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Abstract

In this work, we estimate the regions of attraction
for belief propagation. This extends existing stabil-
ity analysis and provides initial message values for
which belief propagation is guaranteed to converge.
Our approach utilizes the theory of Lyapunov func-
tions that, however, does not readily yield useful
regions of attraction. Therefore, we utilize poly-
nomial sum-of-squares relaxations and provide an
algorithm that computes valid Lyapunov functions.
This admits a novel way of studying the solution
space of belief propagation. Finally, we apply our
approach to small-scale models and discuss the
effect of the potentials on the regions of attraction.

1 INTRODUCTION

Belief propagation (BP) estimates the marginals of an arbi-
trary joint distribution represented by a graphical model. For
tree-structured graphs, BP efficiently computes the exact
marginals (Pearl, 1988). While BP often provides accurate
estimates on loopy graphs as well, it is only guaranteed to
converge on graphs with a single loop (Weiss, 2000).1

On graphs with multiple loops, BP may even fail to con-
verge or exhibit multiple fixed points. Sufficient conditions
for convergence of BP, however, are limited to models with
a unique fixed point (Ihler et al., 2005; Mooij and Kappen,
2007). Alternatively, several approaches exist that success-
fully improve the convergence behavior of BP; for example
by stabilizing BP (Murphy et al., 1999) or by using flexible
scheduling schemes (Elidan et al., 2006).

Recently it has been shown that the accuracy may vary
considerably between different fixed points (Knoll and
Pernkopf, 2019). As the initialization largely determines

1Sometimes, the term loopy belief propagation emphasizes the
existence of loops. We will make no such distinction.

if and to which fixed point BP converges, sophisticated ini-
tialization strategies can improve the performance of BP;
for certain model classes, it is even possible to enforce con-
vergence to the best possible fixed point (Knoll et al., 2018;
Koehler, 2019). In general, however, the overall impact of
the message initialization is not well understood.

In this paper, we provide the theoretical framework for an-
alyzing the role of the initialization. More specifically, we
estimate sets of initial messages for which BP is guaranteed
to converge. We refer to these sets as regions of attraction
(ROAs). We emphasize that our approach is not limited
to models with a unique fixed point but readily applies to
models with multiple fixed points as well.2 The shape of
the ROAs, however, may be complex and intractable to be
determined in general. Thus, we are content with computing
analytically well-behaved inner bounds of the ROAs.

To estimate valid ROAs, we utilize Lyapunov functions
(LFs). LFs are frequently used in control theory for study-
ing stability properties of both linear and nonlinear sys-
tems (Tan and Packard, 2004). We consider BP as a non-
linear system and reformulate it to allow for an estimation
of the ROAs via LFs. Still, it remains challenging to con-
struct good LFs; we thus rely on the sum-of-squares (SOS)
method (Papachristodoulou and Prajna, 2005) for computing
the LFs by solving a semidefinite program (SDP). Although
this provides ROA estimates reliably, these are often too
conservative. Therefore, we explain how to optimize the
ROA estimates for BP in an iterative manner.

After establishing the theoretical framework, we estimate
the ROAs for a range of models. We focus only on well-
understood models that often exhibit multiple fixed points.
This allows us to provide accessible experiments for which
it is evident how to visualize and interpret the results.

2One requirement of our method is the knowledge of one
or more fixed points. This implies that it cannot readily solve
inference tasks in practice by, e.g., selecting good initial values for
the messages. It can therefore be utilized for analyzing the stability
properties of known fixed points only.
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 This paper is structured as follows: Sec. 2 introduces proba-
bilistic graphical models and BP. In Sec. 3 we explain how to
estimate ROAs with LFs, before we adapt the SOS method
to BP in Sec. 4. In Sec. 5 we present our experimental results
on the ROAs of BP. We conclude the paper in Sec. 6.

2 BACKGROUND

In this section, we introduce probabilistic graphical models
and specify the models to be considered in this work. We
then introduce the BP algorithm and summarize important
properties regarding its convergence behavior.

2.1 PROBABILISTIC GRAPHICAL MODELS

Let G = (X,E) be an undirected graph, with X =
{1, . . . , N} being the set of nodes and E being the set of
undirected edges. Two nodes i and j are joined by an edge
if (i, j) ∈ E. We account for each edge only once, i.e.,
(i, j) = (j, i). We further use N(i) to denote the set of
neighbors of i, i.e., the set of nodes j that are joined to i
by an edge (i, j) ∈ E. Then, the degree di of a node is the
number of its neighbors |N(i)|.
A probabilistic graphical model U = (G,Ψ) associates a
random variable (RV) Xi to each node i ∈ X and is fur-
ther defined by a set of potentials {Φ1(x1), . . . ,ΦK(xK)}.
With a slight abuse of notation, we will simply refer to Xi

as i because of the inherent connection between nodes and
RVs. In this work, we consider pairwise models where the
potentials are defined over either one variable (i.e., singleton
potentials Φi(xi)) or two variables (i.e., pairwise potentials
Φi,j(xi, xj)). Consequently, the joint probability distribu-
tion PX(x) factorizes according to

PX(x) =
1

Z

∏
(i,j)∈E

Φi,j(xi, xj)

N∏
i=1

Φi(xi), (1)

where Z is the normalization constant (or partition function).
We consider the computation of marginal distributions

PY(y) =
∑

xi: i∈X\Y
PX(x), (2)

where Y ⊆ X may be any set of RVs. Note, however,
that we are primarily interested in the singleton marginals
Pi(xi). In general, computing the marginals is an intractable
problem (Cooper, 1990). We will discuss how BP allows
one to approximate the marginals nonetheless in Sec. 2.3.

2.2 MODEL SPECIFICATIONS

In this work, we consider binary pairwise models where the
random variables Xi take values in X = {−1, 1} (i.e., Ising

Figure 1: Complete 3-regular graph of size N = 4

models). If PX(x) > 0 for all x ∈ XN , we can express the
joint distribution in exponential form by writing (1) as

PX(x) =
1

Z
exp(

∑
(i,j)∈E

Jijxixj +

N∑
i=1

θixi), (3)

where Jij ∈ R is the strength (or coupling) of the edge
(i, j) and θi ∈ R is the local strength (or field) of the vari-
able i. The potentials are thus specified by Φi,j(xi, xj) =
exp(Jijxixj) and Φi(xi) = exp(θi).

In our experiments (Sec. 5), we consider models that satisfy
the following two assumptions: first, we consider homoge-
neous models where all pairwise potentials are the same
(i.e., Jij = J) and all local potentials are the same (i.e.,
θi = θ); second, we consider d-regular graphs where all
nodes have an equal degree of d. We specifically focus on
complete graphs of size N = 4 (see Fig. 1).3 These models
are relatively well understood and simplify our theoretical
considerations. This will be beneficial for interpreting and
visualizing our ROA estimates.

2.3 BELIEF PROPAGATION (BP)

Belief propagation (BP) is an iterative method to estimate
the marginals. Therefore, one computes messages µ(n)

ij (xj)
along all edges, where ij indicates that the message is sent
from node i to node j, and (n) indicates the current iteration.
The messages are updated according to

µ
(n+1)
ij (xj) ∝

∑
xi∈X

Φi,j(xi, xj)Φi(xi)
∏

k∈N(i)\j
µ
(n)
ki (xi).

(4)

We will discuss how to normalize the messages in Sec. 3.3.

Now, let µ(n) = {µ(n)
ij (xj), µ

(n)
ji (xi) : (i, j) ∈ E, xi, xj ∈

X} be the set of all messages at iteration (n) stacked in
some arbitrary (but fixed) order and let µ(n+1) = BP(µ(n))
be the mapping induced by (4). Here Zi ∈ R+ ensures that
all probabilities sum to one. Then, the singleton marginals

3Note that this is the smallest possible graph that contains
multiple loops. Moreover, this graph behaves the same as the
infinite size 3-regular graph and thus qualitatively describes the
behavior of grid graphs (Knoll and Pernkopf, 2017).



 at iteration (n) can be estimated according to

P̃i
(n)

(xi) =
1

Zi
Φi(xi)

∏
k∈N(i)

µ
(n)
ki (xi). (5)

When updating the messages iteratively, they will – ideally
– converge to a fixed point µ◦ for which µ◦ = BP(µ◦).
In practice, it is often useful to update the messages asyn-
chronously;4 for our analysis, however, we will only con-
sider plain BP with synchronous message updates.

2.4 RELATED WORK

Much of the research on BP’s behavior has been driven by
its inherent relationship to concepts from statistical physics.
In particular, it has been observed that fixed points of BP
are in a one-to-one correspondence with stationary points of
the so-called Bethe free energy (see Yedidia et al. (2005)).5

This relationship puts BP on a solid theoretical foundation
and provides important insights into its dynamics. In partic-
ular, it follows that every stable fixed point is a minimum of
the Bethe free energy; note, however, that minima may be
unstable as well (Heskes et al., 2003). Moreover, it explains
why the presence of loops containing edges with large val-
ues Jij is detrimental for BP’s performance as this is the
main reason for the Bethe free energy being non-convex
(see Heskes (2004); Weller et al. (2014)).

Although the Bethe free energy fails to reveal whether a
given fixed point is stable and under which conditions BP
will converge to it, various approaches aim at minimizing
the Bethe free energy directly; the minimization itself may
be slow, however, and often leads to suboptimal station-
ary points (Welling and Teh, 2003; Yuille and Rangarajan,
2003). One can approximate the Bethe free energy with con-
vex functions (Globerson and Jaakkola, 2007; Hazan and
Shashua, 2008; Meltzer et al., 2009; Meshi et al., 2009); this,
however, often comes at the cost of reduced accuracy. Fur-
thermore, polynomial-time approximation schemes of local
minima (Shin, 2012) or the global minimum in attractive
models (Weller and Jebara, 2014) exist.

Moreover, it is often necessary to draw from diverse fields
of research for understanding the behavior of BP. The stabil-
ity of BP’s fixed points can be analyzed with the Ihara zeta
function from graph theory (Watanabe and Fukumizu, 2009).
Alternatively, it has been proven beneficial to interpret BP as
a dynamical system, i.e, as a discrete-time mapping between

4Utilizing some form of scheduling improves the convergence
properties. There is a range of variants available (e.g., Wainwright
et al. (2003); Elidan et al. (2006); Sutton and McCallum (2007);
Knoll et al. (2015)) with different trade-offs regarding improve-
ment and complexity (see Aksenov et al. (2020) for a comparison).

5The Bethe free energy results from approximating the joint
distribution via the variational free energy principle (see Mezard
and Montanari (2009, Ch.33)).

sets of messages. In this context, it is in principle straightfor-
ward to compute all fixed points; yet special considerations
are required in practice due to the dramatic growth of the
system (Knoll et al., 2017). Moreover, this interpretation
allows for analyzing the convergence properties via con-
traction properties (Mooij and Kappen, 2007) and suggests
to analyze the local stability of fixed points (Mooij and
Kappen, 2005; Knoll and Pernkopf, 2017).

3 LYAPUNOV FUNCTIONS (LFS) AND
REGIONS OF ATTRACTION (ROAS)

If one considers BP as a dynamical system, the local stability
analysis results from linearizing the system in a fixed point.
The behavior of any nonlinear system, however, is far too
complex to be reduced to a first-order approximation only.

In this section, we introduce Lyapunov functions (LFs) that
enable elaborate stability and convergence analyses. We
summarize important properties of LFs and show how to
estimate the regions of attraction (ROAs) of BP via LFs.
First, we briefly review the fundamentals of stability theory;
further details are provided in (Khalil, 2002; Teschl, 2004).

3.1 NOTIONS OF STABILITY

Let F (z) : D → D be a – possibly non-linear – discrete-
time system defined on a finite dimensional real domain
D ⊆ Rm, inducing an iterative update z(n+1) = F (z(n)).
Given an initial value z(0), recursive application of F yields
a unique sequence (z(0), z(1), z(2), . . .); we call this se-
quence the trajectory of z(0). Furthermore, if F (z◦) = z◦,
we say that z◦ is a fixed point (FP) of the system. Our spe-
cific interest lies in stable FPs: a FP z◦ is locally stable
if a neighborhood U(z◦) exists such that the trajectories
of initial values inside U(z◦) converge to that FP, i.e., if
lim
n→∞

Fn(z(0)) = z◦. In other words, the trajectory of z(0)

is guaranteed to converge if initialized close enough to z◦.
If the trajectory of any starting point in the domain D con-
verges to a FP, then it is referred to as globally stable. If no
neighborhood exists for which trajectories converge, the FP
is unstable.6

The simplest approach to assess the stability of a given FP –
provided that F is differentiable in z◦ – is to compute the
eigenvalues λi of the Jacobian F ′(z◦) whose entries are
given by the partial derivatives (F ′(z◦))u,v = ∂Fu(z

◦)
∂zv

. If
|λi| < 1 for all eigenvalues, the FP is stable. If an eigen-
value exists with |λi| > 1, the FP is unstable. If the largest
absolute eigenvalue λmax equals 1, it is impossible to reason
about the stability based on the linearization (Teschl, 2004).

6In systems theory, a finer distinction between different types
of stability is usual, e.g., asymptotic attractivity, etc. For us, it is
sufficient to distinguish between global stability, local stability,
and instability.



 3.2 LYAPUNOV FUNCTIONS (LFS)

Computing the eigenvalues of the Jacobian provides a sim-
ple and efficient test for stability. This, however, is often not
sufficient; one is rather interested in determining which ini-
tial values z(0) will converge to z◦. This convergent region
is usually referred to as region of attraction (ROA). In gen-
eral, ROAs may have complex geometric shapes and cannot
be determined computationally. Instead, one can estimate
the ROAs using Lyapunov functions (LFs).

The basic idea of LFs is the following: assume we are able
to construct an analytical function that (i) attains a global
minimum in a FP and (ii) decreases along all trajectories
around a FP. Then this implies that all trajectories will con-
tinue moving towards the FP and consequently converge to
it.7

Let V : D → R be a continuously differentiable function
that is zero at the FP, i.e. V (z◦) = 0, and let ∆V (z) =
V (F (z)) − V (z) be the rate of change. Then V is a Lya-
punov function (LF) for z◦ if

V (z) > 0 and (6)
∆V (z) < 0 (7)

for all z 6= z◦ on a neighborhood E(z◦).

The existence of a LF (which is, in general, not unique)
implies local stability of a FP z◦ as well (Khalil, 2002). If
E(z◦) = D, then z◦ is globally stable.

Given a LF, for an arbitrary constant c > 0, we define
the c-sublevel set of V as ΩV,c = {z ∈ D |V (z) ≤ c}
(see Fig. 2a). Whenever there is no ambiguity about the
LF, we will omit V in the notation and simply write Ωc.
Sublevel sets of LFs are particularly interesting, as they pro-
vide estimates for the ROA. One must be careful, however,
in selecting an appropriate sublevel set. Specifically, it has
to be ensured that (7) holds on the complete sublevel set
Ωc. This can be illustrated by the following: assume that a
trajectory starts in E(z◦) ∩ Ωc2 , i.e., where (7) is satisfied,
but Ωc2 has been chosen to large to be fully contained in
E(z◦). Then, in the next time step, the trajectory will jump
to another sublevel set Ωc1 with c1 < c2 but may leave
the set E(z◦) and subsequently may never return to E(z◦)
again (see Fig. 2c). If, however, a trajectory starts in Ωc such
that Ωc ⊆ E(z◦), then it will continue iterating to sublevel
sets with c→ 0 whose infinite intersection is precisely the
set {z◦}. Then, Ωc is a valid ROA (see Fig. 2b).

As one is usually interested in selecting ROAs as large as
possible, one naturally aims for obtaining the largest sub-
level set Ωc fully contained in E(z◦). The size of estimated

7The concept of monotonically decreasing functions along sys-
tem trajectories has its origins in the analysis of physical systems,
admitting the interpretation of energy that is dissipated until a
stable equilibrium of the system has been established.

Ωc

z◦

z1
z2

V (z1, z2) = (z1 − z◦1)2 + (z2 − z◦2)2

(a)

∆V < 0

Ωc1

Ωc2

Ωc3

z◦

z(0)

(b)

∆V < 0

Ωc2
Ωc1

z◦

z(0)

(c)

Figure 2: (a): A Lyapunov function candidate V for FP z◦

with sublevel set Ωc. (b): The sublevel set Ωc3 is selected
small enough such that Ωc3 ⊆ E(z◦) and is therefore a
valid ROA estimate. (c): The sublevel set Ωc2 is selected too
large and is therefore no valid ROA estimate.

ROAs largely depends on the choice of the corresponding
LF. Therefore, one would prefer LFs that are valid on a
relatively large neighborhood of the FP. Constructing ’good’
LFs is all but a trivial task and has been an intense subject
of research (Papachristodoulou and Prajna, 2005). We will
address this issue in great detail in Sec. 4.

For the remainder of this section, we focus on LFs that stem
from the concept of linearization and that are particularly
easy to compute. Note that we will omit the dependence
on the FP and refer to the Jacobian F ′(z◦) as F ′ for better
readability. Given any positive semidefinite (psd.) matrix Q,
the so-called Lyapunov equation (Khalil, 2002)

(F ′)TP F ′ − P = −Q (8)

has a unique symmetric psd. solution P , whenever z◦ is
a stable FP of F . Then the quadratic function V (z) =
(z − z◦)TP (z − z◦) is a LF for z◦. Specifically, for c
sufficiently small, Ωc is a ROA for z◦.

3.3 ROAS OF BELIEF PROPAGATION

Before computing LFs for BP, additional considerations are
required. Recall from Sec. 2.3 that BP operates as a discrete-
time mapping on the message space. Note that we implicitly
assume a synchronous message updating schedule.

In order to enable BP to converge to a FP, it is necessary
that all messages remain in a compact subset of the message
space. This can be achieved by introducing a normalizing
constant αij (Murphy et al., 1999; Martin et al., 2011). Usu-
ally αij is chosen so that

∑
xj∈X µ

(n)
ij (xj) = 1. Initializing

all messages in (0, 1), it follows that all messages during
the whole iteration process take values in (0, 1).

Then, for binary models, the number of independent mes-
sages along each direction of an edge reduces to one, since



 µ
(n)
ij (+1) = 1− µ(n)

ij (−1). This simple reparametrization
is essential for our approach to estimate ROAs in 4.2, which
– for computational reasons – requires a reduced number
of parameters.8 Specifically, the dimension of the message
space reduces from 4|E| to 2|E|.
Putting all our obervations together and identifying the mes-
sage space M = {µ ∈ R2|E| | 0 < µij < 1, (i, j) ∈ E}
with the unit cube in R2|E|, we can rewrite the 2|E| update
equations (4) induced by the mapping BP : M→M as

µ
(n+1)
ij = α

(n)
ij

(
eJij+θi

∏
k∈N(i)\j

µ
(n)
ki + e−Jij−θi

∏
k∈N(i)\j

(1−µ(n)
ki )
)
,

(9)

α
(n)
ij =

1(
e Jij + e−Jij

)(
eθi

∏
k∈N(i)\j

µ
(n)
ki + e−θi

∏
k∈N(i)\j

(1− µ(n)
ki )
),

(10)

where α(n)
ij normalizes the messages. Note that we have

inserted the corresponding expressions for Φi,j(xi, xj) and
Φi(xi) according to the exponential form (3).

Next, we compute the Jacobian of BP and construct a valid
LF according to (8). Taking first order derivatives yields

(BP′)(i,j),(k,l) =

tanh(Jij)

∏
r∈N(i)\{j,k}

µ◦ri
∏

r∈N(i)\{j,k}
(1− µ◦ri)(

eθi
∏

r∈N(i)\j
µ◦ri + e−θi

∏
r∈N(i)\j

(1− µ◦ri)
)2 ,

(11)

if i = l and k ∈ N(i)\j. For any other pairs of edges
(i, j), (k, l) the entries (BP′)(i,j),(k,l) are equal to 0.

We state the Lyapunov equation (BP′)T P BP′ − P = −I
for BP, where we have chosen Q = I in (8). Due to the
symmetry of P , the induced equation system only involves
the upper triangular submatrix of P and thus consists of
(2|E|+ 1) 2|E|

2 = 2|E|2 + |E| equations and variables. A di-
rect solution by Gaussian elimination requires O(|E|6) oper-
ations. Fortunately, there exists an efficient algorithm (Kita-
gawa, 1977) to solving discrete-time Lyapunov equations
that reduces the complexity to O(|E|3) operations. Recall
that the solution of (8) specifies a quadratic LF.

Theorem 1. Let µ◦ be a stable FP of BP, let BP′ be the Ja-
cobian and let P be the solution to (8). Then V (µ) = (µ−
µ◦)TP (µ− µ◦) is a LF for µ◦ and can be computed with
the computational effort O(|E|3). Moreover, there exists a
constant c > 0, such that BP converges to µ◦ for all initial
messages µ(0) chosen in Ωc = {µ ∈M |V (µ) ≤ c}.

8A similar reparametrization leads to the so-called cav-
ity update scheme that enjoys wide popularity in statistical
physics (Mezard and Montanari, 2009).

Theorem 1 facilitates the construction of a LF for arbitrary
probabilistic graphical models. Specifically, there exists a
sublevel set Ωc such that all messages inside Ωc converge
to the corresponding FP. Practically, however, we are con-
fronted with two concerns: (i) on the one hand, Theorem 1
does not provide any constructive information on how to
choose the parameter c, such that Ωc is fully contained in
{µ ∈M |∆V (µ) < 0} (see Sec. 3.2 for a detailed discus-
sion); (ii) on the other hand, ROA estimates based on the
LF constructed by Theorem 1 may be too conservative and
other LFs may be capable to yield larger ROA estimates.

In the next section, we address both issues by resorting to
the sum-of-squares technique that automatically constructs
(bounded-degree) polynomial LFs and implicitly deals with
selecting the optimum sublevel set.

4 SUM-OF-SQUARES (SOS) METHOD

In this section, we introduce the Sum-of-Squares (SOS)
method that provides the computational tools for automat-
ically computing LFs. We then show how to use SOS to
estimate ROAs for BP.

4.1 BACKGROUND OF SOS

Sum-of-squares relaxations have gained great popularity for
the past 20 years with a variety of applications in control
theory (Seeber et al., 2018) as well as in machine learning
like sparse coding (Barak et al., 2015) or sparse PCA (Ma
and Wigderson, 2015). The main idea is to relax the problem
of checking nonnegativity of a polynomial p – which is NP-
hard for polynomials with a degree of at least 4 (Murty and
Kabadi, 1987) – by checking whether p can be expressed
as a sum of squared polynomials fi, i.e. p =

∑
i f

2
i , which

obviously implies nonnegativity. Conversely, not every non-
negative polynomial is SOS. Note that p is required to be of
even degree, that is deg(p) = 2d. Furthermore, p is SOS if
and only if there exists a psd. matrix Q such that p can be
written in the form p = mTQm with m being the vector
of all monomials in p having a degree up to d (Choi et al.,
1995). Therefore, when p is defined on ν variables, the size
of Q is

(
ν+d
d

)
×
(
ν+d
d

)
. It has been shown that the search

for Q can be performed efficiently by semidefinite program-
ming (SDP) (Parrilo, 2000). The primal form of an SDP
is

min
w

bTw, (12)

s.t. Q = Q0 +
∑
i

wiQi, (13)

Q � 0, (14)

where we are given a cost vector b and symmetric matrices
Qi and where � denotes positive semidefiniteness. Loosely



 speaking, (13) describes the affine equality constraints in-
duced by requiring equality of the coefficients of p and
mTQm. Note that SOS in our context does not involve a
cost function, but reduces the above SDP to the feasibility
conditions only. For a thorough treatment of SDP, we refer
the reader to (Vandenberghe and Boyd, 1996).

When constructing polynomial LFs, the inequality condi-
tions (6) and (7) can be replaced by the SOS conditions

V (z)− ε · q(z) is SOS, (15)
−∆V (z)− ε · q(z) is SOS. (16)

Note that we need to subtract a nonnegative polynomial q(z)
that vanishes in the FP and is multiplied by a small constant
ε > 0 to guarantee the required strict positivity of V and
−∆V . The above SOS relaxations facilitate the task of prov-
ing nonnegativity considerably. Moreover, if the coefficients
of V are unknown, they are incorporated as parametric vari-
ables in the corresponding SDP (Papachristodoulou and
Prajna, 2005). For a candidate function V with a predefined
algebraic structure, one can therefore automatically search
for a psd. matrix Q such that V = mTQm and V is a LF
for a FP. Consequently, LFs do not have to be constructed
analytically but are obtained from solving an SDP.

When dealing with multiple FPs, global LFs do not exist.
Therefore, it is required to verify polynomial nonnegativ-
ity only on certain subsets of the domain. The following
result (Parrilo, 2000) is a useful consequence of the Posi-
tivstellensatz from real algebraic geometry (Bochnak et al.,
1998) and provides an elegant remedy for this problem:

Lemma 2. Let Ri = {z ∈ Rm | ri(z) ≤ 0} and Ti =
{z ∈ Rm | ti(z) = 0} be a finite family of semialgebraic
subsets9 of Rm and let S = {z ∈ Rm | s(z) ≤ 0} be
another semialgebraic subset of Rm, where ri, ti and s are
arbitrary polynomials. Let U be the union of all Ri and Ti.
Then U ⊆ S, if there exist SOS polynomials gi and (not
necessarily SOS) polynomials hi such that

−s(z) +
∑
i

gi(z)·ri(z) +
∑
i

hi(z)·ti(z) is SOS. (17)

Lemma 2 reveals that semialgebraic set containment prob-
lems can be cast in terms of SOS. Hence, whenever one aims
to check whether a certain semialgebraic set is contained in
another, one can instead try to solve a corresponding SOS
problem – which, in turn, is reformulated as an SDP.

Example. Assume that we aim to check the positivity of
−∆V on a sphere with radius r defined by the semial-
gebraic set B = {z ∈ Rm | ∑ z2i ≤ r2}, that is
B ⊆ {z ∈ Rm | −∆V (z) > 0}. With help of Lemma 2,
we can try to prove this by searching for a SOS polynomial
g such that

−(∆V + ε · q) + g · (
∑

z2i − r2) is SOS. (18)
9A (real) semialgebraic set is a finite union of subsets of Rm

that are defined by polynomial equalities or inequalities.

4.2 SOS FOR BELIEF PROPAGATION

Equipped with the relevant theoretical framework, we can
formulate an algorithmic estimation of BP’s regions of at-
traction. Still, one important technical subtlety remains:

An application of SOS does only make sense, if we analyze
polynomial systems. Hence, we have to deal with the ratio-
nal normalization terms α(n)

ij in BP’s message update equa-
tion (9). To approach this, we substitute the right-hand side
in (9) by auxiliary variables. After a few rearrangements,
we obtain the following constrained update equations:

µ
(n+1)
ij = β

(n)
ij , s.t. (19)

β
(n)
ij

α
(n)
ij

− eJij+θi
∏

k∈N(i)\j
µ
(n)
ki − e−Jij−θi

∏
k∈N(i)\j

(1− µ(n)
ki ) = 0.

(20)

If we insert the definition (10) of α(n)
ij into (20), we obtain

polynomial update equations subject to polynomial equality
constraints. Note that the exponential terms are constants,
as all θi and Jij are assumed to be fixed. Now let

bij(µ,β)=
β
(n)
ij

α
(n)
ij

−eJij+θi
∏

k∈N(i)\j
µ
(n)
ki −e−Jij−θi

∏
k∈N(i)\j

(1−µ(n)
ki ),

(21)

where the auxiliary variables β(n)
ij are collected in a vector

β, and define for all edges (i, j) ∈ E the semialgebraic
sets Rij = {µ,β ∈ R2|E| | bij(µ,β) = 0} to be the sets of
all message (plus auxiliary) variables satisfying (20). Let
further q(µ) be any nonnegative polynomial whose level
sets {µ ∈M | q(µ) = r2} determine the geometric shape of
an LF domain and that vanishes in the FP, e.g., the spherical
polynomial q(µ) =

∑
(i,j)∈E

(µij−µ◦ij)2. Then, in view of our

preceding discussion, the following theorem is an immediate
application of Lemma 2 to BP:

Theorem 3. Let µ◦ be a FP of BP,

• V (µ) be a SOS polynomial with V (µ◦) = 0,

• g(µ,β) be a SOS polynomial,

• pij(µ,β) be (not necessarily SOS) polynomials,

• bij(µ,β) be given by (21),

• q(µ) be a nonnegative polynomial with q(µ◦) = 0,

• r > 0 be a constant (i.e., the radius of q) and

• ε > 0 be an arbitrary small constant

such that

−(∆V + ε · q) +
∑

(i,j)∈E
pij · bij + g · (q − r2) is SOS.

(22)



 Then V is a LF for BP on the setBq(r) = {µ ∈M | q(µ) ≤
r2} and all sets of messages µ(0) initialized in a sublevel
set ΩV,c ⊆ Bq(r) converge to µ◦.

To compute an ROA estimate, we can, e.g., take q to be of
spherical shape and state the SOS program (22). All polyno-
mial coefficients are parametric variables in the correspond-
ing SDP. We maximize the radius r of the sphere Bq(r)
(e.g., by bisection) such that the SDP (13), (14) admits a
feasible solution Q. With a monomial vector chosen in ad-
vance, it follows that V = mTQm is a LF whose largest
sublevel set Ωc ⊆ Bq(r) provides a valid ROA estimate for
a fixed point.

4.3 EXPANDING THE ROA ESTIMATES

To expand the estimated ROA, we can utilize an alternating
update scheme between the LF and the auxiliary polynomi-
als (Jarvis-Wloszek et al., 2003)). Concretely, one aims for
solving the following optimization problem:

max r s.t. (23)

−(∆V + ε · q) +
∑

(i,j)∈E
sij · bij + g · (V − c) is SOS, (24)

−(V − c) + h · (q − r2) is SOS, (25)

where the maximization is performed over the polyno-
mial variables V, g (both SOS), sij , and h. More precisely,
we maximize the radius of a sphere that is inscribed in
a sublevel set of the current Lyapunov function, that is
Bq(r) ⊆ Ωc. This is guaranteed by condition (25). At the
same time, we must ensure that the current sublevelset is al-
ways included in the set where ∆V < 0. This is guaranteed
by condition (24). The increasing radius of the inner sphere
enforces the sublevel set and therefore the estimated ROA
to grow over time. Note however, that we can not solve both
SOS programs at the same time. This is due to bilinearities
with respect to the SDP variables in g · V and h · r2. Specif-
ically, we need to iteratively keep some of the polynomials
fixed, while updating the others. The algorithmic procedure
can be sketched as follows:

1. First, initialize V (e.g., with the LF obtained by Theo-
rem 1 in Sec. 3.3) and take q to be a nonnegative shape
polynomial (e.g., a sphere) that vanishes in the FP.

2. With V fixed, maximize c (e.g., by bisection) and com-
pute g such that (24) is satisfied. In this step, we find
the largest valid sublevelset Ωc of V .

3. With V fixed, maximize r (e.g., by bisection) and com-
pute h such that (25) is satisfied. This adapts the chosen
shape to Ωc (see Fig. 3a).

4. Check if r is converged.

4.1 If yes, stop the procedure and return the sub-
levelset Ωc obtained in step 2 as ROA estimate.

4.2 Otherwise, keep g, c from step 2 and h, r from
step 3 fixed. Update V by simultanously solv-
ing (24) and (25); this guarantees the relation
Bq(r) ⊆ Ωc ⊆ {µ |∆V (µ)< 0} (see Fig. 3b).
Then go back to step 2.

Bq(r) ⊆ Ωc ⊆ {µ ∈M |∆V (µ) < 0} ⊆M

M

∆V < 0

Ωc

Bq(r)

(a) Enlarge Bq(r).

Bq(r) ⊆ Ωc ⊆ {µ ∈M |∆V (µ) < 0} ⊆M

M

∆V < 0
Ωc

Bq(r)

(b) Update V .

Figure 3: An iterative ROA optimization procedure: inscrib-
ing a sphereBq(r) inside Ωc enforces Ωc to grow over time.

We apply the described procedure in Sec. 5.

4.4 PROPERTIES AND LIMITATIONS OF SOS

The ROA estimates are affected by two particular aspects of
BP: first, the graph structure determines the computational
complexity; and second, analytical properties of BP limit
the maximum size of the estimated ROAs.

To understand the complexity of SOS, consider a polyno-
mial of degree 2d in ν independent variables. When testing
for non-negativity, the corresponding monomial vector m
determines the size of the SDP. In worst case, the matrix
Q (see Sec. 4.1) has a dimension of

(
ν+d
d

)
×
(
ν+d
d

)
. Thus,

if one quantity is fixed the SDP grows polynomially in the
number of variables ν or the degree d. If both quantities
increase, the SDP experiences exponential growth.

SOS for BP consists of 4|E| independent variables (see
Sec. 4.2). The corresponding SDP is of size at least(4|E|+d dmax

2 e
d dmax

2 e
)
×
(4|E|+d dmax

2 e
d dmax

2 e
)
, where dmax is the maximum

degree of the graph. This renders solving the SDP problem-
atic – particularly for dense graphs. Thus we must decrease
the complexity, e.g., by the Newton polytope or block diag-
onalization. This helps to reduce the monomial vector and
exploits symmetries in the SDP (Löfberg, 2009).

Moreover, note that the size of the estimated ROAs is inher-
ently limited by the analytical properties of BP. This stems
from the scenario that two incoming messages might com-
pletely disagree about the state of a RV, e.g., if µki(1) = 1
whereas µli(−1) = 1. Formally, the normalization term αij
in (9) goes to infinity in that case, i.e., BP has a pole for the
corresponding message values. Unfortunately, our construc-
tion of ROA estimates suffers from poles in the message



 space. In particular this limits the maximum possible ra-
dius as the spherical estimates must not include any poles.
Considering more flexible ROA shapes would be one possi-
ble remedy; this, however, also increases the computational
complexity by enlarging the degree of the LFs.

5 SIMULATIONS

We now provide a proof of concept and compute the ROAs
for a range of models in Sec 5.1- 5.2. Moreover, we assess
if the estimated ROAs reflect the true ones well in Sec. 5.3.

We consider homogenous 3-regular models on 4 nodes.
Note, however, that our approach generalizes well to models
with arbitrary pairwise potentials. We mainly consider ho-
mogenous models for their theoretical properties that make
the interpretation and visualization of the results particularly
pleasant. We explain this as follows:

On the one hand, one can compute the critical values J∗, θ∗

that induce a phase transition analytically (Georgii, 1988).
On the other hand, all messages are identical at a fixed point,
i.e., µ◦ij = µ◦. Thus, all FPs lie on the main diagonal of
the message space M (the 12-dimensional unit cube). For
visualization purposes, we project the FPs and estimated
ROAs on the one-dimensional subspace corresponding to
the main diagonal. We rescale all projections by 1√

12
to the

[0, 1]. This makes the results independent of the model-size.

All FPs are visualized by solid (stable) or dashed (unstable)
lines; the ROA estimates are illustrated as shaded regions.
For computational reasons, we estimate elliptical ROAs (see
Sec. 4.4). Note that these correspond to the sublevel sets of
quadratic LFs (see Fig 2). We further optimize the estimated
ROAs according to the algorithm introduced in Sec. 4.3.10

We do, however, not visualize the estimated elliptical ROAs
since projections of non-spherical objects may not reflect
the object’s geometric properties well and lead to wrong
conclusions. Therefore, we illustrate the largest spheres
Bq(r) contained in the estimated ROAs instead.

5.1 ZERO LOCAL POTENTIALS (θ = 0)

First, we consider models without local potentials, i.e. θ = 0.
The lack of any prior knowledge renders this a worst-case
scenario in terms of BP’s convergence properties (Knoll and
Pernkopf, 2017). We vary the couplings J in the interval
[−1, 2] and estimate the ROAs for all FPs (see Fig. 4a).

For J ≥ 0, the unique stable FP µ◦0 exists up to a critical
value of J∗. The ROA is bounded by the poles of BP that
are nearest to this FP (see Sec. 4.4). The nearest poles are
those that keep all values from µ◦0 except for two messages.

10We used the SOS modul of the software YALMIP (Löfberg,
2009) for formulating the SOS programs and the interior-point
optimizer MOSEK (MOSEKApS, 2021) for solving the SDPs.

The distance between µ◦0 and these poles is given by
√

0.5,
yielding an upper bound on each spherical ROA estimate.
Similar bounds hold for all estimated ROAs in this section.

As the couplings J increase, the estimated ROA of µ◦0
shrinks slowly but steadily, until it rapidly decreases as
J approaches the phase transition boundary. This conforms
with the observation that the number of BP iterations peaks
at the phase transition (Mooij and Kappen, 2005). We con-
jecture that this behavior of BP leads to less robust ROA
estimates in the vicinity of a phase transition.

By further increasing J , the FP µ◦0 becomes unstable and
two stable FPs µ◦1 and µ◦2 arise, each preferring another
state of the marginals. The ROAs for both FPs grow rapidly
after the phase transition. Moreover, both FPs are naturally
separated by the – henceforth unstable – FP µ◦0.

For J ≤ 0, the unique stable FP µ◦0 exists up to −J∗.
The estimated ROAs are symmetric to those obtained for
J ≤ 0. It is well known that there do not arise any further
stable fixed points and that BP does not converge for J <
J∗ (Mooij and Kappen, 2005; Knoll and Pernkopf, 2017).

5.2 NON-ZERO LOCAL POTENTIALS (θ 6= 0)

Second, we consider the more general case of non-zero
local potentials. Due to the symmetry of the model, we
can assume θi = θ > 0. In general, the existence of non-
zero local potentials improves the convergence behavior of
BP (Knoll and Pernkopf, 2017). We consider three scenarios
with J ∈ {0.6, 0.7, 0.8}, vary θ in the interval [0, 0.2] and
estimate the ROAs for all FPs (see Fig. 4b - 4d)

For small values of θ < θ∗, two stable FPs µ◦1 (green) and
µ◦2 (blue) exist and are accompanied by one unstable FP
µ◦0 (red). We refer to µ◦2 as the state-preserving FP (as its
marginals are in accordance with the local potentials).

As θ increases, the estimated ROA of µ◦2 grows constantly.
In contrast, the ROA of µ◦1 shrinks constantly until the FP
vanishes at θ∗. Beyond the phase transition only a unique FP
(the state-preserving) remains, with its ROA being bounded
by the poles. Also note, how for a given local strength, the
estimated ROAs increase with the couplings J for all FPs.

5.3 ROBUSTNESS OF BP FIXED POINTS

Even though the volumes of the estimated ROAs are inher-
ently limited in size, we show that their relative size reflects
BP’s convergence behavior. Therefore, we consider models
with two stable FPs and compare the ratio of the largest el-
liptical ROA volumes to the ratio of convergent trajectories
for the respective FP (we use 105 random initializations).

We keep J ∈ {0.6, 0.7, 0.8} fixed and vary θ in the interval
[0, θ∗]. The results are shown in Fig. 5. For J ∈ {0.7, 0.8},
the proportion of estimated ROA volumes provides a rough
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Figure 4: Spherical ROA estimates (shaded regions) projected onto the main diagonal of M. The phase transitions are
illustrated by ±J∗ and θ∗ respectively. (a) θ = 0 and J ∈ [−1, 2]: the ROA of µ◦0 (red) shrinks until it becomes unstable;
for J > 0, two FPs (blue and green) arise with increasing ROAs. (b),(c),(d) θ ∈ [0, 0.2] and J ∈ {0.6, 0.7, 0.8}: the ROA of
the state-preserving FP (blue) grows with J whereas the ROA of the opposing FP (green) shrinks until it vanishes.
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Figure 5: Comparison between ratio of volumes of elliptical
ROA estimates (red) and ratio of convergent Monte-Carlo
runs (blue) for FPs µ◦1 and µ◦2.

approximation to the proportion of the actual ROAs (ob-
tained by the Monte Carlo runs). For J = 0.6, the ROA of
the non state-preserving FP µ◦1 is clearly underestimated;
hence, an approximation is not reliable in that case. We
explain this behavior with the lack of robustness of the ROA
estimates in the vicinity of a phase transition (see Sec. 5.1).

The above observations suggest that the size of the estimated
ROA provides a measure for the robustness of a FP. That is,
the larger a ROA estimate, the more likely it remains stable
under slight variation of the parameters.

6 CONCLUSION

In this paper, we have explained how to estimate the regions
of attraction (ROAs) for belief propagation (BP), i.e., initial
message values for which BP provably converges. There-
fore, we have reformulated BP and introduced Lyapunov
functions to compute lower bounds on the ROAs. Moreover,
we provided an algorithm that utilizes the sum-of-squares
method and iteratively enlarges the estimated ROAs.

We have estimated the ROAs for various models and ob-
served: how the potentials impact the ROAs; that unstable
fixed points confine the ROAs, if all messages are initialized

identically; and that the estimated ROAs reflect the exact
ones well despite being conservative.

Estimating the ROAs provides further insights into the be-
havior of BP and improves our understanding of the role
of the initialization. We anticipate that our results inspire
problem-tailored initialization strategies for improving BP.
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