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Abstract

Infinite width limits of deep neural networks of-
ten have tractable forms. They have been used to
analyse the behaviour of finite networks, as well
as being useful methods in their own right. When
investigating infinitely wide convolutional neural
networks (CNN5s), it was observed that the correl-
ations arising from spatial weight sharing disap-
pear in the infinite limit. This is undesirable, as
spatial correlation is the main motivation behind
CNNs. We show that the loss of this property is
not a consequence of the infinite limit, but rather
of choosing an independent weight prior. Correl-
ating the weights maintains the correlations in the
activations. Varying the amount of correlation in-
terpolates between independent-weight limits and
mean-pooling. Empirical evaluation of the infin-
itely wide network shows that optimal performance
is achieved between the extremes, indicating that
correlations can be useful.

1 INTRODUCTION

Analysing infinitely wide limits of neural networks has long
been used to provide insight into the properties of neural net-
works. Neall [1996] first noted such a relationship, through
showing that infinitely wide Bayesian neural networks con-
verge in distribution to Gaussian processes (GPs). The suc-
cess of GPs raised the question of whether such a comparat-
ively simple model could replace a complex neural network.
MacKay| [[1998] noted that taking the infinite limit resulted
in'a fixed feature representation, a key desirable property
of neural networks. Since this property is lost due to the
infinite limit, MacKay inquired: “have we thrown the baby
out with the bath water?”

In this work, we follow the recent interest in infinitely wide
convolutional neural networks [Garriga-Alonso et al., 2019,

Novak et al.| 2019], to investigate another property that
is lost when taking the infinite limit: correlation in the ac-
tivations of patches in different parts of the image. Given
that convolutions were developed to introduce these cor-
relations, and that they improve performance [Arora et al.,
2019], it seems undesirable that they are lost when more
filters are added. Currently, the only way of reintroducing
spatial correlations is to change the model architecture by
introducing mean-pooling [Novak et al.,[2019]. This raises
two questions:

1) Is the loss of patchwise correlations a necessary con-
sequence of the infinite limit?

2) Isan architectural change the only way of reintroducing
patchwise correlations?

We show that the answer to both these questions is “no”.
Correlations between patches can also be maintained in the
limit without pooling by introducing correlations between
the weights in the prior. The amount of correlation can
be controlled, which allows us to interpolate between the
existing approaches of full independence and mean-pooling.
Our approach allows the discrete architectural choice of
mean-pooling to be replaced with a more flexible continuous
amount of correlation.

We empirically show that modest performance improve-
ments can be obtained by replacing mean-pooling at the
final layer with an intermediate amount of correlation. In
addition, we show that in layers before the final one, the dis-
crete architectural choice of mean-pooling can be replaced
by an intermediate amount of correlation, without degrad-
ing performance. Avoiding discrete design decisions makes
architecture search easier, by allowing continuous optimisa-
tion. We speculate that these results from infinite networks
could be useful for adapting priors or initialisations in finite
networks, leading to better performance, or easier design.

Overall, our work illustrates that non-standard choices in
the weight prior can significantly influence properties in the
infinite limit, and that good choices can lead to improved
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Figure 1: A deep convolutional neural network following our notation. Infinite limits are taken over the number of
convolutional filters C'®) (vertical), which equals the number of channels in the following layer (horizontal). The network

has L = 3 layers and D = 2 spatial dimensions. The output is not spatially extended (F ) = 1) because P®) = F(

performance. We hope that this work inspires investigation
into correlated weights in finite neural networks, as well as
more non-standard priors or initialisations.

2 SPATIAL CORRELATIONS IN
SINGLE HIDDEN LAYER NETWORKS

To begin, we will analyse the infinite limit of a single hidden
layer convolutional neural network (CNN). This illustrates
the choices that lead to the disappearance of spatial correl-
ation in the activations. We extend |Garriga-Alonso et al.|
[2019] and [Novak et al.|[2019] by considering weight pri-
ors with correlations. By adjusting the correlation, we can
interpolate between existing independent weight limits and
mean-pooling, which previously had to be introduced as
a discrete architectural choice. We also discuss how exist-
ing convolutional Gaussian processes [van der Wilk et al.,

2017, Dutordoir et all [2020] can be obtained from limits of

correlated weight priors.

Consider a CNN with L = 2 layers. Figure[I] provides a
graphical representation of the notation. The input X is a
real-valued tensor of shape C' ) % FO) where C® ¢ N
is the number of channels and F(®) € NP the spatial size
of the input. Superscripts denote the layer index. For im-
ages, usually C'(?) = 3 (one per colour), and the number of
spatial input dimensions is D = 2, so FO = (Fh(o), Fv(vo)).
The convolution operation at layer £ € [L] divides its input
into patches of size P¥) < F“~1)_ For a given spatial
location of the next activation g € [F' (E)]the patch func-
tion g(-) : [P¥Y] = [F“~ 1] iterates over the elements of
the patch (eq.[3). Weights are applied by taking an inner
product with all patches, which we do C'“) times to give
multiple channels in the next layer. By collecting all weights
in the tensor W) € RC" xC“"VxP“ the pre_and post-

"For some number P € N, the expression [P] is the set
{1,...,P}.Foratuple P € N” [P] = [Pi] x --- x [Pp].
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Equation [I)is a channel-wise sum of D-dimensional convo-
lutions, and ¢ denotes the elementwise nonlinearity.

For layer £ € [L], stride s, dilation h, the patch function is
q(p) = (@lp1),---,Gp(pp)). where

da(pa) = sqa — h(pa — [Pa/2]) . (3)

Using eq. 3] it is possible to verify that eq. [T]is the usual
deep learning convolution (appendix [A).

In a single hidden layer CNN, these activations are fol-
lowed by a fully-connected layer with weights W (2 ¢
RCY xP® , where P(?) = F(1)_ Qur final output is again
given by a summation over the activations

o ) FO
2
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where Z,E,f )(X ) denotes the result before the summation

over spatial locations p.

We analyse the distribution on function outputs f(X) for
some Gaussian prior p(WV) on the weights of all layers .
In all the cases we consider, we take the prior to be independ-
ent over layers and channels. Here we extend earlier work
by allowing spatial correlation in the final layer’s weights
(we will consider all layers later) through the covariance

tensor £(0) € RF>F" Thig gives the prior
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with independence between different layers’ weights. Here,

a tensor-valued covariance X(?) expresses arbitrary cov-
. . . . 2
ariance over the spatial dimensions of the tensor WZ-( );
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Since W(l) w® are iid over channels i € C, the
random variables Z W(Q) A(l)( X)) are identically dis-

tributed and 1ndependent for each i € [C™V]. This allows us
to apply the central limit theorem (CLT) to their sum f(X),
showing that f(X) converges in distribution to a Gaussian
process as C1) — oo [Neal, |1996].

The covariance between the final-layer activations for two
inputs X, X' becomes

¢ [29x), 2 (X')} =
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use independences to split the expectations, and substitute
the weight covariance,
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eliminate one of the sums over j using ¢; ;-, and rearrange
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The limit of the sum of the final expectation over W (1)
can be found in closed form for many activations (see
section and is denoted VP(};, (X, X"). Note in eq.
that the activations for some location p € [F)] only de-
pend on the input patch at p, that is, on the elements of
X that are in the image im(p) of the patch function p(-).

Thus, the kernel acts locally on patches: VIE’;,(X , X7 =
LD (X im(5)s X v /))

We find the final kernel for the GP by taking the covariance
between function values f(X) and f(X’) and performing
the final sum in eq. @}

K(X,X') = C[f(X), f(X")]

a Z k(l)( :,im(p) X

We can now see how different choices for X(2) give different
forms of spatial correlation.

(2)
(15’)) Ep,p' - ®)

Independence. |Garriga-Alonso et al.[[2019] and Novak
et al[[2019] consider Eg;, = 0p p 02, i.€. the case where
all weights are independent. The resulting kernel simply
sums components over patches, which implies an additz-
ive model [Stone, [1985]], where a different function is ap-
plied to each patch, after which they are all summed to-
gether: f(X) = 3" fp(X.im(p))- This structure has com-
monly been applied to improve GP performance in high-
dimensional settings [e.g. Duvenaud et al., 2011, |Durrande
et al., 2012]. Novak et al.|[2019] point out that the same
kernel can be obtained by taking an infinite limit of a locally
connected network (LCN) [LeCun,|1989] where connectiv-
ity is the same as in a CNN, but without weight sharing,
indicating that a key desirable feature of CNNs is lost.

Mean-pooling. . By taking E( = 1/‘F(2)| we make
the weights fully correlated over all locatlonsﬂ leading to
identical weights forall p, i.e. W2 = W,*). This is equi-
valent to taking the mean response over all spatial locations
(see eq.[), or global average pooling. As[Novak et al|[2019]
discuss, this reintroduces the spatial correlation that is the
intended result of weight sharing. The “translation invariant”
convolutional GP of jvan der Wilk et al. [2017]] can be ob-
tained by this single-layer limit using Gaussian activation
functions [van der Wilk, [2019]]. Since this mean-pooling
was shown to be too restrictive in this single-layer case,
Van der Wilk et al.|[2017] considered pooling with constant
weights o, (i.e. without a prior on them). In this framework,
this is equivalent to placing a rank 1 prior on the final-layer
weights by taking Efg, = apyy . This maintains the spatial
correlations, but requires the o, parameters to be learned by
maximum marginal likelihood (ML-II, empirical Bayes).

Spatially correlated weights. In the pooling examples
above, the spatial covariance of weights is taken to be a
rank-1 matrix. We can add more flexibility to the model by
varying the strength of correlation between weights based
on their distance in the image. We consider an exponen-
tial decay depending on the distance between two patches:
2;213, = exp (—d(p,p’)/l). We recover full independence
by taking [ — 0, and mean-pooling with [ — co. Interme-
diate values of [ allow the rigid assumption of complete
weight sharing to be relaxed, while still retaining spatial cor-
relations between similar patches. This construction gives
the same kernel as investigated by Mairal et al.|[2014] and
Dutordoir et al.| [2020], who named this property “trans-
lation insensitivity”, as opposed to the stricter invariance
that mean-pooling gives. The additional flexibility improved
performance without needing to add many parameters that
are learned in a non-Bayesian fashion.

Our construction shows that spatial correlation can be re-
tained in infinite limits without needing to resort to architec-

’For a size F € NP, its number of elements is |F| £
5:1 Fa.



tural changes. A simple change to the prior on the weights
is all that is needed. This property is retained in wide limits
of deep networks, which we investigate next.

3 SPATIAL CORRELATIONS IN DEEP
NETWORKS

Here, we provide an informal extension of the previous sec-
tion’s results to deep networks. In deep networks, correlated
weights also retain spatial correlation in the activations. Ap-
pendix [B| provides a formal justification for this section,
using the framework by Yang|[2019].

The procedure for computing the kernel has a recursive
form similar to existing analyses [Garriga-Alonso et al.
2019, |[Novak et al., 2019]]. Negligible additional computa-
tion is needed to consider arbitrary correlations, compared
to only considering mean-pooling [Novak et al., 2019} |Arora
et al.l[2019]]. The main bottleneck is the need for computing
covariances for all pairs of patches in the image, as in eq. [§]
For a D-dimensional convolutional layer, the correspond-
ing kernel computation is a convolution of the activations’
second moment with the 2 D-dimensional covariance tensor
of the weights.

The setup for the case of a deep neural network follows
that of section [2] but with the number of layers L > 2.
The outputs of the network are simply the pre-nonlinearity
activations of the Lth layer, Zi(f;) (X). If we need several
outputs, for example in K -class classification, we may set
CL) = K. If the output of the network should not be
spatially extended, we set the spatial size to F(*) = 1. This
can be achieved by making the weights W (%) (and their
corresponding convolutional patch) have the same size as
FED) (see fig. [1).

As pointed out by Matthews et al.|[2018]], a straightforward
application of the central limit theorem is not possible for
deep networks. Fortunately, |Yang| [2019] developed a gen-
eral framework for expressing neural network architectures
and finding their corresponding Gaussian process infinite
limits. The resulting kernel is given by the recursion that can
be derived from a more informal argument which takes the
infinite width limit in a sequential layer-by-layer fashion,
as was used in |Garriga-Alonso et al.|[2019]. We follow this
informal derivation, as this more naturally illustrates the
procedure for computing the kernel. A formal justification
can be found in appendix

3.1 RECURSIVE COMPUTATION OF THE
KERNEL

In our weight prior, we correlate weights within a convo-
lutional filter. The weights remain independent over layers

and channels. For each ¢ € [L],

o ge—1)

1
p(wO) =TI II /\/( 9:0, - 1)2“))- ©

i=1 j=1
As in sectlonl ) ¢ RC“x C(efl)XF(“, and the cov-
ariance tensor X(9) € RF/xFY i positive semi-definite.
Our derivation is general for any weight covariance, so lay-
ers with correlated weights can be interspersed with the
usual layers.

A Gaussian process is determined by the mean and covari-
ance of function values for pairs of inputs X , X’. The mean
is zero. Using the recursion in eq. [T} we can find the cov-
ariance between any two pre-nonlinearity activations from
a pair of inputs X, X’ and the covariance of the previous
layer. For i,i’ € [C¥)] and q,q' € [FY)],

i’ q/

¢ [2500.20, (x)] =
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substituting the expression for the weight covariance,
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We can see that the covariance of activations in differ-
ent channels (i # ) is zero. Otherwise, to calculate
KW®(X,X'), we need to calculate the expectation over
W, which we term V(=1 (X, X’). The resulting kernel
expression is

p® p®
(e z) (e—1) /
K Z Z p,p’ Vq(p) q’(p’)(X’X )
p=1p'=1

(11)
which, because the concatenation of patch functions is
a patch function (remark [A.3), is equivalent to a 2D-
dimensional convolution. This kernel does not correspond
to a locally-connected network, because it uses off-diagonal
elements of the previous layer’s kernel.

3.2 EXPECTATION OF THE NONLINEARITIES

For ¢ = 0, the activations in the previous layer are the image
inputs, i.e. AQ(X) = X (eq. , making Vq(?q), (X, X")
an inner product between image patches.

For ¢ > 1, the expression inside the expectation in eq.
is a random variable, an average over j € [C“~V)]. From



eq.|l| we see that all its terms have the same expectation, i.e.
c®

(f) (4)

=, E )[¢(Z£?,’,<X>)¢(Z£2<X'>)}. (12)

Z0) (X),Z(0 (X"

Vi (X, X")

For the purposes of eq.[I2] in the infinite width limit, the pre-
nonlinearities Z(*)(X), Z(¥)(X"') converge in distribution
to a joint Gaussian (theorem[B.7). Accordingly, the value of
the expectation above depends only on the entries of their
2 x 2 covariance matrix and the form of ¢. Here we represent
this dependence through the function Fyg(2y, Ey, Xyy),

‘
V9 (X, X") = Fy(
¢ ¢ ¢
EY (X, X), K)(X', X'), KS) (X, X)) (13)
Combining eq. [T} [T3]and the input inner product provides
us with a recursive procedure to compute the covariances

all the way up to the final layer.

For the balanced ReLU nonlinearity (¢(x) =
V2 max(0,x)), which we use in all the experiments
in this paper, we can use the expression by |(Cho and Saul
[2009]:

Fy(Eg, 5y, Eyy) = =

7r
1 -1 zny
+ (1 - cos <2X2y Yo (14

This expression implies that VIEQ,(X, X) = K;,{%,(X, X),
for all X and p [Lee et al., 2018} Matthews et al., 2018].

3.3 COMPUTATIONAL COMPLEXITY,
DIAGONAL PROPAGATION

To handle the covariance tensor for K () (X, X’), we need
to compute and represent |F(“)|? entries. This can be con-
siderably more expensive than the forward pass of the cor-
responding CNN, where the activations have size |F(“)].
In special cases, the computation or memory costs can be
reduced, compared to the 2D-dimensional convolution in
eq. [LI] which is a generalisation of previous algorithms.
These cases do not include layers with mean-pooling, for
which our algorithm is equally expensive to previous ones
[[Arora et al., 2019].

If weights are independent, only the diagonal of X(©) has
nonzero entries, so Z;(D )p, = Op,p/ Z‘( ) . One of the sums in
the eq. [TT]can then be removed,

p-1)

® ( ) 1(t=1)
Ky ( Z »@ !

op Varar o (X X)) (15)

The patch functions that access V¢~ (X, X') are still
different (g(-) and ¢’(+)), but their argument p is the same.

Patch functions (definition [A.2)) subtract their argument
multiplied by the dilation. Consequently, the difference of
two patch functions with the same argument is constant:
4(p) — q'(p) = s- (g — ¢'). This means that the terms of
the sum are on the same diagonal. Thus, to calculate the
covariance for a given location pair g, q’, we need to do a
single sum over a diagonal of the second moment tensors
VD (X, X') and O,

This results in exact same algorithm as|Arora et al.| [2019],
which convolves over the diagonals, for layers with inde-
pendent weights. Its memory cost is still O(|F“)|?), but
the computational cost is reduced to O(|F¥)|2| P(9)]), com-
pared to O(|F(“)|2| P(¥)|?) for non-diagonal covariance.

Diagonal propagation with independent weights. Ex-
actly which diagonal of V(=1 (X, X') do we need to sum
over? Clearly, it is the one indexed by s - (g — ¢’), i.e. the
one that contains the position (sq, sq’). Thus, the number
of diagonals of V=1 (X, X') that we will need to access
is exactly the number of possible values that g — g’ can take.
That number is determined by the size F() of layer ¢, but
is completely unrelated to the size F‘~1) of layer £ — 1.

Fix some layer ¢ € [L]. We can iterate this argument from
layer ¢ to layer 1 to show that, for all m < ¢, the number
of diagonals of K (™) (X, X’) that one needs to calculate
depends only on F(©). This can yield significant compu-
tational savings when the stride is s > 2 for one or more
layers.

Last layer not spatially extended. When the last layer is
not spatially extended, its size is F) = 1, so it only has
one diagonal. If all the weights of the CNN are independent,
this implies that we only need to calculate one diagonal of
the covariance for every layer. That is:

p-1
K0 = 3 S,

p.p ' d(p), q(p

With this simplification, the convolutions required to calcu-
late the kernel are D-dimensional, bringing the memory cost
to O(|F¥|) and computational cost to O(|F©||P®)]),
same as the finite CNN [Garriga-Alonso et al., 2019]]. The
resulting kernel is equivalent to that of a locally connected
network.

3.4 IMPLEMENTATION

We extend the neural-tangents [Novak et al.,[2020]
library with a convolution layer and a fully connected layer,
that admit a 4-dimensional covariance tensor for the weights.
This allows interoperation with existing layers.



Since 4d convolutions are uncommon in deep learning, our
. . ¥4 .
implementation uses a sum over Ph( ) 3-d convolutions,

where Ph(g) = J is the spatial height of the convolutional
filter. While this enables GPU acceleration, computing the
kernel is a costly operation. Reproducing our results takes
around 10 days using an nVidia RTX 2070 GPU. Access to
computational resources limited our experiments to subsets
of data on CIFAR-10.

4 EXPERIMENTS

By considering different amounts of correlation, we can
interpolate between existing architectures that use independ-
ent weights or full mean-pooling. We consider two possible
benefits of using this larger, continuously parameterised
space of models:

1) Decreased reliance on discrete architectural choices
like mean-pooling.

2) Improved performance by finding a better model in the
expanded search space.

Discrete choices pose a challenge for architecture search,
as a separate network needs to be trained to evaluate the
effect of each choice, which is computationally expensive.
Continuous choices are preferable, as gradients can often be
used to adjust many choices simultaneously. We investigate
whether the discrete choice of mean-pooling can instead be
replaced by a suitable selection of the continuous correlation
parameter in a larger convolutional filter. While searching
in this larger space of kernels, we also hope to observe
improved performance. We investigate these two questions
by performing parameter search in the next two sections.

4.1 EXPERIMENTAL SETUP

We evaluate various models on class-balanced subsets of
CIFAR-10 of size 2°- 10, following|Arora et al.| [2020]. As is
standard practice in the wide network literature, we reframe
classification as regression to one-hot targets Y. We subtract
C = 0.1 from Y to make its mean zero, but we observed
that this affects the results very little. The prediction is the
class k with highest mean of the posterior Gaussian process

label(z, ) = argmax,, fi(z.)

= argmax;, K, x (c*I + KXX)_lY:,k )
17

where o2 is a hyperparameter, the variance of the observa-
tion noise of the GP regression. We perform cross-validation
to find a setting for o2. We use the eigendecomposition of
K, to avoid the need to recompute the inverse for each
value of 2.

In the next two experiments we investigate the cross-
validation performance on subsets of CIFAR-10 for a sweep
of correlation parameters on two different neural network ar-
chitectures. We consider two architectures used in the neural
network kernel literature, the CNN-GP [Novak et al., 2019,
Arora et al., 2019]] with 14 layers, and the Myrtle network
[Shankar et al., 2020] with 10 layers. The CNNGP-14 archi-
tecture ((conv,relu) x 14, pool) has a 32 x 32-sized
layer at the end, which is usually transformed into the 1 x 1
output using global average pooling. The Myrtle10 archi-
tecture (((conv, relu) X 2,poolyys) X 3,pool) has a
8 x 8 pooling layer at the end.

4.2 CORRELATED WEIGHTS IN THE LAST
LAYER

We begin by investigating the addition of correlations in the
weights of the final layer, since this is sufficient to prevent
the disappearance of spatially correlated activations. Fol-
lowing Dutordoir et al.|[2020], the covariance X, of the
weights is given by the Matérn-3/2 kernel with lengthscale

Al
(L) _ Vallp —p'll, Vallp —p'l,
Ep’p/ == (1 + f eXp —f .

(18)
where we see the patch locations p, p” as vectors. The “ex-
tremes” of independent weights and mean pooling are rep-
resented by E;LI),, = dpp and Eg;, = 1, respectively.

Bl

Figure [2] shows how the 4-fold cross-validation accuracy
on the training sets varies with the lengthscale A of the
Matérn-3/2 kernel, which controls the “amount” of spatial
correlation in the weights of the last layer. For each data
point in each line, we split the data set into 4 folds, and we
calculate the test accuracy on 1 fold using the other 3 as
training set, for each value of o that we try. We take the
maximum accuracy over o.

We investigate how the effect above varies with data set size.
The results in fig. 2] show that particularly for the CNNGP-
14 architecture, correlated weights in the final layer lead
to a modest but consistent improvement in performance,
with the effect becoming larger with increasing dataset size.
We can also see the optimal lengthscale A converging to a
similar value for both architectures, of about A ~ 17, which
is evidence that the improvement holds for larger data sets.
The optimal lengthscale is the same for both networks, so
we speculate it may be a property of the CIFAR10 data set.

Data partitioning. The largest data set size in each part
of the plot was run only once because of computational con-

3Strictly speaking, =) = 117 corresponds to sum-pooling,
but the missing constant | F'| =2 does not affect the maximum in

eq.[T7}
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Figure 2: Cross-validation accuracy of the CNNGP-14 and Myrtle10 networks on subsets of CIFAR10, with varying
lengthscale of the Matérn-3/2 kernel that determines the weight correlation in the last layer. With larger data set sizes IV,
the improvement is larger, and the optimal lengthscale A converges to a similar value (A ~ 17). For all data sets except the
largest, the values are averaged over several runs, and the thin lines represent the +20,,, the estimated standard deviation of
the mean. We can improve the performance of the classifier by choosing an intermediate .
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Figure 3: Correlated weights in intermediate layers. We replace pooling layers in the Myrtle10 architecture with larger
convolutional filters with correlated weights. The lengthscale, and thus the amount of correlation, is varied along the x-axis.
By adding correlations to a convolutional layer, we can recover (but not, in this case, exceed) the performance of the
hand-selected architecture with mean-pooling.



straints. We transform one data set of size N into two data
sets of size N/2 by taking block diagonals of the stored ker-
nel matrix, so we have more runs for the smallest sizes. This
is an unbiased Monte Carlo estimate of the true accuracy un-
der the data distribution, since the individual data points are
uniformly distributed (but not independent, since they are
sampled without replacement). It also has less variance than
independent data sets, because the data sets taken are anti-
correlated; they have no points in common. Accordingly,
the error bars in figs. 2] and [3]are an estimate of the standard
error: the square root of an upwards-biased estimator of the
variance of the mean.

Implementation. We use the neural-tangents
[Novak et al., 2020] library to calculate the spatial ker-
nel at the previous-to-last layer, K (L’l)(X ,X’), once.
Since only the lengthscale of the last layer changes, we
can cheaply obtain the final layer kernel matrix K g‘;(, for
all lengthscales.

4.3 CORRELATED WEIGHTS IN INTERMEDIATE
LAYERS

We take the same approach to the experiment in fig. 3| To
investigate whether correlated weights can replace mean-
pooling, we replace the 2 x 2 intermediate mean-pooling
layer, together with the next 3 x 3 convolution layer, in the
Myrtle10 architecture with correlated weights. We change
them to a 6 x 6 weight-correlated convolution. We vary the
lengthscale for the covariance of all the newly correlated
layers, setting them to the same value.

We observe that for independent weights (lengthscale is 0)
the performance of the network is significantly below the
optimum. Correlating the weights improves performance,
although after adding small amounts of correlation, perform-
ance stays roughly constant. This indicates that for interme-
diate layers mean-pooling is not a sub-optimal choice, as it
is for the last layer. However, the amount of correlation is
a continuous parameter, which could lead to avoiding this
discrete choice in model architecture.

Implementation. In this experiment, the lengthscales
vary across the whole network, so we need to calculate
K(=1D (X, X’) every time. For a given data set size, this
makes each point in fig. 3] considerably more expensive.
For each data point, we optimise over the lengthscale of
the last layer like in fig. [2] picking the one with highest
cross-validation accuracy.

S RELATED WORK

Infinitely wide limits of neural networks are currently an
important tool for creating approximations and analyses.
Here we provide a background on the different infinite limits

that have been developed, together with a brief overview of
where they have been applied.

Interest in infinite limits first started with research into prop-
erties of Bayesian priors on the weights of neural networks.
Neall [[1996] noted that prior function draws from a single
hidden layer neural network with appropriate Gaussian pri-
ors on the weights tended to a Gaussian process as the width
grew to infinity. The simplicity of performing Bayesian
inference in Gaussian process models led to their wide-
spread adoption soon after [Williams and Rasmussen, |1996,
Rasmussen and Williams|, [2006]. Over the years, the wide
limits of networks with different weight priors and activa-
tion functions have been analysed, leading to various kernels
which specify the properties of the limiting Gaussian pro-
cesses [Williams, 11997, |Cho and Saul, 2009].

With the increasing prominence of deep learning, recursive
kernels were introduced in an attempt to obtain similar prop-
erties./Cho and Saul/[2009], Mairal et al.| [2014] investigated
such methods for fully-connected and convolutional archi-
tectures respectively. Despite similarities between recursive
kernels and neural networks, the derivation did not provide
clear relationships, or any equivalence in a limit. Hazan and
Jaakkola! [2015]] took initial steps to showing the wide limit
equivalence of a neural network beyond the single layer
case. Recently, Matthews et al.| [2018]], [Lee et al.|[2018]]
simultaneously provided general results for the convergence
of the prior of deep fully-connected networks to a GPE]A
different class of limiting kernels, the Neural Tangent Ker-
nel (NTK), originated from analysis of the function implied
by a neural network during optimisation [Jacot et al., 2018]],
rather than the prior implied by the weight initialisation.
Just like the Bayesian prior limit, this kernel sheds light on
certain properties of neural networks, as well as providing
a method with predictive capabilities of its own. The two
approaches end up with subtly different kernels, which both
can be computed as a recursive kernel. Both such infinite
limits have recently been used for predicting and analysing
training properties of finite neural networks [Poole et al.|
2016, [Schoenholz et al., 2017, [Hayou et al., 2019], as well
as for (Bayesian) training of infinitely wide networks.

With the general tools in place, (Garriga-Alonso et al.| [2019],
Novak et al. [2019]] derived limits of the prior of convolu-
tional neural networks with infinite filters. These two papers
directly motivated this work by noting that spatial correla-
tions disappeared in the infinite limit. Spatial mean pooling
at the last layer was suggested as one way to recover correla-
tions, with |[Novak et al.| [2019]] providing initial evidence of
its importance. Due to computational constraints, they were
limited to using a Monte Carlo approximation to the limiting
kernel, while |Arora et al.|[2019]] performed the computation

“The derivation of the limiting kernel differs between the two
papers, with the results being consistent. Matthews et al.|[2018|]
carefully take limits of realisable networks, while|Lee et al.| [2018]]
take the infinite limit of each layer sequentially.



with the exact NTK. Very recent preprints provide follow-on
work that pushes the performance of limit kernels [Shankar
et al.| |2020]] and demonstrated the utility of limit kernels
for small data tasks [Arora et al., 2020]. Extending on the
results for convolutional architectures, |Yang [2019] showed
how infinite limits could be derived for a much wider range
of network architectures.

In the kernel and Gaussian process community, kernels with
convolutional structure have also been proposed. Notably,
these retained spatial correlation in either a fixed [van der
Wilk et al.} 2017]] or adjustable [Mairal et al.| 2014, [Dutor
doir et al.,[2020] way. While these methods were not derived
using an infinite limit, Van der Wilk! [2019] provided an ini-
tial construction from an infinitely wide neural network limit.
Inspired by these results, we propose limits of deep convo-
lutional neural networks which retain spatial correlation in
a similar way.

6 CONCLUSION

The disappearance of spatial correlations in infinitely wide
limits of deep convolutional neural networks could be seen
as another example of how Gaussian processes lose fa-
vourable properties of neural networks. While other work
sought to remedy this problem by changing the architecture
(mean-pooling), we showed that changing the weight prior
could achieve the same effect. Our work has three main
consequences:

1. Weight correlation shows that locally connected mod-
els (without spatial correlation) and mean-pooling ar-
chitectures (with spatial correlation) actually exist at
ends of a spectrum. This unifies the two views in the
neural network domain. We also unify two known con-
volutional architectures that were introduced from the
Gaussian process community.

2. We show empirically that performance improvements
can be gained by using weight correlations between
the extremes of locally connected networks or mean-
pooling. We also show that mean-pooling in interme-
diate layers can be replaced by weight correlation in
infinitely wide architectures.

3. Using weight correlation may provide advantages
during hyperparameter tuning. Discrete architectural
choices need to be searched through simple evaluation,
while continuous parameters can use gradient-based
optimisation. While we have not taken advantage of
this in our current work, this may be a fruitful direction
for future research.
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