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Abstract

We propose a bandit algorithm that explores purely
by randomizing its past observations. In particular,
the sufficient optimism in the mean reward esti-
mates is achieved by exploiting the variance in
the past observed rewards. We name the algorithm
Capitalizing On Rewards (CORe). The algorithm
is general and can be easily applied to different
bandit settings. The main benefit of CORe is that
its exploration is fully data-dependent. It does not
rely on any external noise and adapts to different
problems without parameter tuning. We derive a
Õ(d
p
n logK) gap-free bound on the n-round re-

gret of CORe in a stochastic linear bandit, where d

is the number of features and K is the number of
arms. Extensive empirical evaluation on multiple
synthetic and real-world problems demonstrates
the effectiveness of CORe.

1 INTRODUCTION

A multi-armed bandit [Lai and Robbins, 1985, Lattimore
and Szepesvári, 2020] is an online sequential decision-
making problem, where the learning agent chooses actions
represented by arms in an n-round game. After an arm is
pulled, the agent receives a stochastic reward generated
from an unknown reward distribution associated with the
arm. The goal of the agent is to maximize the expected
n-round reward. As the agent needs to learn the mean re-
wards of the arms by pulling them, it faces the so-called
exploitation-exploration dilemma: exploit, and pull the arm
with the highest estimated mean reward thus far; or explore,
and learn more about the arms.

A stochastic linear bandit (or linear bandit) [Rusmevichien-
tong and Tsitsiklis, 2008, Abbasi-Yadkori et al., 2011] is
a generalization of a multi-armed bandit where each arm
is associated with a feature vector. The mean reward of an

arm is the dot product of its feature vector and an unknown
parameter vector, which needs to be learned by the agent.
A multi-armed bandit can be considered as a special case
of the linear bandit where the feature vector of each arm
is a one-hot vector indicating the index of the arm, and the
parameter vector is a vector of corresponding mean rewards.

Arguably, the most popular and well-studied exploration
strategies for solving bandit problems are Thompson sam-

pling (TS) [Thompson, 1933, Agrawal and Goyal, 2013]
and Optimism in the Face of Uncertainty (OFU) [Auer et al.,
2002]. TS maintains a posterior distribution over each arm’s
mean reward and samples from it to explore. This is efficient
and has strong empirical performance when the posterior
has a closed form [Chapelle and Li, 2011]. However, if the
posterior does not have a closed form, as in many non-linear
problems [McCullagh, 1984, Filippi et al., 2010], it needs
to be approximated, which is typically computationally ex-
pensive and limits the applicability of TS [Gopalan et al.,
2013, Abeille and Lazaric, 2016, Riquelme et al., 2018]. On
the other hand, OFU-based algorithms [Auer et al., 2002]
depend on the construction of high-probability confidence
sets. They are theoretically near-optimal in multi-armed and
linear bandits. However, as the confidence sets are often
constructed for worst-case scenarios, they are empirically
less competitive. In addition, in some problems, such as
generalized linear bandits or neural network bandits [Zhou
et al., 2020], it is only possible to approximate the confi-
dence sets [Filippi et al., 2010, Zhang et al., 2016, Li et al.,
2017]. These approximations affect the statistical efficiency
of the algorithms and often perform poorly.

To design general algorithms that do not rely on problem-
specific confidence sets or posteriors, recent works proposed
randomized exploration [Baransi et al., 2014a, Osband and
Roy, 2015, Kveton et al., 2019b,a, Vaswani et al., 2020].
The key idea is to randomize the reward history of the ban-
dit algorithms before estimating the mean rewards. The
randomization strategy is sufficiently general to apply to
challenging problems, such as generalized linear bandits or
neural network bandits. Bootstrapping [Eckles and Kaptein,
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 2014, Osband and Roy, 2015, Tang et al., 2015, Vaswani
et al., 2018] is one of the randomization strategies, which
uses the resampled reward history for mean reward estima-
tion. However, exploration by bootstrapping has been poorly
understood theoretically. Kveton et al. [2019b] showed that
bootstrapping can suffer from linear regret in certain ban-
dit instances and proposed to add pseudo rewards to each
arm’s reward history before bootstrapping. They proved
that the pseudo rewards provide sufficient variance for ex-
ploration. Kim and Tewari [2019], Kveton et al. [2019a]
further showed that the sufficient variance can be induced
by other randomization schemes, which they analyzed. Un-
fortunately, all the analyses rely on the right amount of
external noise or pseudo rewards that match the problem
instances. In real-world problems, however, we often do not
have prior knowledge of the variance of the reward distribu-
tions. Thus the external noise and pseudo rewards are hard
to design.

In this work, we propose a general randomized exploration
strategy without adding any external noise or pseudo re-
wards. Specifically, we take advantage of the randomness in
the agent’s past observed rewards from all arms for explo-
ration. In each round, the learning agent adds to each arm’s
history the rewards sampled from past observations of all
the arms, and pulls the arm with the highest estimated mean
reward based on the perturbed histories. We call the result-
ing algorithm CORe, meaning Capitalizing On Rewards. As
CORe only relies on past observed rewards, its exploration is
data-dependent. With a well designed sampling strategy, the
observed rewards from all arms provide enough variance
for exploration, without the need of knowing the actual re-
ward distributions of the arms. Thus the exploration adapts
to different problems without parameter tuning. This is a
significant advantage in real-world applications, where we
often have no knowledge of the actual reward distributions.

We make the following contributions. First, we propose a
randomized exploration strategy that does not rely on any
external noise. We show that the new algorithm CORe en-
sures proper variance for exploration by sampling from the
past observed rewards, agnostic to the variance of reward
distributions. Second, we analyze CORe in a linear Gaussian
bandit and derive a Õ(d

p
n logK) gap-free bound on its

n-round regret, where d is the dimension of feature vectors
and K is the number of arms. Although we assume Gaus-
sian noise in the analysis, we observe empirically that CORe
works well when the reward noise is not Gaussian and varies
significantly across the arms. Finally, we conduct compre-
hensive experiments on both synthetic and real-world prob-
lems that demonstrate the effectiveness of CORe.

2 SETTING

We use the following notation throughout the paper. The
set {1, 2, ..., n} is denoted by [n]. We denote by u� v the

concatenation of vectors u and v. We use Id to denote a
d⇥ d identity matrix, and write Õ for the big-O notation up
to polylogarithmic factors in n.

A stochastic linear bandit [Rusmevichientong and Tsitsiklis,
2008, Abbasi-Yadkori et al., 2011] is an online learning
problem where the learning agent sequentially pulls K arms
in n-rounds and each arm is associated with a d-dimensional
feature vector. We denote by xi 2 Rd the feature vector
of arm i 2 [K] and ✓⇤ 2 Rd is the unknown parameter
vector. The reward of arm i in round t 2 [n], Yi,t, is drawn
i.i.d. from the reward distribution of arm i, Pi, with mean
µi = x

>
i ✓⇤. In round t, the learning agent pulls arm It 2

[K] and receives the reward YIt,t. To have a more compact
notation, we denote by Xt = xIt and Yt = YIt,t the feature
vector of the pulled arm in round t and its observed reward,
respectively. The agent does not know the mean rewards or
the parameter vector in advance and learns them by pulling
the arms. The goal of the agent is to maximize its expected

cumulative reward in n rounds. In particular, when xi is a
K-dimensional one-hot vector with xi = ei, i 2 [K], and
✓⇤ is a vector of K mean rewards, the linear bandit reduces
to a multi-armed bandit [Lai and Robbins, 1985, Lattimore
and Szepesvári, 2020].

Without loss of generality, we assume that arm 1 is optimal,
meaning µ1 > maxi>1 µi. We denote by �i = µ1 � µi

the gap of arm i, which is the difference between the mean
rewards of arms 1 and i. Maximizing the expected n-round
reward is equivalent to minimizing the expected n-round

regret, which is defined as

R(n) =
KX

i=2

�iE
"

nX

t=1

{It = i}
#
.

We make the following standard assumptions in this setting.
First, the mean reward µi = x

>
i ✓⇤ for any arm i 2 [K] is

bounded, and without loss of generality, we assume that it
is in [0, 1]. Second, the feature vectors of the first d arms
are a basis in Rd. This is without loss of generality for
the following reason. Since the feature vectors of arms are
known in advance, a basis of size d can be found by standard
methods from linear algebra, as long as it exists. Then we
can exchange it for the first d feature vectors. If it does not
exist, because the feature space is d0 < d dimensional, we
can use SVD to reduce the feature space to d

0 dimensions
where a basis of size d

0 exists. Note that this reduction will
not change the linearity of the expected reward in features
and the optimal arm.

3 CAPITALIZING ON REWARDS IN
BANDIT EXPLORATION

In this section, we introduce the new algorithm Capitalizing
On Rewards (CORe). We first illustrate key ideas of CORe
and discuss how it works in Section 3.1. In Section 3.2, we



 instantiate the algorithm in a stochastic linear bandit. To be
more specific, in the rest of the paper, we use CORe to refer
to the algorithm applied in a multi-armed bandit, and use
LinCORe to represent the algorithm in a linear bandit.

3.1 KEY IDEAS AND INFORMAL
JUSTIFICATION OF CORe

The principle of CORe is to utilize the variance in the past
observed rewards to incentivize exploration. We first discuss
CORe in a simple multi-armed bandit to illustrate how it
works. Specifically, when estimating the mean reward of
arm i in round t, CORe first perturbs each reward of arm i

with a reward sampled from all observed rewards in the past
t� 1 rounds. Then the mean of arm i is estimated based on
its perturbed rewards. Thus if there is sufficient variance in
the past observed rewards, CORe is able to overestimate the
mean rewards of arms to achieve optimism.

To be more concrete, we make an analogy between CORe
and TS. For example, in a Gaussian bandit, adding additive
noise to the mean reward estimate is equivalent to posterior
sampling. In particular, fix arm i and let the number of its
pulls be s. Let µi ⇠ N (µ0,�

2) be the mean reward of arm
i, where N (µ0,�

2) is the Gaussian prior in TS and �
2 is the

variance of the arm’s reward distribution. Let (Yi,`)s`=1 ⇠
N (µi,�

2) be s i.i.d. noisy observations of µi. Then the
posterior distribution of µi conditioned on (Yi,`)s`=1 is

N
 
µ0 +

Ps
`=1 Yi,`

s+ 1
,

�
2

s+ 1

!
. (1)

It is well known that sampling from this distribution in TS
leads to near-optimal regret [Agrawal and Goyal, 2013].
From another perspective, sampling a mean reward of arm i

as above is equivalent to adding i.i.d. Gaussian noise to µ0

and each reward in (Yi,`)s`=1, and then taking the average
[Kveton et al., 2019a]. Specifically,

µ0 + Z0 +
Ps

`=1(Yi,` + Z`)

s+ 1

is a sample from distribution (1) for (Z`)s`=0 ⇠ N (0,�2).

However, in practice, �2 depends on the specific problem in-
stance and is unknown. Thus the variance of (Z`)s`=0 needs
to be carefully tuned to match �

2. The key insight in CORe
is that the exact value of �2 does not have to be known. In-
stead of sampling the noise from a given distribution, CORe
samples (Zl)s`=0 from a reward pool, which is composed of
previously observed rewards of all arms. Then CORe adds
sampled rewards to rewards of arm i for mean reward esti-
mate. As we show in Section 4, after an initialization period
of 4 logn

z�1�log z + 1 rounds, for any z 2 (0, 1), the empirical
variance of the observed rewards so far is at least z�2

/2
with a high probability. Thus, after scaling the rewards by ↵

to construct the reward pool, the variance of an i.i.d. sam-
pled reward is greater than ↵

2
z�

2
/2. This is at least �2 for

↵
2
z > 2, and can be achieved without knowing �

2.

3.2 CAPITALIZING ON REWARDS IN A
STOCHASTIC LINEAR BANDIT

We present the algorithm in a stochastic linear bandit
(LinCORe) in Algorithm 1, as it is a more general setting
than a multi-armed bandit. In round t, LinCORe first con-
structs a reward pool Rt from all the past t � 1 observed
rewards. To achieve optimism in the mean reward estima-
tion in round t, each reward Y` observed from a pulled arm
with feature vector X` is perturbed by a randomly sam-
pled reward Z` from Rt. Then we fit a linear model to the
perturbed rewards (line 11),

✓̃t  G
�1
t

t�1X

`=1

X`

h
Y` + Z`

i
, (2)

where

Gt  
t�1X

`=1

X`X
>
` + �Id (3)

is the sample covariance matrix up to round t and � > 0
is the regularization parameter. (Z`)

t�1
`=1 are i.i.d. rewards

freshly sampled in each round from Rt. The estimate of the
mean reward of arm i is x

>
i ✓̃t. The arm with the highest

reward estimate is pulled. This is similar to Thompson sam-
pling [Thompson, 1933, Agrawal and Goyal, 2012, Abeille
and Lazaric, 2016] and perturbed history exploration [Kve-
ton et al., 2019a, 2020] in linear bandits, which add noise to
the parameter estimate. However, LinCORe does not depend
on any posterior variance or external pseudo rewards for
exploration, and instead only relies on randomness in the
agent’s own reward history.

Specifically, in lines 1-3 of Algorithm 1, we initial-
ize LinCORe by pulling arms sequentially for the first
max{d, 4 logn

z�1�log z+1} rounds, where z 2 (0, 1) is a tunable
parameter that determines the initial variance in the reward
pool. Each arm in the d-dimensional basis is initially pulled
and this guarantees sufficient diversity of feature vectors
in the reward pool. This is needed because our exploration
is purely data-driven. After initialization, in each round t,
LinCORe processes the past t� 1 rewards and creates a new
reward pool Rt in lines 5-8. LinCORe scales the rewards by
↵ to guarantee sufficient variance in Rt for exploration, as
suggested in Section 3.1. Besides, the processed rewards in
Rt are centered to have zero mean and each reward y has
its symmetric reward �y around zero in the pool. This addi-
tional processing is only to simplify the theoretical analysis
in Section 4. It does not change the variance of samples from
the reward pool and LinCORe performs in practice similarly
without it. LinCORe then samples t� 1 i.i.d. rewards from



 Algorithm 1 Capitalizing on Rewards in a stochastic linear
bandit (LinCORe)

Input: Initial variance ratio z 2 (0, 1), sample
scale ratio ↵ 2 R+, number of rounds n

1: for t = 1, 2, ..., n do
2: if t  max

�
d,

4 logn
(z�1�log z) + 1

 
then

3: It  t mod K

4: else
5: Rt  ()
6: µ(Rt) =

1
t�1

Pt�1
`=1 Y`

7: for ` = 1, . . . , t� 1 do
8: Rt  Rt � (↵(Y` � µ(Rt)), ↵(µ(Rt)� Y`))
9: (Z`)

t�1
`=1  Sample t� 1 i.i.d. rewards from Rt

10: Gt  
Pt�1

`=1 X`X
>
` + �Id

11: ✓̃t  G
�1
t

Pt�1
`=1 X`

h
Y` + Z`

i

12: It  argmaxi2[K] x
>
i ✓̂t

13: Pull arm It and get reward Yt

Rt (line 9). To get the parameter estimate ✓̃t, LinCORe per-
turbs each observed reward by a sampled reward from Rt

to fit a linear model (lines 10-11). Finally, LinCORe pulls
arm It with highest mean reward estimate from ✓̃t and ob-
serves its reward Yt. It is important to note that Algorithm 1
is only an instance of the proposed general randomization
strategy in a linear bandit setting. The parameter estimation
in lines 10-12 (Algorithm 1) can be replaced by any other
estimator, such as a neural network, to get more general
algorithms. For example, we only need to replace the pa-
rameter estimation in lines 10-12 with that of the neural
network used for reward estimation.1 Here we choose to
show the linear case rather than a general case to be more
concrete for reproducibility. Besides, when feature vectors
are one-hot vectors with xi = ei, Algorithm 1 corresponds
to CORe in a multi-armed bandit, which is essentially using
the average of each arm’s perturbed rewards as the mean
reward estimate.

The exploration in LinCORe arises from the variance in
Rt. For example, if the reward distributions of all arms are
Gaussian with variance of �2, we want a comparable vari-
ance in Rt, so that the sampled rewards from Rt can offset
unfavorable reward histories. To achieve this, LinCORe ini-
tially pulls arms sequentially max{d, 4 logn

z�1�log z + 1} times,
to accumulate observations. We prove in Section 4.2 that
after this initialization, the empirical variance of observed
rewards is at least z�2

/2 with a high probability. However,
z�

2
/2 may not be sufficient for effective exploration. Once

z is fixed, the scale ratio ↵ dictates the multiplicative fac-
tor of the variance of each sampled reward in the reward
pool, and thus controls the trade-off between exploration

1Note that this implementation can be computationally costly,
as it requires retraining of the neural network in each round. This
can be alleviated as in Lu and Van Roy [2017].

and exploitation. Larger ↵ leads to more exploration. More
importantly, the variance in Rt is at least ↵2

z/2 of that of
the reward distributions. So it is automatically adapted to
the problem.

4 REGRET ANALYSIS

We analyze LinCORe in the setting where the reward dis-
tribution of each arm i 2 [K] is N (µi,�

2) for µi 2 [0, 1].
The variance of reward distributions is �2, identical for all
arms. In this setting, we derive the following gap-free bound
on the n-round regret of LinCORe.

Theorem 1. For any 1/2  z < 1, 4
p
�2 log n � 1, and

n � 24, the expected n-round regret of LinCORe is

R(n) = Õ(d
p
n logK)

for ↵ = O(
p
z�1d log n). We provide the detailed proof in

Appendix A.2.

The analysis of LinCORe follows the general steps of ana-
lyzing LinTS, as presented by Kveton et al. [2019b]. Our
main novelty is the analysis of concentration and anti-
concentration properties of the empirical noise distribution
in the reward pool, which is the key to exploration in CORe.
This is challenging because that distribution does not have a
known closed form. In Section 4.2, we show that the rewards
have sufficient variance in Lemma 2. We bound their magni-
tude in Lemma 3. The rest of our analysis follows the outline
of LinPHE [Kveton et al., 2020], which we generalize from
Bernoulli perturbations to those in Section 4.2.

4.1 DISCUSSION

The regret of LinCORe is Õ(d
p
n logK) (Theorem 1),

where d is the number of features and K is the number
of arms. This is on the same order as the regret bound of
LinPHE [Kveton et al., 2020], a state-of-the-art random-
ized algorithm for linear bandits. In the infinite arm setting,
Abeille and Lazaric [2016] proved that the regret of LinTS
is Õ(d

3
2
p
n), which we also match. Specifically, if the space

of arms was discretized on an "-grid, the number of arms
would be K = "

�d and
p
logK =

p
d log(1/").

The key idea in our analysis is to inflate ↵ in the reward
pool to achieve optimism. In linear bandits, this idea can
be traced to Agrawal and Goyal [2012]. Roughly speaking,
↵ = O(

p
z�1d log n). This setting is too conservative in

practice. Therefore, we experiment with less conservative
settings and relatively small ↵ in Section 5.

4.2 REWARD POOL

The exploration in LinCORe is enabled by the variance of
sampled rewards from the reward pool Rt. In this section,



 we analyze the variance of sampling i.i.d. rewards from Rt,
which lays the foundation for the theoretical analysis of
LinCORe. We use �

2(Rt) to represent the variance of one
i.i.d. sampled reward from Rt. Specifically, the rewards in
Rt are simple transformations of all the past t� 1 observed
rewards (YI`,`)

t�1
`=1 (lines 6-8 in Algorithm 1). �2(Rt) is al-

gebraically equivalent to the variance of one sampled reward
from (YI`,`)

t�1
`=1 scaled by ↵

2,

�
2(Rt) =

1

|Rt|
X

y2Rt

y
2 =

↵
2

t� 1

t�1X

`=1

(YI`,` � µ(Rt))
2
,

(4)
where µ(Rt) is the mean of all past rewards observed by
the learning agent, as defined in line 6 of Algorithm 1.
Thus a sampled reward from Rt can provide the variance
of �2(Rt). We characterize �

2(Rt) by the following two
lemmas, which are proved in Appendix A.4.

Lemma 2. For any n � 2 and z 2 (0, 1), �2(Rt) � ↵2z
2 �

2

with probability of at least 1 � 1
n , jointly for all rounds

t >
4 logn

z�1�log z + 1.

Lemma 2 states that when there are enough rewards in Rt

after the initialization, the variance of sampling a reward
from Rt is ⌦(�2) with a high probability, which provides
the variance needed for exploration. On the other hand,
the variance should not be too large, which would hurt the
convergence of mean reward estimates. Lemma 3 shows
that the rewards in Rt are bounded with high probability.

Lemma 3. For any n � 2 and t  n, with probability of at

least 1 � 1
n , the absolute values of the rewards in reward

pool Rt are bounded by ↵(4
p
�2 log(n) + 1).

In particular, in Lemma 2, the lower bound on �
2(Rt) en-

sures the overestimate of the mean reward estimate for ex-
ploration. Lemma 3 states that the magnitude of rewards
in Rt is bounded with a high probability. Lemmas 2 and 3
provide the justification of using the agent’s past observed
rewards for effective exploration in LinCORe, and are ap-
plied throughout the proof of Theorem 1 in Appendix A.2.

5 EXPERIMENTS

We evaluate our proposed algorithm empirically in both
multi-armed and linear bandits. In all experiments, we use
CORe to denote the proposed algorithm in the multi-armed
bandit setting, and LinCORe in the linear case. We compare
it with several state-of-the-art baselines and show how it
adapts to different problems without parameter tuning. In
Section 5.1, we evaluate CORe in multi-armed bandits. We
experiment with LinCORe in linear bandits in Section 5.2
and investigate the robustness of its parameters in Sec-
tion 5.3. Finally, we generalize CORe to a learning to rank
problem to evaluate its performance in real-world problems.

5.1 MULTI-ARMED BANDIT

We evaluate CORe in three classes of multi-armed ban-
dit problems. The first class is Bernoulli bandits where
Pi = Ber(µi). The second class is beta bandits where
Pi = Beta(vµi, v(1 � µi)) with v = 4. The third class
is Gaussian bandits where Pi = N (µi,�

2) with � = 0.5.
Each bandit problem has K = 10 arms and the mean re-
wards are chosen uniformly at random from [0.25, 0.75].
The horizon of each experiment is n = 10, 000 rounds. We
experiment with 100 randomly chosen problems in each
class and report the average regret.

We compare CORe to six baselines: UCB1 [Auer et al., 2002],
UCB-V [Audibert et al., 2009], TS [Agrawal and Goyal,
2013], PHE [Kveton et al., 2019a], NP-TS [Riou and Honda,
2020] and SSMC [Chan, 2019]. UCB-V can estimate the vari-
ance of the reward distribution based on the observed re-
wards, which automatically adapts to the variance. NP-TS
and SSMC are two non-parametric solutions proposed in the
multi-armed bandit setting. In particular, NP-TS is a non-
parametric randomized algorithm. At each step, it computes
an average of the observed rewards with random weights.
SSMC is a non-parametric arm allocation procedure inspired
by sub-sampling approaches [Baransi et al., 2014a]. For TS,
we use Bernoulli TS (Ber-TS) with a Beta(1, 1) prior for
Bernoulli and beta bandits. We use Gaussian TS (Gauss-TS)
with a N (0.5,�2) prior for Gaussian bandits [Agrawal and
Goyal, 2013], where the parameter � is set to match the vari-
ance of the actual reward distribution. PHE belongs to the
same class of bandit algorithms as CORe that randomize the
reward history for exploration. We do not include Giro [Kve-
ton et al., 2019b] as PHE explores similarly but in a more
efficient way. We add Bernoulli pseudo rewards in PHE (Ber-
PHE) in Bernoulli and beta bandits and set the parameter a to
values that achieve the best performance as reported in [Kve-
ton et al., 2019a]. For Gaussian bandit, we add Gaussian
pseudo rewards (Gauss-PHE) as suggested in the paper. To
tune baselines, we do grid search for their hyperparameters
in a sufficiently wide range, so that the minimum regret can
be attained in it. For example, to tune Gauss-PHE, we search
for the standard deviation of the Gaussian pseudo rewards
in [0.1, 2] and tune parameter a in the range of [0.1, 2], both
with step size of 0.1. Since the baselines and experimental
settings are relatively standard, we do not describe all of
them in detail. To set ↵ and z in CORe, we initially run CORe
in Bernoulli bandits with the settings described above. Then
we choose the parameters ↵ = z = 0.6 that minimize the
regret over 100 runs. We fix these parameters for all other
experiments without any further tuning.

Our results are reported in Figure 1. We show the cumulative
regret as a function of the number of rounds. CORe achieves
strong empirical performance that is comparable to or bet-
ter than all the baselines. In particular, CORe outperforms
UCB1 and UCB-V in all three classes of bandit problems. Al-
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Figure 1: Comparison between CORe and the baselines in Bernoulli, beta and Gaussian multi-armed bandits. x-axis is the
number of rounds. y-axis is the cumulative regret (lower the better). All results are averaged over 100 randomly chosen
problems and error bars represent the standard deviation over the runs.
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Figure 2: Comparison between LinCORe and the baselines in linear bandits. The cumulative regret is displayed on log scale
to include all baselines.

though UCB-V estimates the variance of observed rewards
to explore, it is too conservative and performs poorly in
practice. TS and PHE can have similar performance as CORe,
but the variance of the posterior (parameter �) in TS and
the perturbation scale in PHE (parameter a) are tuned based
on the knowledge of the specific bandit problems, which is
usually not accessible in real-world scenarios. In contrast,
CORe consistently performs well in different problems with-
out tuning the parameters. This is a significant advantage in
real-world applications when the reward distribution is un-
known. NP-TS and SSMC also achieve strong performance in
multi-armed bandits, but they do not generalize to structured
problems as CORe does.

5.2 LINEAR BANDIT

We evaluate LinCORe in several linear bandit problems. We
set the number of arms to K = 50 and the dimension of
the feature vectors to d = 10. We follow the generation of
feature vectors and the parameter vector ✓⇤ in [Kveton et al.,
2020] (see their Section 5.1). Following the experiments
in Section 5.1, we consider Bernoulli, beta, and Gaussian
reward distributions by setting the mean reward of each
arm to x

>
i ✓⇤ 2 [0, 1]. The horizon of each experiment is

n = 10, 000 rounds and we report the average results over
100 randomly chosen problems.

We compare LinCORe with LinUCB [Abbasi-Yadkori et al.,

2011], LinTS [Agrawal and Goyal, 2012], and LinPHE
[Kveton et al., 2020]. There are no linear variants of UCB-V,
NP-TS or SSMC. For LinPHE, we add Bernoulli pseudo re-
wards in Bernoulli and beta bandit (Ber-LinPHE), and add
Gaussian rewards in Gaussian bandit (Gauss-LinPHE). The
parameters for LinTS and LinPHE are tuned in the range of
[0.1, 2], while we still use the same parameters ↵ = z = 0.6
for LinCORe as in Section 5.1. The results are shown in Fig-
ure 2. In all three classes of linear bandit problems, LinCORe
can achieve the best performance without tuning the param-
eters. Note that unlike LinUCB and LinTS, whose upper
confidence sets and posterior need to be designed differently
for multi-armed bandits and linear bandits, LinCORe is sim-
ply applying the same randomization strategy to different
bandit settings. Although LinPHE is also a direct general-
ization of the multi-armed bandit setting, its perturbation
from pseudo rewards depends on the knowledge of the arms’
reward distribution.

5.3 ADAPTATION TO PROBLEM HARDNESS

We further investigate how LinCORe automatically adjusts
its exploration in problems with different levels of hard-
ness. Besides, we also show that LinCORe works properly
with a wide range of parameters. Specifically, we consider
linear Gaussian bandits with different levels of variance.
We set the standard deviation of the reward distributions
to � = 0.2 as an easy problem, and set � = 1 as a hard
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Figure 3: In the first two figures, we compare LinCORe, LinPHE, and LinTS in easy and hard problems. We fix the parameters
of LinCORe and tune the parameters of LinPHE and LinTS to perform well in either the easy or the hard case. In the third
figure, we tune the parameters of LinCORe and show its cumulative regret in 10,000 rounds. All results are averaged over
100 runs.

problem. We compare LinCORe to LinTS and LinPHE who
achieve similar performance in Section 5.2. For LinTS and
LinPHE, we use two sets of parameters for each of them,
with each set specially tuned for either the easy or the hard
problem. In particular, for LinTS we set � to 0.2 for the
easy problem and 1.0 for the hard problem that performs
well in two problems correspondingly. In LinPHE, we tune
the parameter a and set it to 0.2 and 1.0 for the easy and
the hard problem, respectively. We still use the same fixed
parameters as in Sections 5.1 and 5.2 in LinCORe for both
problems. As shown in Figures 3a and 3b, LinCORe is able
to perform well in both easy and hard problems without
tuning the parameters. For LinTS and LinPHE, they can
achieve equally good performance as LinCORe when the
parameters are specially set for the problems. However, the
parameters tuned for the easy problem under-explore in the
hard problem and have almost linear regret. Similarly, the
parameters tuned for the hard problem explore too much in
the easy problem, and converge slowly.

We further tune the parameters ↵ and z of LinCORe in the
hard problem in Figure 3c to see how it performs under
different combinations of parameters. The results show that
LinCORe works well under a wide range of parameters and
thus is easy to configure. For example, the area of ↵ 2
[0.4, 0.8] and z 2 [0.5, 0.7] provides similarly competitive
performance. When ↵ and z are too small, such as ↵ = z =
0.2, LinCORe mainly exploits and explores too little to find
the optimal arm. On the other hand, when ↵ and z are too
large, such as ↵ = 1.4 and z = 0.8, it over-explores and
suffers from high regret. Moreover, it is worth noting that
when setting z to a large value, we have a large number
of random pulls for initialization in order to have a high
variance in the reward pool, which also leads to high regret
in the early stage.

5.4 ONLINE LEARNING TO RANK

We finally evaluate CORe in a real-world problem, online
learning to rank [Liu, 2009, Radlinski et al., 2008]. Online
learning to rank is a sequential decision-making problem
where the learning agent repeatedly recommends a list of
items. In round t, the learning agent recommends a ranked
list of K items out of all L � K items. The user clicks on
the recommended items. The clicks are treated as bandit
feedback. The performance of the agent is measured by the
expected cumulative regret, which is the expected loss in
clicks relatively to the optimal ranking. The goal of this
experiments is to showcase CORe in a challenging bandit
problem, where the action space is large (any ranked list
of items) and feedback is complex (clicks on lower ranked
items are less likely than on the higher ones).

We experiment with the Yandex dataset and follow the ex-
perimental setup as in [Zoghi et al., 2017, Lattimore et al.,
2018]. In each query, the user is shown 10 documents and
the search engine records clicks of the user. We use the 60
most frequent queries from the dataset and learn their cas-
cade models (CM) with PyClick [Chuklin et al., 2015]. The
goal of the learning agent is to rerank L = 10 most attrac-
tive items to maximize the expected number of clicks at the
first K = 5 positions. The application of bandit algorithms
is similar to the multi-armed bandit setting, despite that the
agent ranks the items based on their mean reward estimates
rather than selecting a single item. The corresponding cas-
cade model learned under each query is used to generate
clicks. We experiment with a horizon of n = 50, 000 rounds
and the regret is averaged over 10 runs.

We compare CORe to CascadeKL-UCB [Kveton et al., 2015],
which is specifically designed for online learning to rank
in the cascade model. We also evaluate Ber-TS and Ber-
PHE in this problem. They are applied in the same way as
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Figure 4: The cumulative regret of different algorithms in the learning to rank problem. The results are averaged over 10 runs
per query. We sample two queries to demonstrate the performance in the first two figures, and display the results averaged
over all queries in the third figure.

CascadeKL-UCB, with the UCB of each item replaced by
its TS or PHE mean reward estimate. TopRank [Lattimore
et al., 2018] is another algorithm for online learning to rank
based on topological sort. It tends to perform worse than
CascadeKL-UCB in the cascade model [Lattimore et al.,
2018] and thus we do not include it. We still use the default
parameters for CORe (↵ = z = 0.6) and set a = 0.5 in Ber-
PHE. The results are presented in Figure 4, where we show
the results for two specific queries in the first two figures
and the average performance over all queries in the third
figure. Under the default parameters, CORe already achieves
competitive performance that consistently outperforms Ber-
PHE and CascadeKL-UCB across queries, and is comparable
to Ber-TS. We also observed further improvement of CORe
if tuned, to ↵ = z = 0.4, which achieves almost the same
performance as Ber-TS when averaging over all queries.
The promising results from this experiment demonstrate
the wide applicability and robustness of CORe in real-world
structured problems, and its ability in solving a new problem
without prior knowledge.

6 RELATED WORK

The key to statistically-efficient exploration in stochastic
bandits is to perturb the mean reward estimates of arms
sufficiently. Algorithms based on upper confidence bounds
(UCBs) [Auer et al., 2002, Abbasi-Yadkori et al., 2011] per-
turb the mean reward estimates by adding high-probability
confidence intervals to them. The confidence intervals are
constructed by theory. Although theoretically optimal, they
are often conservative in practice, because they are designed
for hardest problem instances. UCB-V [Audibert et al., 2009]
is a variant of UCB1 that adapts confidence intervals using an
empirical estimate of the variance from observed rewards.
This algorithm also tends to be conservative in practice, as
we show in Section 5.1.

Posterior sampling [Thompson, 1933, Agrawal and Goyal,
2013] perturbs mean reward estimates by sampling from pos-
terior distributions. To be statistically efficient, proper vari-
ance needs to be specified in the posterior updates, which is

often unknown in real-world problems. As we show in Sec-
tion 5.3, when the variance of the posterior in Gauss-LinTS
is misspecified, the algorithm suffers from high regret, due
to either under- or over-exploration. CORe is closely related
to posterior sampling in Gaussian bandits (Section 3.1).
However, instead of relying on knowing the variance of re-
ward distributions, it utilizes the randomness in the agent’s
observed rewards, to have its data-dependent exploration
that adapts to problem hardness.

Randomized exploration algorithms, such as Giro [Kveton
et al., 2019b] and PHE [Kveton et al., 2019a], add pseudo-
rewards to the reward history and use the perturbed mean re-
ward estimates for arm selection. The added pseudo-rewards
add sufficient variance for exploration and lead to provably
sublinear regret in multi-armed bandits. However, similarly
to UCB designs and posterior sampling, the right amount
of perturbation is needed to explore at a near-optimal rate.
In contrast, instead of adding external noise from pseudo
rewards, CORe samples from the agent’s past observed re-
wards to induce exploration. This provides sufficient vari-
ance when all reward distributions have comparable vari-
ance and we analyze LinCORe theoretically in the setting of
identical Gaussian noise.

The idea of efficient exploration with no prior knowledge
on the arms’ distribution has emerged in recent years.
Non-parametric solutions have been proposed in the multi-
armed bandit setting. The most representative works are
non-parametric Thompson sampling (NP-TS) [Riou and
Honda, 2020] and subsample-mean comparison (SSMC)
[Chan, 2019]. Specifically, NP-TS proposes a generaliza-
tion of the Bernoulli Thompson sampling to multinomial
distributions, and a non-parametric adaption of this algo-
rithm. SSMC is inspired from the sub-sampling approaches
[Baransi et al., 2014b] and is asymptotically optimal for
exponential-family distributions. We compare them with
CORe in the multi-armed bandit setting in Section 5.1. How-
ever, it is unclear how to generalize NP-TS and SSMC to
linear bandits.



 7 CONCLUSIONS

We propose a new online algorithm, capitalizing on rewards
(CORe), that explores by utilizing the randomness of the
agent’s past observed rewards. In particular, CORe samples
rewards from a well designed reward pool from the agent’s
past observations to perturb the reward histories. The vari-
ance introduced by sampled rewards automatically adapts to
the noise of the reward distributions. Thus CORe can impose
proper exploration in different problems without parame-
ter tuning. We prove a Õ(d

p
n logK) gap-free bound on

the n-round regret of CORe in a stochastic linear bandit.
Our comprehensive empirical evaluation shows that CORe
achieves impressive performance in various problems.

CORe is general enough to be applied to different structured
problems, such as generalized linear bandits [Filippi et al.,
2010] or neural bandits [Zhou et al., 2020]. The random-
ization strategy remains the same for different problems.
We analyze the regret of CORe in a linear Gaussian bandit.
Our analysis is under the assumption that the reward distri-
butions of all arms have the same variance. An interesting
future direction is a more general analysis of CORe.

Finally, we also believe that CORe can be further extended
by other randomization designs, with the essential idea of
capitalizing on the randomness in the agent’s observed re-
wards and being fully data-dependent. For example, we can
dynamically exchange rewards among arms with certain
probability and keep the exchanged rewards in the arm’s
history along the n-round game. This can greatly improve
the efficiency of sampling i.i.d. rewards from the reward
pool in every single round. We have observed promising
empirical performance of such algorithms and leave their
more detailed study for future work.
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