φ) = (θ, x), allowing us to use
the reparameterisation trick below.

This section derives a mini-batch optimisation algorithm
to train φ based on sampling short x subsequences, so that
the cost-per-training-iteration is O(1). The algorithm is ap-
plicable for scalar or multivariate xi. In this presentation
we assume that S = 0:T i.e. there are observations for all i
values. To relax this assumption remove any terms involving
yi for i 6∈ S.

For our variational family (12), the ELBO is (8) with

r = log p(θ, x, y)− log q(θ;φθ)− log q(x|θ;φx). (13)

Substituting (1) and (7) into (13) gives

r = log p(θ)− log q(θ;φθ) + log p(y0|x0, θ)+
T∑
i=1

{
log p(xi|xi−1, θ) + log p(yi|xi, θ)− λi

}
.

(14)

Now introduce batches B1, B2, . . . , Bb: length M se-
quences of consecutive integers partitioning 1:T . Draw κ

uniformly from 1:b. Then an unbiased estimate of r is

rκ = log p(θ)− log q(θ;φθ) + log p(y0|x0, θ)+
T

M

∑
i∈Bκ

{
log p(xi|xi−1, θ) + log p(yi|xi, θ)− λi

}
.

(15)

Hence an unbiased estimate of the ELBO gradient is

∇̂L(φ) =
1

n

n∑
j=1

∇rκ(θ(j), x(j), y, φ). (16)

where (θ(j), x(j)) = g(ε(j), φ) and ε(1), . . . , ε(n) are inde-
pendent ε samples.

4.3 OPTIMISATION ALGORITHM

Algorithm 1 presents our mini-batch training procedure.
Each iteration of Algorithm 1 involves sampling a subse-
quence of x values of length M + 1. The cost is O(1) with
respect to the total length of the sequence T . This compares
favourably to the O(T ) cost of sampling the entire x se-
quence. Discussion of implementation details is given in the
supplement (Section E).

Algorithm 1 Mini-batch variational inference for state
space models

1: Initialise φθ, φx.
2: loop
3: Sample a batch κ uniformly from 1:b. Let u and v

denote the endpoints of Bκ.
4: Calculate ∇̂L(φ) from (16), generating the terms in

the sum as follows.
5: for 1 ≤ j ≤ n do
6: Sample θ(j) ∼ q(θ;φθ).
7: Sample1 x

(j)
u−1:v from q(x|θ;φx) (unless u = 1 in

which case sample xu:v), calculating correspond-
ing λu:v values. See Algorithm A in the supple-
ment for details.

8: Calculate ∇rκ(θ(j), x(j), y, φ) using automatic
differentiation of (15).

9: end for
10: Update φθ, φx using stochastic gradient optimisation.
11: end loop

5 EXPERIMENTS

Below we apply our method to several examples. All results
were obtained using an NVIDIA Titan XP and an 8 core

1Note this samples xu−1, the state immediately before the
current batch of interest. This is needed for the p(xi|xi−1, θ) term
in (15) when i = u.



 CPU. For tuning choices and experimental specifics see the
supplement (Sections E, F). Sections 5.1–5.3 use simulated
data so the results can be compared to true parameter values,
while Section 5.4 uses real data.

5.1 AR(1) MODEL

First we consider the AR(1) model xi+1 = θ1 + θ2xi + θ3ε,
with ε ∼ N(0, 1) and x0 = 10. We assume observations
yi ∼ N(xi, 1) for i ∈ 0:T , and independent N(0, 102)
priors on θ1, θ2, log θ3. We use this model to investigate
how our method scales with larger T , and the effect of
receptive field length `. To judge the accuracy of our results
we compare to near-exact posterior inference using MCMC,
as described in the supplement (Section A).

Effect of Observation Sequence Length We simu-
lated a synthetic dataset for each of four T values:
5000, 10000, 50000, 100000 under true parameter values
θ = (5.0, 0.5, 3.0). We then inferred θ, fixing the hyper-
parameters so that the cost per iteration for each setting is
constant.

Figure 1a plots the accuracy of our results against number
of iterations performed. Accuracy is measured as Maxi-
mum Mean Discrepancy (MMD) [Gretton et al., 2012] be-
tween variational approximation and MCMC output. (We
use MMD with a Gaussian kernel.) In all cases, variational
inference approximates the posterior well. Also, the number
of training iterations required remains similar as T increases.
As a further check on the quality of the posterior approxi-
mation, Figure 1b shows a good match between marginal
posteriors for MCMC and variational output for the case
T = 5000. Here, as for other T values, the 10,000th it-
eration is achieved after ∼ 3 minutes of computation. In
comparison, the cost per iteration of MCMC is roughly
proportional to T .

Effect of Receptive Field Length We consider again the
T = 5000 dataset, and investigate the effect of `. Figure
1 shows MMD against iteration and wall-clock time for
` ∈ {5, 10, 50, 100, 200}. In all cases the variational output
converges to a good approximation of the posterior. Conver-
gence takes a similar number of iterations for all choices of
`, but wall-clock time per iteration increases with `.

5.2 LOTKA-VOLTERRA

Next we test our method on short time series with complex
dynamics. We use a version of the Lotka-Volterra model for
predator-prey population dynamics under three events: prey
reproduction, predation (in which prey are consumed and
predators get resources to reproduce) and predator death. A
SDE Lotka-Volterra model (for derivation see e.g. Golightly
and Wilkinson [2011]) is defined by drift and diffusion

α(x, θ) =

(
θ1u− θ2uv
θ2uv − θ3v

)
, (17)

β(x, θ) =

(
θ1u+ θ2uv −θ2uv
−θ2uv θ2uv + θ3v

)
, (18)

where x = (u, v) represents population sizes of prey and
predators. The parameters θ = (θ1, θ2, θ3) control the rates
of the three events described above.

We consider a discretised version of this SDE, as described
in Section 2.2, with ∆t = 0.1 and u0 = v0 = 100. We sim-
ulated realisations under parameters θ = (0.5, 0.0025, 0.3)
of xi for i ∈ 1:500, and construct two datasets with
observations at: (a) i = 0, 10, 20, . . . , 500 (dense); (b)
i = 0, 100, 200, . . . , 500 (sparse). We assume noisy obser-
vations yi ∼ N(xi, I2) and independent N(0, 102) priors
for log θ1, log θ2, log θ3.

Unlike previous examples, we needed to restrict ui and vi to
be positive. Also, we found multiple posterior modes, and
needed to pretrain carefully to control which we converged
to. See Section G of the supplement for more details of both
these issues.

For observation setting (a), we compared our results to near-
exact posterior samples from MCMC [Golightly and Wilkin-
son, 2008, Fuchs, 2013]. These papers use a Metropolis-
within-Gibbs MCMC scheme with carefully chosen pro-
posal constructs. Designing suitable proposals can be
challenging, particularly in sparse observation regimes
[Whitaker et al., 2017]. Consequently we were unable to
use MCMC in setting (b).

Figure 2 (left plot) displays the visual similarity between
marginal densities estimates from variational and MCMC
output in setting (a). The VI output is taken from the
30,000th iteration, after ≈ 10 minutes of computation. Fig-
ure 2 (right plots) shows variational output for θ and x in
setting (b) after ≈ 20 minutes of computation. These results
are consistent with the ground truth parameter values and x
path. VI using an autoregressive distribution for x has also
performed well in a similar scenario [Ryder et al., 2018],
but required more training time (roughly 2 hours).

5.3 FITZHUGH-NAGUMO

Here we test our method on a long time series with an
unobserved component, using the FitzHugh-Nagumo model.
A SDE version, following Jensen et al. [2012], van der
Meulen and Schauer [2017], is defined by drift and diffusion

α(x, θ) =

(
θ1
(
−v3 + v − w + θ2

)
θ3v − w + 1.4

)
, (19)

β(x, θ) =

(
θ4 0
0 θ5

)
, (20)
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Figure 1: AR(1) results. (a) MMD between variational and MCMC output for θ. (b) Marginal posterior density plots of
MCMC output (blue) and variational output after 10,000 iterations (black). (c,d) MMD between variational and MCMC
output for θ for a range of receptive field lengths `. The horizontal axis shows (c) number of training iterations (d) wall-clock
training time.
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Figure 2: Lotka-Volterra results. Left: marginal density plots for setting (a) (dense observations), comparing MCMC (blue)
to variational (black) output. Right: variational output for setting (b) (sparse observations). Right top: 100 x samples, with
observations displayed as crosses. The horizontal axis shows t = 0.1i. Right bottom: marginal density plots for θ with true
values displayed with dashed black lines. All variational results used 30,000 training iterations.
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Figure 3: Fitzhugh-Nagumo results. Left: 100 variational posterior samples (light green) and true values (dark green) for
unobserved coordinate w over a short time range. The x-axis shows t = 0.1i. Right: marginal density plots of variational
output for θ and true values (dashed black lines).
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Figure 4: Stochastic volatility results. Left: the observed returns process (blue line) and 50 samples from the variational
posterior for the latent volatility path (green lines). Right: Marginal density plots of the variational posterior for θ.

where x = (v, w) represents the current membrane potential
and latent recovery variables.

We consider a discretised version of this SDE, as in Section
2.2, with ∆t = 0.1, v0 = 2, w0 = 3. We simulate synthetic
data under parameter values θ = (2.0, 1.0, 1.5, 0.5, 0.3) up
to T = 1, 000, 000, recording observations at every i to
mimic a high frequency observation scenario. We assume
independent observations yi ∼ N(vi, 0.1

2) and indepen-
dent N(0, 102) priors for log θ1, θ2, θ3, log θ4, log θ5.

Figure 3 displays estimates of the unobserved component
w, and marginal density estimates for θ. The results are
consistent with the ground truth parameter values and w
path. The approximate posterior is sampled after roughly
180 minutes of training.

5.4 LOG-GAUSSIAN STOCHASTIC VOLATILITY

We analyse a real data under a log-Gaussian stochastic
volatility model presented as a discretised SDE with drift
and diffusion

α(x, θ) =

(
θ1r

θ2 − θ3z

)
, β(x, θ) =

(
rez 0
0 θ24

)
, (21)

where x = (r, z) is the returns process and latent volatil-
ity factor, respectively. Similar discrete-time models have
been analysed by Andersen and Lund [1997], Eraker [2001],

Durham and Gallant [2002], but we use the form presented
in Golightly and Wilkinson [2006].

Similarly to Golightly and Wilkinson [2006], we use 1508
weekly observations on the three-month U.S. Treasury bill
rate for August 13, 1967 – August 30, 1996, and per-
form inference under independent N(0, 102) priors for
θ1, θ2, log θ3, log θ4 and z0. We assume the returns process
is fully observed without error and set ∆t = 1.0. Our analy-
sis took 20 minutes on a single GPU. Figure 4 shows the
results, which are consistent with those obtained from the
MCMC analysis in Golightly and Wilkinson [2006].

6 CONCLUSION

We present a variational inference method for state space
models based on a neural moving average model. This is
designed to model complex dependence in the conditional
posterior p(x|θ, y) and be scalable to long time series. In
particular, they allow mini-batch inference where each train-
ing iteration has O(1) cost. We show that our method works
well in several applications with challenging features in-
cluding: an unobserved state component, sparse observation
times, and a large number of observations. Further applica-
tions can be found in Ward et al. [2020].

Future work could investigate changing several aspects of
the flow: alternating affine transformations with order revers-



 ing permutations; allowing some long-range dependence
using a multi-scale architecture; incorporating recently pro-
posed ideas from the literature [Durkan et al., 2019].
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