
 
q-Paths: Generalizing the Geometric Annealing Path using Power Means

Vaden Masrani1∗, Rob Brekelmans2∗, Thang Bui3,
Frank Nielsen4, Aram Galstyan2, Greg Ver Steeg2, Frank Wood 1,5

1University of British Columbia,2USC Information Sciences Institute
3University of Sydney, 4Sony CSL,5MILA, ∗Equal Contribution

{vadmas,fwood}@cs.ubc.ca, {brekelma,galstyan,gregv}@isi.edu,
thang.bui@sydney.edu.au, frank.nielsen@acm.org

Abstract

Many common machine learning methods involve
the geometric annealing path, a sequence of in-
termediate densities between two distributions of
interest constructed using the geometric average.
While alternatives such as the moment-averaging
path have demonstrated performance gains in some
settings, their practical applicability remains lim-
ited by exponential family endpoint assumptions
and a lack of closed form energy function. In
this work, we introduce q-paths, a family of paths
which is derived from a generalized notion of
the mean, includes the geometric and arithmetic
mixtures as special cases, and admits a simple
closed form involving the deformed logarithm
function from nonextensive thermodynamics. Fol-
lowing previous analysis of the geometric path,
we interpret our q-paths as corresponding to a q-
exponential family of distributions, and provide a
variational representation of intermediate densities
as minimizing a mixture of α-divergences to the
endpoints. We show that small deviations away
from the geometric path yield empirical gains for
Bayesian inference using Sequential Monte Carlo
and generative model evaluation using Annealed
Importance Sampling.

1 INTRODUCTION

Given a tractable and often normalized base distribution
π0(z) and unnormalized target π̃1(z), many statistical meth-
ods require a path γ : [0, 1] → P , where P is a family
of unnormalized density functions with γ(0) = π0(z) and
γ(1) = π̃1(z). For example, marginal likelihood estimation
methods such as thermodynamic integration (TI) (Ogata,
1989) or Annealed Importance Sampling (AIS) (Neal, 2001)
and Markov Chain Monte Carlo (MCMC) methods such as

parallel tempering (Earl and Deem, 2005) and Sequential
Monte Carlo (SMC) (Del Moral et al., 2006) typically use
the geometric path with mixing parameter β,

π̃β(z) = exp {(1− β) log π0(z) + β log π̃1(z)} , (1)

In the Bayesian context, π0(z) and π1(z) can represent the
prior and posterior distribution, respectively, in which case
the geometric path amounts to tempering the likelihood term
(Friel and Pettitt, 2008; Nguyen et al., 2015).

Previous work has demonstrated theoretical or empirical
improvements upon the geometric path can be achieved, but
the applicability of these methods remains limited in prac-
tice due to restrictive assumptions on the parametric form of
the endpoint distributions. Gelman and Meng (1998) derive
an optimal path in distribution space but this is intractable
to implement beyond toy examples. The moment-averaging
path of Grosse et al. (2013) demonstrates performance gains
for partition function estimation in Restricted Boltzmann
Machines, but is only applicable for endpoint distributions
which come from an exponential family. Bui (2020) pro-
posed a path based on α-divergence minimization using an
iterative projection scheme from Minka (2005) which is also
reliant on exponential family assumptions.

In this work, we propose q-paths, which can be constructed
between arbitrary endpoint distributions and admit a closed
form that can be used directly for MCMC sampling

π̃β,q(z) =

[
(1− β)π0(z)1−q + β π̃1(z)

1−q
] 1

1−q
(2)

Our q-paths adapt the α-integration of Amari (2007) to
the problem of annealing between two unnormalized densi-
ties, with our notation q intended to highlight connections
with the deformed logarithm and exponential functions from
nonextensive thermodynamics (Tsallis, 2009; Naudts, 2011).
q-paths may be viewed as taking the generalized mean (Kol-
mogorov, 1930; de Carvalho, 2016) of the endpoint densities
according to a mixing parameter β and monotonic transfor-
mation function lnq(u) =

1
1−q (u

1−q − 1). As q → 1, we
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Closed Form π̃β(z) = π0(z)
1−β π̃1(z)β π̃β,q(z) =

[
(1− β)π0(z)1−q + β π̃1(z)

1−q] 1
1−q

Log Linear π̃β(z) = exp{(1− β) log π0(z) + β log π̃1(z)} π̃β,q(z) = expq{(1− β) lnq π0(z) + β lnq π̃1(z)}

Exponential
Family π̃β(z) = π0(z) exp

{
β · log π̃1(z)

π0(z)

}
π̃β,q(z) = π0(z) expq

{
β · lnq π̃1(z)

π0(z)

}

Variational
Representation πβ(z) = argmin

r
(1− β)DKL[r‖π0] + βDKL[r‖π1] π̃β,q(z) = argmin

r̃
(1− β)Dα[π̃0||r̃] + βDα[π̃1||r̃]

Figure 1: Summary of q-paths (right) in relation to the geometric path (left). q-paths recover the geometric path as q → 1
and α = 2q − 1 in Amari’s α-divergence Dα. The deformed logarithm lnq and its inverse expq are defined in Section 2.3.

recover the natural logarithm and geometric mean in Eq. (1),
while the arithmetic mean corresponds to q = 0.

As previous analysis of the geometric path revolves around
the exponential family of distributions (Grosse et al., 2013;
Brekelmans et al., 2020a,b), we show in Sec. 4 that our
proposed paths have an interpretation as a q-exponential
family of density functions

π̃β,q(z) = π0(z) expq

{
β · lnq

π̃1(z)

π0(z)

}
. (3)

Grosse et al. (2013) show that intermediate distributions
along the geometric and moment-averaged paths correspond
to the solution of a weighted forward or reverse KL diver-
gence minimization objective, respectively. In Sec. 5, we
generalize these variational representations to q-paths, show-
ing that π̃β,q(z) minimizes the expected α-divergence to the
endpoints for an appropriate mapping between q and α.

Finally, we highlight several implementation considerations
in Sec. 7, observing that q = 1 − δ for small δ appears
most useful both for qualitative mixing behavior and numer-
ical stability. We provide a simple heuristic for setting an
appropriate value of q, and find that q-paths can yield empir-
ical gains for Bayesian inference using SMC and marginal
likelihood estimation for generative models using AIS.

2 BACKGROUND

2.1 GEOMETRIC ANNEALING PATH

The geometric mixture path is the most ubiquitous method
for specifying a set of intermediate distributions between a
tractable base distribution π0 and unnormalized target π̃1,

πβ(z) =
π0(z)

1−β π̃1(z)β

Z(β)
, where (4)

Z(β) =

∫
π0(z)

1−β π̃1(z)
βdz. (5)

The geometric path may also be written as an exponential

family of distributions, with natural parameter β and suffi-
cient statistic T (z) = log π̃1(z)/π0(z) corresponding to the
log importance ratio. We follow Grünwald (2007); Brekel-
mans et al. (2020a,b) in referring to this as a likelihood ratio
exponential family, with

πβ(z) = π0(z) exp

{
β · log π̃1(z)

π0(z)
− ψ(β)

}
(6)

ψ(β) := logZ(β) = log

∫
π0(z)

1−β π̃1(z)
βdz. (7)

It is often more convenient to work with Eq. (6), because one
gains access to known exponential family properties that
are not apparent from Eq. (4) (Grosse et al., 2013; Brekel-
mans et al., 2020a,b). In Section 4 we provide an analogous
interpretation for q-paths in terms of q-exponential families.

2.2 MOMENT AVERAGING PATH

Previous work (Grosse et al., 2013) considers alternative
annealing paths in the restricted setting where π0(z) and
π1(z) are members of the same exponential family, with
parameters θ0 and θ1 respectively. Writing the base measure
as g(z) and sufficient statistics as φ(z),

πθ(z) = g(z) exp{θ · φ(z)− ψ(θ)} (8)

Grosse et al. (2013) propose the moment-averaged path
based on the dual or ‘moment’ parameters of the exponential
family, which correspond to the expected sufficient statistics

η(θ) =
dψ(θ)

dθ
= 〈Eπθ [φj(z)]〉Nj=1 , (9)

with 〈·〉 indicating vector notation and ψ(θ) denoting the
log partition function of Eq. (8). In minimal exponential
families, the sufficient statistic function η(θ) is a bijective
mapping between a natural parameter vector and dual pa-
rameter vector (Wainwright and Jordan, 2008).

The moment-averaged path is defined using a convex com-
bination of the dual parameter vectors (Grosse et al., 2013)

η(θβ) = (1− β) η(θ0) + β η(θ1) . (10)
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Figure 2: Intermediate q-path densities between N (−4, 3) and N (4, 1), with 10 equally spaced β. For low q, the q-path
approaches a mixture distribution at q = 0, and becomes the geometric mixture parameterized by β at q = 1.

To solve for the corresponding natural parameters, we cal-
culate the Legendre transform, or a function inversion η−1.

θβ = η−1
(
(1− β) η(θ0) + β η(θ1)

)
. (11)

This inverse mapping is often not available in closed form
and can itself be a difficult estimation problem (Wainwright
and Jordan, 2008; Grosse et al., 2013), which limits the
applicability of the moment-averaged path in practice.

2.3 Q-DEFORMED LOGARITHM /
EXPONENTIAL

While the standard exponential arises in statistical mechan-
ics via the Boltzmann-Gibbs distribution, Tsallis (1988)
proposed a generalized exponential which has formed the
basis of nonextensive thermodynamics and found wide ap-
plication in the study of complex systems (Gell-Mann and
Tsallis, 2004; Tsallis, 2009).

Consider modifying the integral representation of the natural
logarithm lnu :=

∫ u
1

1
xdx using an arbitrary power function

lnq u =

∫ u

1

1

xq
dx. (12)

Solving Eq. (12) yields the definition of the q-logarithm

lnq(u) :=
1

1− q
(
u1−q − 1

)
. (13)

We define the q-exponential as the inverse of q-logarithm
expq(u) := ln−1q (u)

expq(u) =
[
1 + (1− q)u

] 1
1−q
+

, (14)

where [x]+ = max{0, x} = RELU(x) ensures that expq(u)
is non-negative and fractional powers can be taken for q < 1,
and thus restricts the domain where expq(u) takes nonzero
values to u > −1/(1− q). We omit this notation in subse-
quent derivations because our q-paths in Eq. (2) take non-
negative densities as arguments for the 1/(1− q) power.

Note also that both the q-log and q-exponential recover the

standard logarithm and exponential function in the limit,

lim
q→1

lnq(u) lim
q→1

expq(u)

= lim
q→1

d
dq (u

1−q − 1)
d
dq (1− q)

= lim
q→1

[1 + (1− q) · u] 1
1−q

=
− log u · u1−q

−1

∣∣∣∣
q=1

= lim
n→∞

[
1 +

u

n

]n

= log(u) := exp(u).

In Section 4 we use this property to show q-paths recover
the geometric path as q → 1.

3 Q-PATHS FROM POWER MEANS

q-paths are derived using a generalized notion of the mean
due to Kolmogorov (1930). For any monotonic function
h(u), we define the generalized mean

µh(u,w) = h−1
(

N∑

i=1

wi · h(ui)
)
, (15)

where µh outputs a scalar given a normalized measure
w = (w1, ..., wN ) (with

∑N
i=1 wi = 1) over a set of input

elements u = (u1, ..., uN ) (de Carvalho, 2016).1

The generalized mean can be thought of as first applying a
nonlinear transformation function to each input, applying
the desired weights in the transformed space, and finally
mapping back to the distribution space.

The geometric and arithmetic means are homoge-
neous, that is, they have the linear scale-free property
µh(c · u,w) = c · µh(u,w). Hardy et al. (1953) shows the
unique class of functions h(u) that yield means with the
homogeneity property are of the form

hq(u) =

{
a · u1−q + b q 6= 1

log u q = 1
. (16)

1The generalized mean is also referred to as the abstract, quasi-
arithmetic, or Kolmogorov-Nagumo mean in the literature.
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Figure 3: q-paths between N (−10, 1) and N (10, 1), which are notably more separated than those in Fig. 2. For difficult
annealing problems such as those in our experiments, small deviations from the geometric path (grey) can achieve mass-
covering behaviour (center), which is lost if the q-path too much resembles the arithmetic (left) or geometric mean (right).

for any a and b. Setting a = b = 1/(1− q), we can recog-
nize hq(u) as the deformed logarithm lnq(u) from Eq. (13).

Generalized means which use the class of functions hq(u)
we refer to as power means, and show in App. A that for
any choice of a and b,

µhq (u,w) =

[
N∑

i=1

wi · u1−qi

] 1
1−q

. (17)

Notable examples include the arithmetic mean at q = 0,
geometric mean as q → 1, and the min or max operation
as q → ±∞. For q = 1+α

2 , a = 1
1−q , and b = 0, the

function hq(u) matches the α-representation in information
geometry (Amari, 2016), and the resulting power mean over
normalized probability distributions as input u is known as
the α-integration (Amari, 2007).

For annealing between unnormalized density functions, we
propose the q-path of intermediate π̃β,q(z) based on the
power mean. Observing that the geometric mixture path in
Eq. (1) takes the form of a generalized mean for h(u) =
ln(u), we choose the deformed logarithm

hq(u) := lnq(u) h−1q (u) = expq(u), (18)

as the transformation function for the power mean. This
choice will facilitate our parallel discussion of geometric
and q-paths in terms of generalized logarithms and exponen-
tials in Section 4.

Using u = (π0, π̃1) as the input elements and
w = (1− β, β) as the mixing weights in Eq. (17),
we obtain a simple, closed form expression for the q-path
intermediate densities

π̃β,q(z) =

[
(1− β)π0(z)1−q + β π̃1(z)

1−q
] 1

1−q
(19)

Crucially, Eq. (19) can be directly used as an energy function
in MCMC sampling methods such as Hamiltonian Monte
Carlo (HMC) (Neal, 2011), and our q-paths do not require
additional assumptions on the endpoint distributions.

Finally, to compare against the geometic path, we write the
q-path in terms of the generalized mean in Eq. (15)

π̃β,q = expq

{
(1− β) lnq π0(z) + β lnq π̃1(z)

}
, (20)

from which we can see that π̃β,q recovers the geometric
path in Eq. (1) as q → 1, lnq(u)→ log(u), and expq(u)→
exp(u). Taking the deformed logarithm of both sides also
yields an interpretation of the geometric or q-paths as ln or
lnq-mixtures of density functions, respectively.

4 Q-LIKELIHOOD RATIO
EXPONENTIAL FAMILIES

Similarly to Eq. (6), we relate π̃β,q to a q-exponential family
with a single sufficient statistic and natural parameter β

π̃β,q(z) =

[
(1− β)π0(z)1−q + βπ̃1(z)

1−q
] 1

1−q
(21)

=

[
π0(z)

1−q + β
(
π̃1(z)

1−q − π0(z)1−q
)] 1

1−q

(22)

= π0(z)

[
1 + β

((
π̃1(z)

π0(z)

)1−q
− 1

)] 1
1−q

(23)

= π0(z)

[
1 + (1− q)β lnq

(
π̃1(z)

π0(z)

)] 1
1−q

(24)

= π0(z) expq

{
β · lnq

(
π̃1(z)

π0(z)

)}
. (25)

To mirror the likelihood ratio exponential family interpreta-
tion of the geometric path in Eq. (6), we multiply by a factor
Zq(β) to write the normalized q-path distribution as

πβ,q(z) =
1

Zq(β)
π0(z) expq {β · T (z)} (26)

Zq(β) :=

∫
π̃β,q(z) dz , T (z) := lnq

π̃1(z)

π0(z)
(27)

which recovers Eq. (6) as q → 1.
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Figure 4: SMC tempering using q-Paths on a binary regression model over 10 runs (cf. Appendix G)). q = 0.9972
outperforms the geometric path both in terms of marginal likelihood estimation and reduced variability across runs.

Note that we normalize using Zq(β) instead of subtracting
a ψq(β) term inside the expq as in the standard definition
of a parameteric q-exponential family (Naudts, 2009, 2011;
Amari and Ohara, 2011)

πθ,q(z) = g(z) expq
{
θ · φq(z)− ψq(θ)

}
. (28)

where we use φq(z) to indicate a general sufficient statis-
tic vector which may differ from T (z) = lnq π̃1(z)/π0(z)
above.

While logZ(β) = ψ(β) for q = 1, translating between
these normalization constants for q 6= 1 requires a non-
linear transformation of the parameters. This delicate issue
of normalization has been noted in (Matsuzoe et al., 2019;
Suyari et al., 2020; Naudts, 2011), and we give detailed dis-
cussion in App. B. In App. D, we use the ψq(θ) normaliza-
tion constant to derive an analogue of the moment-averaging
path between parametric q-exponential family endpoints.

q-Paths for Parametric Endpoints The geometric path
has a particularly simple form when annealing between
exponential family endpoint distributions

θβ = (1− β) θ0 + β θ1 . (29)

In Appendix D.2, we verify Eq. (29) and show that the
same result holds for q-paths between endpoint distributions
within the same q-exponential family. Intuitively, for the
(generalized) exponential family distribution in Eq. (28), we
can write the unnormalized density ratio lnq π̃θ(z)/g(z) =
θ · φ(z) as a linear function of the parameters θ. Thus,
the q-path generalized mean over density functions with
hq(π̃θi) = lnq π̃θi(z) will translate to an arithmetic mean
in the parameter space with h1(θi) = θi.

5 VARIATIONAL REPRESENTATIONS

Grosse et al. (2013) observe that intermediate distributions
along the geometric path can be viewed as the solution to a
weighted KL divergence minimization

πβ = argmin
r

(1− β)DKL[r‖π0] + βDKL[r‖π1] (30)

where the optimization is over arbitrary distributions r(z).

When the endpoints come from an exponential family of
distributions and the optimization is limited to only this
parametric family Pe, Grosse et al. (2013) find that the
moment-averaged path is the solution to a KL divergence
minimization with the order of the arguments reversed

πη = argmin
r∈Pe

(1− β)DKL[π0‖r] + βDKL[π1‖r]. (31)

In App. C, we follow similar derivations as Amari (2007)
to show that the q-path density π̃β,q minimizes the α-
divergence to the endpoints

π̃β,q = argmin
r̃

(1− β)Dα[π̃0||r̃] + βDα[π̃1||r̃] (32)

where the optimization is over arbitrary measures r̃(z).
Amari’s α-divergence over unnormalized measures, for
α = 2q − 1 (Amari (2016) Ch. 4), is defined

Dα[r̃ : p̃] =
4

(1− α2)

(
1− α
2

∫
r̃(z)dz (33)

+
1 + α

2

∫
p̃(z)dz −

∫
r̃(z)

1−α
2 p̃(z)

1+α
2 dz

)

The α-divergence variational representation in Eq. (32) gen-
eralizes Eq. (30), since the KL divergence DKL[r̃||p̃] is re-
covered (with the order of arguments reversed)2 as q → 1.

However, while the α-divergence tends to DKL[p̃||r̃] as
q → 0, Eq. (32) does not generalize Eq. (31) since the opti-
mization in Eq. (31) is restricted to the parametric family Pe.
For the case of arbitrary endpoints, the mixture distribution
rather than the moment-averaging distribution minimizes
the reverse KL divergence in Eq. (31), producing different
paths as seen in Fig. 5. We discuss this distinction in greater
detail in Appendix C.1.

6 RELATED WORK

In Section 4 and Appendix D, we discuss connections be-
tween q-paths and the q-exponential family. Examples of

2The KL divergence extended to unnormalized measures is
defined DKL[q̃ : p̃] =

∫
q̃(z) log q̃(z)

p̃(z)
dz−

∫
q̃(z)dz+

∫
p̃(z)dz.
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Figure 2: Intermediate q-path densities between N (�4, 3) and N (4, 1), with 10 equally spaced �. For low q, the q-path
approaches a mixture distribution at q = 0, and becomes the geometric mixture parameterized by � at q = 1.

To solve for the corresponding natural parameters, we cal-
culate the Legendre transform, or a function inversion ⌘�1.

✓� = ⌘�1
�
(1 � �) ⌘(✓0) + � ⌘(✓1)

�
. (11)

This inverse mapping is often not available in closed form
and can itself be a difficult estimation problem (Wainwright
and Jordan, 2008; Grosse et al., 2013), which limits the
applicability of the moment-averaged path in practice.

2.3 Q-DEFORMED LOGARITHM /
EXPONENTIAL

While the standard exponential arises in statistical mechan-
ics via the Boltzmann-Gibbs distribution, Tsallis (1988)
proposed a generalized exponential which has formed the
basis of nonextensive thermodynamics and found wide ap-
plication in the study of complex systems (Gell-Mann and
Tsallis, 2004; Tsallis, 2009).

Consider modifying the integral representation of the natural
logarithm ln u :=

R u

1
1
xdx using an arbitrary power function

lnq u =

Z u

1

1

xq
dx. (12)

Solving Eq. (12) yields the definition of the q-logarithm

lnq(u) :=
1

1 � q

�
u1�q � 1

�
. (13)

We define the q-exponential as the inverse of q-logarithm
expq(u) := ln�1

q (u)

expq(u) =
⇥
1 + (1 � q) u

⇤ 1
1�q

+
, (14)

where [x]+ = max{0, x} = RELU(x) ensures that expq(u)
is non-negative and fractional powers can be taken for q < 1,
and thus restricts the domain where expq(u) takes nonzero
values to u > �1/(1 � q). We omit this notation in subse-
quent derivations because our q-paths in Eq. (2) take non-
negative densities as arguments for the 1/(1 � q) power.

Note also that both the q-log and q-exponential recover the

standard logarithm and exponential function in the limit,

lim
q!1

lnq(u) lim
q!1

expq(u)

= lim
q!1

d
dq (u1�q � 1)

d
dq (1 � q)

= lim
q!1

[1 + (1 � q) · u]
1

1�q

=
� log u · u1�q

�1

����
q=1

= lim
n!1

h
1 +

u

n

in

= log(u) := exp(u).

In Section 4 we use this property to show q-paths recover
the geometric path as q ! 1.

3 Q-PATHS FROM POWER MEANS

q-paths are derived using a generalized notion of the mean
due to Kolmogorov (1930). For any monotonic function
h(u), we define the generalized mean

µh(u,w) = h�1

 
NX

i=1

wi · h(ui)

!
, (15)

where µh outputs a scalar given a normalized measure
w = (w1, ..., wN ) (with

PN
i=1 wi = 1) over a set of input

elements u = (u1, ..., uN ) (de Carvalho, 2016).1

The generalized mean can be thought of as first applying a
nonlinear transformation function to each input, applying
the desired weights in the transformed space, and finally
mapping back to the distribution space.

The geometric and arithmetic means are homoge-
neous, that is, they have the linear scale-free property
µh(c · u,w) = c · µh(u,w). Hardy et al. (1953) shows the
unique class of functions h(u) that yield means with the
homogeneity property are of the form

hq(u) =

(
a · u1�q + b q 6= 1

log u q = 1
. (16)

1The generalized mean is also referred to as the abstract, quasi-
arithmetic, or Kolmogorov-Nagumo mean in the literature.

(b) q = 0

Figure 5: Moment-averaging path and q = 0 mixture path
between N (−4, 3) and N (4, 1). See Section 5 and Ap-
pendix C.1 for discussion.

parametric q-exponential families include the Student-t dis-
tribution, which has the same first- and second-moment
sufficient statistics as the Gaussian and a degrees of free-
dom parameter ν that specifies a value of q > 1. This
induces heavier tails than the standard Gaussian and leads
to conjugate Bayesian interpretations in hypothesis testing
with finite samples (Murphy, 2007; Gelman et al., 2013).
The generalized Pareto distribution is another member of
the q-exponential family, and has been used for modeling
heavy-tail behavior (Pickands III et al., 1975; Bercher and
Vignat, 2008; Tsallis, 2009), smoothing outliers for impor-
tance sampling estimators (Vehtari et al., 2015), or evalu-
ating variational inference (Yao et al., 2018). q-logarithms
and exponentials have also appeared in methods for clas-
sification (Ding et al., 2011; Amid et al., 2019), robust
hypothesis testing (Qin and Priebe, 2017), mixture mod-
eling (Qin and Priebe, 2013), variational inference (Ding
et al., 2011; Kobayashi, 2020), and expectation propagation
(Futami et al., 2017; Minka, 2004).

In Section 5, we showed that each q-path density π̃β,q(z)
specifies the minimizing argument for a variational objective
in Eq. (30) or Eq. (32). The value of the objective in Eq. (30)
is a mixture of KL divergences, and can be interpreted as a
generalized Jensen-Shannon divergence (Nielsen, 2019) or
Bregman information (Banerjee et al., 2005). Deasy et al.
(2021) explores this mixture of divergences as a regularizer
in variational inference, while Brekelmans et al. (2020b)
provides additional analysis for case of q = 1.

7 EXPERIMENTS

Code for all experiments is available at https://
github.com/vmasrani/qpaths_uai_2021.

7.1 SEQUENTIAL MONTE CARLO IN BAYESIAN
INFERENCE

In this section, we use SMC to sample posterior parameters
π1(θ) = p(θ|D) ∝ p(θ)

∏N
n=1 p(xn|θ) and estimate the

log marginal likelihood log p(D) = log
∫
p(θ)p(D|θ)dθ in

Table 1: SMC sampling with linear/adaptive scheduling in
a binary regression model for {1, 3, 5} move steps. LIN
indicates a linearly spaced schedule (K = 10) and ADA
uses an adaptive schedule (cf. Section 7.1). Median ERR =
| log p̂(D) − log p(D)| across 10 seeds is reported against
ground truth. Q-PATH (GRID) shows best of 20 log-spaced
δ ∈ [10−5, 10−1], and Q-PATH (ESS) uses the ESS heuristic
to initialize q as described in G.1. Error for most runs (8/12)
is Q-PATH (GRID) < Q-PATH (ESS) < GEO.

Q-PATH Q-PATH
PIMA GEO (ESS HEURISTIC) (GRID)

LIN-1 79.02 (39.1) 80.64 (42.33) 10.77 (2.30)
LIN-3 59.11 (41.71) 59.64 (47.41) 5.79 (1.46)
LIN-5 45.63 (19.86) 41.96 (25.23) 6.63 (2.62)
ADA-1 2.51 (1.35) 2.31 (2.99) 1.62 (1.79)
ADA-3 1.49 (0.43) 1.12 (1.05) 0.84 (0.84)
ADA-5 0.48 (0.60) 0.76 (0.29) 0.52 (0.59)
SONAR

LIN-1 228.7 (80.9) 217.92 (72.51) 93.33 (15.79)
LIN-3 175.21 (38.66) 172.66 (61.55) 55.94 (5.69)
LIN-5 218.94 (92.08) 222.07 (78.76) 36.67 (10.32)
ADA-1 20.17 (15.99) 18.15 (15.43) 15.32 (8.19)
ADA-3 3.83 (3.44) 3.78 (2.77) 3.11 (3.26)
ADA-5 2.79 (2.41) 2.68 (1.95) 2.23 (0.72)

a Bayesian logistic regression models on the “tall” Pima In-
dians diabetes dataset (N = 768, D = 8) and “wide” Sonar
dataset (N = 208, D = 61) (see Appendix G). Ground
truth log p(D) is computed using 50k samples and 20 move
steps, and for all runs we use 10k samples and plot median
error across ten seeds. Grid search shows best of 20 runs,
where we sweep over 20 log-spaced δ ∈ [10−5, 10−1].

We explore the use of q-paths in both the non-adaptive case,
with a fixed linear β schedule with K = 10 intermediate
distributions, and the adaptive case, where the next value
of βt+1 is chosen to yield an effective sample size (ESS) of
N/2 (Chopin and Papaspiliopoulos, 2020).

For the non-adaptive case, we find in Fig. 4 that q ∈
[0.9954, 0.9983] can achieve more accurate marginal like-
lihood estimates than the geometric path with fewer move-
ment steps and drastically reduced variance. In Table 1 we
see that q-paths achieve gains over the geometric path in
both the linear and adaptive setting across both datasets.

Numerical Stability and Implementation To imple-
ment q-paths in practice, we begin by considering the log
of the expression in Eq. (25), which is guaranteed to be
non-negative because π̃β,q(z) is an unnormalized density.

log π̃β,q(z) = (34)

log π0(z) +
1

1− q log
[
1 + (1− q) · β · lnq

(
π̃1(z)

π0(z)

)]
,

https://github.com/vmasrani/qpaths_uai_2021
https://github.com/vmasrani/qpaths_uai_2021
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Figure 6: Evaluating the choice of q for SMC. Since the
scale of the likelihood π̃1 depends on the number of data
examples, we expect the numerical stability of q-paths
to vary by N . While the minimum q yielding a stable
estimator (orange) increases with N , the best performing
q-path (blue) is still q = 1− δ for small δ > 0.

We focus attention on lnq π̃1(z)/π0(z) term, which is poten-
tially unstable for q 6= 1 since it takes importance weights
w = π̃1(z)/π0(z) as input. Since we are usually given
log weights in practice, we consider the identity mapping
w = exp(logw) and reparameterize q = 1− 1

ρ to obtain

lnq (exp logw) =
1

1− q
[
(exp logw)

1−q − 1
]

(35)

= ρ
[
(exp logw)

1
ρ − 1

]
(36)

= ρ

[
exp{1

ρ
logw} − 1

]
. (37)

This suggests q should be chosen such that the exponential
doesn’t overflow or underflow, which can be accomplished
by setting ρ on the order of

ρ = max
i
| logwi|. (38)

where i indexes a set of particles {zi}. This choice is remi-
niscent of the log-sum-exp trick and ensures | 1ρ logw| ≤ 1.

In Fig. 6, we explore the impact of changing the scale of
logw on the numerical stability of q-paths. For the case of
inferring global model parameters over N i.i.d. data points
p(D) = ∏N

n=1 p(xn), we can see that the scale of the un-
normalized densities π̃1(θ,D) = p(θ)

∏N
n=1 p(xn|θ) dif-

fers based on the number of datapoints, where increasing
N decreases the magnitude of logw = log π̃1(θ,D) with
π̃0(θ) = p(θ).

We randomly subsample N data points for conditioning our
model, and observe the effect on both the best-performing q
and the numerical stability of SMC with q-paths. The mini-
mum value of q for which we can obtain stable estimators
rises as the number of datapoints N increases and the scale
of π̃1(θ,D) becomes smaller.

Sensitivity to q While setting ρ on the order of
maxi | logwi| ensures numeric stability, Fig. 6 indicates
that numerical stability may not be sufficient for achieving
strong performance in SMC. In fact, q-paths with values just
less than 1 consistently perform best across all values of N .

To understand this observation, recall the example in Fig. 3
where the initial and target distribution are well-separated
and even the q = 0.98 path begins to resemble a mixture
distribution. This is clearly undesirable for path sampling
techniques, where the goal is to bridge between base and
target densities with distributions that are easier to sample.

Heuristic for Choosing q Motivated by the observations
above and the desire to avoid grid search, we provide a
rough heuristic to find a q which is well-suited to a given
estimation problem.

Taking inspiration from the ESS criterion used to select βt+1

in our SMC experiments above (Chopin and Papaspiliopou-
los, 2020), we select q to obtain a target value of ESS for the
first intermediate β1

L(β1, q) = ||ESS(β1, q)− ESStarget||22 (39)

ESS(β, q) =

(∑
i wi(β, q)

)2
∑
i wi
(
β, q
)2 with wi(β, q) =

π̃β,q(zi)

π0(zi)
.

As in the case of the adaptive β scheduling heuristic for
SMC, we set the target ESStarget = N/2 to ensure adequate
sampling diversity (Jasra et al., 2011; Schäfer and Chopin,
2013; Buchholz et al., 2021; Chopin and Papaspiliopoulos,
2020). For fixed scheduling, the value of β1 may be known
and thus we can easily select q to obtain the target value
ESS(β1, q) ≈ ESStarget. However, in adaptive scheduling,
β1 is not known and the objective L(β1, q) is non-convex
in β1, q. In Appendix G.2, we provide a coordinate descent
algorithm to find local optima using random initializations
around an initial q = 1− 1

ρ for ρ as in Eq. (38), with results
in Table 1.

Note that this heuristic sets q based on a set of initial zi ∼
π0(z), and thus does not consider information about the
MCMC sampling used to transform and improve samples.

Nevertheless, in Table 1 we observe that q-paths initial-
ized by this heuristic can outperform the geometric path on
benchmark SMC binary regression tasks. Comparison with
grid search results indicate that further performance gains
might be achieved with an improved heuristic.

7.2 EVALUATING GENERATIVE MODELS
USING AIS

AIS with geometric paths is often considered the gold-
standard for evaluating decoder-based generative models
(Wu et al., 2017). In this section, we evaluate whether q-
paths can improve marginal likelihood estimation for a vari-
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Figure 7: Evaluating Generative Models using AIS with q-paths on Omniglot dataset. Best viewed in color.

ational autoencoder (VAE) trained using the thermodynamic
variational objective (TVO) (Masrani et al., 2019) on the
Omniglot dataset.

First, we use AIS to evaluate the trained generative model
on the true test set, with a Gaussian prior π0(z) = p(z) as
the base distribution and true posterior π1(z) = p(z|x) ∝
p(x, z) as the target. Intermediate distributions then become
π̃β(z) = p(z)p(x|z)β . We report stochastic lower bound es-
timates (Grosse et al., 2015) of Epdata(x) log p(x) in Fig. 6(c),
where we have plotted the negative likelihood bound so that
lower is better. Even for a large number of intermediate dis-
tributions, we find that q ∈ [0.992, 0.998] can outperform
the geometric path.

When exact posterior samples are available, we can use a
reverse AIS chain from the target density to the base to ob-
tain a stochastic upper bound on the log marginal likelihood
(Grosse et al., 2015). While such samples are not available
on the real data, we can use simulated data drawn from the
model using ancestral sampling x, z ∼ p(z)p(x|z) as the
dataset, and interpret z as a posterior sample. We use the
Bidirectional Monte Carlo (BDMC) gap, or difference be-
tween the stochastic lower and upper bounds obtained from
forward and reverse chains on simulated data, to evaluate
the quality of the AIS procedure.

In Fig. 7, we report the average BDMC gap on 2500 sim-
ulated data examples, and observe that q-paths with q =
0.994 or q = 0.996 consistently outperform the geometric
path as we vary the number of intermediate distributions K.

8 CONCLUSION

In this work, we proposed q-paths as a generalization of the
geometric mixture path which can be constructed between
arbitrary endpoint distributions and admits a closed form en-
ergy function. We provided a q-likelihood ratio exponential
family interpretation of our paths, and derived a variational
representation of q-path intermediate densities as minimiz-
ing the expected α-divergence to the endpoints. Finally, we

observed empirical gains in SMC and AIS sampling using
q-paths with q = 1− δ for small δ.

Future work might consider more involved heuristics for
choosing q, such as running truncated, parallel sampling
chains, to capture the interplay between choices of β, q, and
sampling method. Applying q-paths in settings such as sam-
pling with parallel tempering (PT) or variational inference
using the TVO, remain interesting questions for future work.
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