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Abstract

A variety of dimensionality reduction techniques
have been applied for computations involving large
matrices. The underlying matrix is randomly com-
pressed into a smaller one, while approximately
retaining many of its original properties. As a re-
sult, much of the expensive computation can be
performed on the small matrix. The sketching of
positive semidefinite (PSD) matrices is well under-
stood, but there are many applications where the
related matrices are not PSD, including Hessian
matrices in non-convex optimization and covari-
ance matrices in regression applications involving
complex numbers. In this paper, we present novel
dimensionality reduction methods for non-PSD
matrices, as well as their “square-roots", which in-
volve matrices with complex entries. We show how
these techniques can be used for multiple down-
stream tasks. In particular, we show how to use the
proposed matrix sketching techniques for both con-
vex and non-convex optimization, /,-regression
for every 1 < p < o0, and vector-matrix-vector
queries.

1 INTRODUCTION

Many modern machine learning tasks involve massive
datasets, where an input matrix A € R™*4 js such that
n > d. In anumber of cases, A is highly redundant. For
example, if we want to solve the ordinary least squares
problem min, ||Ax — b||3, one can solve it exactly given
only AT A and ATb. To exploit this redundancy, numerous
techniques have been developed to reduce the size of A.
Such dimensionality reduction techniques are used to speed
up various optimization tasks and are often referred to as
sketching; for a survey, see [ ].

A lot of previous work has focused on sketching PSD ma-

trices. For example, the Hessian matrices in convex opti-
mization [ s ], the covariance matrices X ' X in
regression over the reals, and quadratic form queries x ' Ax
[ , ]. Meanwhile, less is understood for non-
PSD matrices. These matrices are naturally associated with
complex matrices: the Hessian of a non-convex optimization
problem can be decomposed into H = X T X where X is a
matrix with complex entries, and a complex design matrix
X has a non-PSD covariance matrix. However, almost all
sketching techniques were developed for matrices with en-
tries in the real field R. While some results carry over to the
complex numbers C (e.g., [ ] develops con-
centration bounds that work for complex matrices), many
do not and seem to require non-trivial extensions. In this
work, we show how to efficiently sketch non-PSD matrices
and extend several existing sketching results to the complex
field. We also show how to use these in optimization, for
both convex and non-convex problems, the sketch-and-solve
paradigm for complex £,-regression with 1 < p < oo, as
well as vector-matrix-vector product queries.

Finite-sum Optimization. We consider optimization prob-
lems of the form

min F(x) £ % ifi(agx) + r(x), (D

Rd
x€E i—1

where n > d > 1, each f; : R — R is a smooth but possi-
bly non-convex function, r(x) is a regularization term, and
a; € R4, i =1,...,n, are given. Problems of the form (1)
are abundant in machine learning [
, ]. Concrete examples include robust linear re-
gression using Tukey’s biweight loss [ ,
L ie. fil(aix)) = (alx —b;)*/(1+ (alx — b)),
where b; € R, and non-linear binary classification [ s
1, i, fil{anx) = (1/(1+exp(—alx)) —b;)%,
where b; € {0, 1} is the class label. By incorporating curva-
ture information, second-order methods are gaining popular-
ity over first-order methods in certain applications. However,
when n > d > 1, operations involving the Hessian of F’
constitute a computational bottleneck. To this end, random-
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ized Hessian approximations have shown great success in
reducing computational complexity ([ ,

) bl bl s ] il

s 2 > ])'

In the context of (1), it is easy to see that the
Hessian of F can be written as V?F(x) =
S, falx)aal /o + Vir(x) = ATD(x)A/n +
V?r(x), where AT = [aj,...,a,] € R" and
D(x) = diag[f{ (alx) f{(alx) ... f/(alx)] € R™".
Of particular interest in this work is the application of
randomized matrix approximation techniques [

) ) ) ) ) 1
in particular, constructing a random sketching matrix S
to ensure that H(x) £ ATDY/2STSD'/2A + V?r(x) ~
ATDA /n + V?r(x) = V2F(x). Notice that D'/2 A may
have complex entries if f; is non-convex.

The Sketch-and-Solve Paradigm for Regression. In the
overconstrained least squares regression problem, the task
is to solve miny ||[Ax — b|| for some norm || - ||, and here
we focus on the wide class of £,-norms, where for a vector
Y Iyl = (32, ly;P)!/7. Setting the value p allows for
adjusting the sensitivity to outliers; for p < 2 the regression
problem is often considered more robust than least squares
because one does not square the differences, while for p > 2
the problem is considered more sensitive to outliers than
least squares. The different p-norms also have statistical
motivations: for instance, the ¢;-regression solution is the
maximum likelihood estimator given i.i.d. Laplacian noise.
Approximation algorithms based on sampling and sketch-
ing have been thoroughly studied for ¢,-regression, see,
c.g., [ ) s s ) s

> i s 5>

s )

, , ]. These algorithms typi-
cally follow the sketch-and-solve paradigm, whereby the
dimensions of A and b are reduced, resulting in a much
smaller instance of £,,-regression, which is tractable. In the
case of p = oo, sketching is used inside of an optimization
method to speed up linear programming-based algorithms

[ , I

To highlight some of the difficulties in extending ¢,-
regression algorithms to the complex numbers, consider
two popular cases, of ¢; and /,-regression. The standard
way of solving these regression problems is by formulating
them as linear programs. However, the complex numbers
are not totally ordered, and linear programming algorithms
therefore do not work with complex inputs. Stepping back,
what even is the meaning of the ,,-norm of a complex vec-
tor y? In the definition above [|y[l, = (3_; ly;[P)'/?, and
\yj| denotes the modulus of the complex number, i.e., if
y; = a+b-i, where i = \/—1, then |y;| = Va? + b2
Thus the /,,-regression problem is really a question about
minimizing the p-norm of a sum of Euclidean lengths of
vectors. As we show later, this problem is very different

than £, regressions over the reals.

Vector-matrix-vector queries. Many applications require
queries of the form u" Mv, which we call vector-matrix-
vector queries, see, e.g., [ ]. For exam-
ple, if M is the adjacency matrix of a graph, then u' Mv
answers whether there exists an edge between pair {u, v}.
These queries are also useful for independent set queries, cut
queries, etc. Many past works have studied how to sketch
positive definite M (see, e.g., [ 1), but it
remains unclear how to handle the case when M is non-PSD
or has complex entries.

Contributions. We consider non-PSD matrices and their
"square-roots", which are complex matrices, in the context
of optimization and the sketch-and-solve paradigm. Our goal
is to provide tools for handling such matrices in a number of
different problems, and to the best of our knowledge, is the
first work to systematically study dimensionality reduction
techniques for such matrices.

For optimization of (1), where each f; is potentially non-
convex, we investigate non-uniform data-aware methods to
construct a sampling matrix S based on a new concept of
leverage scores for complex matrices. In particular, we pro-
pose a hybrid deterministic-randomized sampling scheme,
which is shown to have important properties for optimiza-
tion. We show that our sampling schemes can guarantee
appropriate matrix approximations (see (4) and (5)) with
competitive sampling complexities. Subsequently, we in-
vestigate the application of such sampling schemes in the
context of convex and non-convex Newton-type methods
for (1).

For complex ¢,-regression, we use Dvoretsky-type em-
beddings as well as an isometric embedding from ¢; to
{+ to construct oblivious embeddings from an instance
of a complex /,-regression problem to a real-valued ¢,-
regression problem, for p € [1, oo]. Our algorithm runs in
O((nnz(A) + poly(d/e))) time for constant p € [1, 00),
and O(nnz(A)2°01/<) time for p = co. Here nnz(A)
denotes the number of non-zero entries of the matrix A.

For vector-matrix-vector queries, we show that if the non-
PSD matrix has the form M = A "B, then we can approx-
imately compute u' Mv in just O(nnz(A) + n/e?) time,
whereas the naive approach takes nd? + d? + d time.

Notation. Vectors and matrices are denoted by bold lower-
case and bold upper-case letters, respectively, e.g., v and V.
We use regular lower-case and upper-case letters to denote
scalar constants, e.g., d or L. For a complex vector v, its
real and conjugate transposes are respectively denoted by
v and v*. For two vectors v, w, their inner-product is de-
noted by (v, w). For a vector v and a matrix V, ||v||,, || V]|,
and ||V » denote vector ¢, norm, matrix spectral norm, and
Frobenius norm, respectively. For ||v||2, we write ||v]| as
an abbreviation. Let | V| denote the entry-wise modulus of




matrix V. Let V, ; denote the (¢, j)-th entry, V, = V, ,
be the i-th row, and V, ; be the j-th column. The iteration
counter for the main algorithm appears as a subscript, e.g.,
Pk For two symmetric matrices A and B, the Lowner par-
tial order A > B indicates that A — B is symmetric positive
semi-definite. AT denotes the Moore-Penrose generalized
inverse of matrix A. For a scalar d, we let poly(d) be a
polynomial in d. We let diag(-) denote a diagonal matrix.

Here we give the necessary definitions.

Definition 1 (Well-conditioned basis and ¢,
leverage scores). An n x d matrix U is an
(a, B, p)-well-conditioned  basis  for the column

span of A if (i) (Zie[”] Zje[d] U, P)Yr <

(i) For all x € R?, ||x||, < B||Ux||,, where 1/p+1/q = 1.

(iii) The column span of U is equal to the column span of A.
For such a well conditioned basis, ||U;.|} is defined to be
the £y, leverage score of the i-th row of A. The {,, leverage
scores are not invariant to the choice of well-conditioned
basis.

Definition 2 (¢, Auerbach Basis). An Auerbach basis A
of U € R™ 4 js such that: (i) span(U) = span(A).
(ii) For all j € [d], |Asll, = 1. (iii) For all x € RY,
d-/9)xll, < x| < [|AX], where 1/p+1/q = 1

Definition 3 (/,-subspace embedding). Let A € R"*%,
S € C**™. We call S an € {y-subspace embedding if for all
x € C7, [|Ax[l, < [|SAx]l, < (1+ €)[|Ax]],.

2 SKETCHING NON-PSD HESSIANS
FOR NON-CONVEX OPTIMIZATION

We first present our sketching strategies and then apply them
to an efficient solution to (1) using different optimization
algorithms. All the proofs are in the supplementary material.

2.1 COMPLEX LEVERAGE SCORE SAMPLING

Algorithm 1 Construct Leverage Score Sampling Matrix

1: Input: D'/2A € C"*¢, number s of samples, empty
matrices R € R**¢ and 2 € R"**

2: Compute SVD of D¥/2A = UXV*

3: fori € [n] do

4:  Calculate the i*" leverage score ¢; = ||U; |2

5: for j € [s| do

6: _Pick row ¢ independently and with replacement with
probability p; = Ef o

7. Set Qi,j =1 and Ri,i = \/%

e}

: Output: S =R - Q7

It is well-known that leverage score sampling gives an € {o-
subspace embedding for real matrices with high probability,

see, e.g., [
to the complex field:

]. Here we extend the result

Theorem 1. Fori € [n), let 0; > {; be a constant overes-
timate to the leverage score of the ith row of B € ~(C”Xd.
Assume that BB € R Let p; = ;)30 ¢; and
t = cde 2log(d/§) for a large enough constant c. We
sample t rows of A where row i is sampled with prob-
ability p; and rescaled to 1/\/tp;. Denote the sampled
matrix by C. Then with probability 1 — §, C satisfies:
BB - ¢B*B <C'C <B'B + ¢B*B.

Theorem 2. Under the same assumptions and notation
in Theorem 1, let t = cdye 2log(d/s), where v =

2

Hzie[n] ”BZZH B!B;|| . Then with probability 1 — §, C sat-
isfies |CTC — B'B|| < e

Remark 1. It is hard to directly compare Theorem 2 to the
sample complexity of [ ], where they require
t > §1og(2d/5), K > |B*B|| = O(c2). To apply The-
orem 2 toa Hessian of the form ATDA, one should set
B = DY/2A. Compared to the previously proposed sketch-
ing ATSTSDA for non-convex F, our proposed sketch-
ing ATD'/28TSDY/2 A in practice often has better perfor-
mance (see Section 2.2). We conjecture this is because B
has several large singular values, but many rows have small
row norms ||B;||> < {;. Hence dry can be much smaller
than K2.

Note that Theorem | cannot be guaranteed by row norm
sampling. Consider B = diag(oo, 1). Then row norm sam-
pling will never sample the second row, yet the lever-
age scores of both rows are 1. All leverage scores can
be computed up to a constant factor simultaneously in
O ((nnz(A) + d*)logn) time. See the appendix for de-
tails.

Hybrid of Randomized-Deterministic Sampling. We pro-
pose Algorithm 2 to speed up the approximation of Hessian
matrices by deterministically sampling the “heavy” rows.
The proposed method provably outperforms the vanilla
leverage score sampling algorithm under a relaxed RIP con-
dition.

Theorem 3. Let A € R"*? and D = diag(dy,...,d,) €
R™ ™, For any matrix A and any index set N, let Ay €
R"*4 be such that for all i € N, (Ay); = A;, and all
other rows of Ay are 0. Suppose ATDA = ZiT:I E'+N,
where E! = A,TgiDEi,AEi € R4 E. is an index set with
size O(d) (that is, at each outer iteration in Algorithm 2
step 3 below, we deterministically select at most |E;| =
O(d) rows). Let E = U E;, N ={1,...,n}\E, N =
ALDyAN € R™X4,

Assume D}\PAN has the following relaxed restricted

isometry property (RIP) with parameter p. That is, with
probability 1 — 1/n over uniformly random sampling ma-
trices S with t = O(d||ATDA||/€?) rows each scaled by



V/n/t, we have Vx & kernel(D}V/QAN), HSD}\{QANXH =
(1 £ e)pllx]].

Also assume that for some constant ¢ > 1:
c|AVDN|AN] < [|X, EY. Then the sketch can

be expressed as Y ,E' + ATDY?STSDY?Ay
and, with probability 1 O(1/d), we have

|3, B+ ALDY’STSDY’Ay — ATDA| < .

Remark 2. The takeaway from Theorem 3 is that the total
sample complexity of such a sampling scheme, i.e., Algo-
rithm 2, is O(Td + d|ATDA||/€?) = O(d| ATDAY|) for
constant € and T'. On the other hand, the vanilla leverage
score sampling scheme requires Q(dvlog d) rows. Notice
that often v > || ATDA|| because ~ involves | AT|D|A]|.
Although T is a tunable parameter, we found in the experi-
ments that T = 1 performs well.

Algorithm 2 Hybrid Randomized-Deterministic Sampling
(LS-Det)

1: Input: D'/2A e C"*¢, iteration number 7', threshold
m, precision €, number k of rows left

2: Setk=n

3: fort € [T] do

4:  Calculate the leverage scores {/1, . .

0y of DY/2A

5: forie [k]do

if ¢; > m then

7: Select row i, set D'/2A to be the set of remain-

ing rows, setk =k — 1

8: Sample h = O(d/€?) rows from the remaining rows us-
ing either their leverage score distribution, or uniformly
at random and scaled by \/%

9: Output: The set of sampled and rescaled rows

A

Which Matrix to Sketch? We give a general rule of
thumb that guides which matrix we should sample to
get a better sample complexity. Recall that the Hes-
sian matrix we try to sketch is of the form ATDA
where D is diagonal. There are two natural candidates:

s(A;) + s((DA);) 2 s((DY2A),) 3)
> (s(Aq) + s((DA);)) > s((DY/2A):)
for a score function s : R — R (e.g., leverage scores or
row norms). It turns out that sampling according to (2) can
lead to an arbitrarily worse upper bound than sampling
using (3).

Theorem 4. Let A € R™% Let D € R™" be
diagonal. Let T be an € (3-subspace embedding for
span(A,DA) and S be an € {s-subspace embedding for
span(DY2 A, (D'Y/2)*A). Sampling by (2) can give an ar-
bitrarily worse upper bound than sampling by (3).

2.2 APPLICATION TO OPTIMIZATION
ALGORITHMS

As mentioned previously, to accelerate convergence of
second-order methods with an inexact Hessian, one needs
to construct the sub-sampled matrix such that H(x) ~
V2 F(x). In randomized sub-sampling of the Hessian ma-
trix, we select the i-th term in Y, V2 f;(x) with proba-
bility p;, restricting 3, pi = 1. Let S denote the sam-
ple collection and define H(x) = i e 5- V2 fi(x) +
V?27(x). Uniform oblivious sampling is done with p; =
1/n, which often results in a poor approximation unless
|S| > 1. Leverage score sampling is in some sense an
optimal data-aware sampling scheme where each p; is pro-
portional to the leverage score ¢; (see Algorithm 1).

One condition on the quality of approximation H(x) =
V2F(x) is typically taken to be

|H(x) — V2F(x)|| <€, forsome 0<e<1, (4)
which has been considered both in the contexts of convex
and non-convex Newton-type optimization methods [

5 , s R ]. For convex

settings where V2F () = 0, a stronger condition can be
considered as

(1-¢)V?F(z) < H(x) < (1+¢)V2F(z), (5

which, in the context of sub-sampled Newton’s method,
leads to a faster convergence rate than (4)

[ 1, [ 1, [ ]. However,
in all prior work, (5) has only been considered in the re-
stricted case where each f; is convex. Here, using the result
of Section 2.1, we show that (5) can also be guaranteed
in a more general case where the f;’s in (1) are allowed
to be non-convex. We demonstrate the theoretical advan-
tages of complex leverage score sampling in Algorithms 1
and 2 as a way to guarantee (4) and (5) in convex and
non-convex settings, respectively. For the convex case, we
consider sub-sampled Newton-CG [ ,

s , ]. For non-convex settings, we have
chosen two examples of Newton-type methods: the classi-
cal trust-region [ , ] and the more recently
introduced Newton-MR method [ s 1. We
emphasize that the choice of these non-convex algorithms
was, to an extent, arbitrary and we could instead have picked
any Newton-type method whose convergence has been pre-
viously studied under Hessian approximation models, e.g.,
adaptive cubic regularization [ R ,

, ]. The details of these optimization methods and
theoretical convergence results are deferred to the supple-
mentary.

We verify the results of Section 2.1 by evaluating the em-
pirical performance of the non-uniform sampling strategies



proposed in the context of Newton-CG, Newton-MR and
trust-region, see details in the appendix.
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Figure 1: Comparison of Newton-MR with various sampling
schemes.

Sub-sampling Schemes. We focus on several sub-sampling
strategies (all are done with replacement). Uniform: For
this we have p; = 1/n, i = 1,...,n. Leverage Scores
(LS): Complex leverage score sampling by considering
the leverage scores of D'/2A as in Algorithm 1. Row
Norms (RN): Row-norm sampling of D'/2A using (3)
where s((DY2A);) = |fi"({as,x))] ||ai||§. Mixed Lever-
age Scores (LS-MX): A mixed leverage score sampling
strategy arising from a non-symmetric viewpoint of the
product AT (DA) using (2) with s(A;) = ¢;(A) and
s((DA);) = ¢;(DA). Mixed Norm Mixture (RN-MX): A
mixed row-norm sampling strategy with the same non-
symmetric viewpoint as in (2) with s(A;) = [|(A),|| and
s((DA);) = ||(DA);||. Hybrid Randomized-Deterministic
(LS-Det): Sampling using Algorithm 2. Full: In this case,
the exact Hessian is used.

Model Problems and Datasets. We consider the task of
binary classification using the non-linear least squares for-
mulation of (1). Numerical experiments in this section are
done using covertype, Drive Diagnostics, and
UJIIndoorLoc from the UC Irvine ML Repository

[2017].

Performance Evaluation. For Newton-MR, the conver-
gence is measured by the norm of the gradient, and hence
we evaluate it using various sampling schemes by plotting
IV F(xx)]| vs. the total number of oracle calls. For Newton-
CG and trust-region, which guarantee descent in objective
function, we plot F'(xy,) vs. the total number of oracle calls.
We deliberately choose not to use “wall-clock’ time since it
heavily depends on the implementation details and system
specifications.

Comparison Among Various Sketching Techniques. We
present empirical evaluations of Uniform, LS, RN, LS-MX,
RN-MX and Full sampling in the context of Newton-MR in
Figure 1, and evaluation of all sampling schemes in Newton-
CG, Newton-MR, Trust-region, and hybrid sampling on
covertype in Figure 2. For all algorithms, LS and RN
sampling amounts to a more efficient algorithm than that
with LS-MX and RN-MX variants respectively, and at times
this difference is more pronounced than other times, as
predicted in Theorem 4. Meanwhile, LS and LS-MX often
outperform RN and RN-MX, as proven in Theorem 1 and
Theorem 2.

Evaluation of Hybrid Sketching Techniques. To verify
the result of Algorithm 2, we evaluate the performance of
the trust-region algorithm by varying the terms involved in
E, where we call the rows with large leverage scores heavy,
and denote the matrix formed by the heavy rows by E. The
matrix formed by the remaining rows is denoted by N, see
Theorem 3 for details. We do this for a simple splitting of
H = E + N. We fix the overall sample size and change the
fraction of samples that are deterministically picked in E.
The results are depicted in Figure 2. The value in brackets
after LS-Det is the fraction of samples that are included in
E, i.e., deterministic samples. “LS-Det (0)” and “LS-Det
(1)” correspond to E = 0 and N = 0, respectively. The
latter strategy has been used in low rank matrix approxima-
tions [ , ]. As can be seen, the hybrid sampling
approach is always competitive with, and at times strictly
better than, LS-Det (0). As expected, LS-Det (1), which
amounts to entirely deterministic samples, consistently per-
forms worse. This can be easily attributed to the high bias
of such a deterministic estimator.

3 SKETCH-AND-SOLVE PARADIGM
FOR COMPLEX REGRESSION

3.1 THEORETICAL RESULTS

Recall the £,,-regression problem:

m);ln |Ax — bl|, (6)

Here we consider the complex version: A € C"*% b ¢
C",x € C%
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Performance of the hybrid sampling scheme.

The inner product over the complex field can be embedded
into a higher-dimensional real vector space. It suffices to
consider the scalar case.

Lemma 1. Let x,y € C where x = a + bi,y = c + di,
let ¢ : C — R?via ¢(x) = ¢(a + bi) = [a b]. Let
c d

—d el Then
¢ and o are bijections (between their domains and images),
and we have ¢(gx)T = o(y)o(z)T

o:C — R*?via: o(y) = o(c+di) =

Proof of Lemma 1. 1t is clear that ¢,o are bijections
between their domains and images. o(y)p(x)T

) = [ ] = ot .

We apply o to each entry in A and concatenate in the nat-
ural way. Abusing notation, we then write: A’ = 0(A) €
R2n*2d | Similarly, we write X' = @(x) € R?? b’ =
#(b) € R,

Fact 1. For 1 < p < q¢ < oo and x € RY we have
Ixllg < IIxll, < d¥P=49x[l,.

Fact 2. An (), Auerbach basis is well-conditioned and al-
ways exists.

Definition 4. Let x € R?? for some d € N. Define

d—1 /2\1/
il = (0 (3141 +33:12)"”)
ting x € C%, we have ||x||, = |||¢)(x)\||p72.

p
. Note that let-

By Definition 4, we can “lift” the original ¢,-regression
to R?? and solve mingx)eg2q [|o(A)p(x) — d(b)|l, 5 in-
stead of (6). This equivalence allows us to consider sketch-
ing techniques on real matrices with proper modification.

See Algorithm 3 for details. In turn, such an embedding
gives an arbitrarily good approximation with high probabil-
ity, as shown in Theorem 5.

Theorem 5. Let A € C"*% b € C™. Then Algorithm 3
with input A’ .= o(A) and b’ := ¢(b) returns a regres-
sion instance whose optimizer is an € approximation to (0),
with probability at least 0.98. The total time complexity
Jorp € [1,00) is O(nnz(A) + poly(d/e)); for p = o it
is 0(2°0/)nnz(A)). The returned instance can then be
optimized by any (,,-regression solver.

Proof. For simplicity, we let A € R?"*24 to avoid repeat-
edly writing the prime symbol in A’.

Let y € R?" be arbitrary. Let P, P, P;, P}, be as defined in
Algorithm 3. We say a pair P = (a, b) is heavy if P € Py,
and light otherwise.

As an overview, when p € [1, o), for the heavy pairs, we
use a large Gaussian matrix and apply Dvoretsky’s theorem
to show the [|-[||,, , norm is preserved. For the light pairs,
we use a single Gaussian vector and use Bernstein’s concen-
tration. This is intuitive since the heavy pairs represent the
important directions in A, and hence we need more Gaus-
sian vectors to preserve their norms more accurately; but the
light pairs are less important and so the variance of the light
pairs can be averaged across multiple coordinates. Hence,
using one Gaussian vector suffices for each light pair. For
p = 00, we need to preserve the £o norm of every pair, and
so in this case we apply Dvoretsky’s theorem to sketch every
single pair in P.

We split the analysis into two cases: p € [1,00) and p = oco.
In the main text we only present p € [1, c0) and defer the



Algorithm 3 Fast Algorithm for Complex £,-regression

1: Input: A’ € R?"*24 b/ ¢ R??, precision € > 0, p €

[1,00]

2 Set t > Cle/apelyd  _ g-l/e-1 5
i P ={P=(2i+1,2i+2) eR:,Vi €
{0,...,d~1}}

3: if p # oo then

4:  Compute the 4y
{efar - b)), (A
of [A" b/]

5:  Let Py, be the collection of P = (a,b) € P such
that /([A], bl]) > yor{([A} b;]) > ~v. Denote the
collection of all other pairs P;

6:  Rearrange [A’ b’] such that the rows in P}, are on

leverage score
b’ ])} for each row

top
7:  for Each P; € Py, do
8: Sample a Gaussian random matrix G p, € R?*2,

where each entry follows N(0, 02)
9:  for Each ; € P, do
10: Sample Gaussian random matrix Gg, € R1%2,
where each entry follows N(0, o2)

11:  Define a block diagonal matrix G =
diag(Gpl, SPI GPI?h,\ y GQl’ ceay GQW’H)
12:  Output: |GA'y — Gb/||,
13: else
14:  for Each P; € P do
15: Sample Gaussian matrix G p, € R**? with entries
from N(0, §), where s = O (bgﬁ#)
16: Let Rp, € R?** where each row of Rp, is a
vector in {—1,+1}*
17 Let R = diag(R4,...,Rip), G =
diag(Gl, ceey G|7;v|)

18:  Output: |[RGA'y — RGb'||

other case to the appendix.

Case 1: p € [1,00). For light rows:

Let U be an Auerbach basis of A and y = Ux, where
x € R? is arbitrary. Then for any row index i € [n]:

[yl = Uil < [ Uillllxllg < d[Us]l, ]Iyl

. ~Ualy,|
Iyl

where the first step is because the Auerbach basis satisfies
U]l = liyll, = @/, This implies that if [y,| >
vd' 4|y ||, then ||U; ||, > ~. Hence, by definition of -, if
[Uillp < d™ /97", then |y;| < d ™|yl

< Ul

For any light pair P =
gp = (g4,8p) from N(0,02) where 0 =

Since g,V o + Y ~ N(O, ||3’PH%‘72
gyol?] = [[ypl5-

(a,b), we sample two i.i.d. Gaussians

VT
ST ((p 1))
), we have E[|g,y. +

Let P, be the set of all light pairs. We have,

E[Ypep, |(8p, yP)P) =3 pep, lyrlf.

Let random variable Zp = |(gp,yp)|- This is o2y p||3-
sub-Gaussian (the parameter here can be improved by sub-
tracting i3, ).

Define event A to be : maxpep, Zp > O((log(|Py|) +
poly(d))P) = t. Since the Zp variables are sub-Gaussian
and p > 1, we have that (-)? is'monotonically increasing,
so we can use the standard sub-Gaussian bound to get

P(A) < exp (=poly(d)) . ©)
Note that p is a constant, justifying the above derivation.

Also note that Var(Zp) = O(|ly |3
By Bernstein’s inequality, we have:

P(ZZIZ; |ZZ|

). Condition on —A.

>6]E|ZZ§,|>

PcP, PeP; PeP
P< S 2= lyeli|>e Y ||yp||§>
PP, PeP, PeP

62(ZP€'P H}’P”]z))2

( ) (®)
Sexp - 2
Yopep, Iyplls” +et Y pep, lyrlls

“ s <_O <62<zp€p ||yp|2§>2>>
ZPGPL ||YPH2p
<exp (—0O(€?/7)) = exp (O(—€*dlogd))

where the last step follows from the definition of light
pairs. Using that if for all P = (a b) € Pi, |yals ¥ <

O(d")lyllp» then IIYPHS <0@d™)
> llyells? < (9( 0y O(d™?)|yl7? = 0™yl
PeP;

we will have

Ollyll5),

Since ZPe?g HYP”Zz) <
Cpeplyrlis)®

Yrep, Iyrll? o).
Net argument. In the above derivation, we fix a vectory €
R?™. Hence for the above argument to hold for all pairs,
a naive argument will not work since there are an infinite
number of pairs. However, note that each pair lives in a
two-dimensional subspace. Hence, we can take a finer union
bound over O((1 + €)?/€?) items in a two-dimensional /5
space using a net argument. This argument is standard, see,
e.g., [ R , Chapter 2].

Using the net argument, (7) and (8) holds with probability
at least 1 — O(e~?) for all y € R?" simultaneously. In
particular, with probability at least 0.99:

Y Herye)lP =D llyels € (z6) Y lyrllb.

PeP; PeP; PeP
©))



For heavy rows:

Since the ¢, leverage scores sum to d, there can be at
most d/vy = poly(d) heavy rows. For each pair P € Py,
we construct a Gaussian matrix Gp € R*2, where s =
poly(d/e). Applying Dvoretsky’s theorem for £, (

[ ] Theorem 1.2), with probability at least 0.99, for
all 2-dimensional vectors yp, ||Gpyp|l, = (1 £ €)|lypll2.

Hence,
> IGeypllE=1£6() > llypls.  (10)
PePy, PePy,

Combining (9) and (10), we have with probability at least
0.98, for all y € R2™:

IGyIlE = (1= 0(e) D llyrls = 1= 6(e) Iyl 5

PecP

Letting y = Ux — b and taking the 1/p-th root, we obtain
the final claim.

Case 2: p = oo. In this case, we first construct a sketch G

to embed every pair into ¢;. That is, for all P € P, construct
log(1/¢€)

a Gaussian matrix G, € RO(F27)x2, By Dvoretsky’s

theorem, with probability at least 0.99, for all yp € R?, we

have ||Gpypl|l1 = (1 £ ¢€)|lyp||2. Hence

For all y € R?" and any P € P:
max [Gpyplly = max(1+ e)llypllz = llylle,
(11)

However, we do not want to optimize the left hand side
directly.

Recall that by construction G = diag(G1,...,Gp|)is a
block diagonal matrix.
Construct R as in Algorithm 3. By [ ], for all

P € P, Rp is an isometric embedding ¢; — /., i.e., for
allyp € R |[RpGprype = [|Gryp|1-

Combining this with (11), we get that with probability at
least 0.99 for all y € R2™:

IRGYllse = (1£0(e)) [yl 2 -

Letting y = Ux — b, we obtain the final claim.

Running time. For p € [1,00), calculating a well-
conditioned basis takes O(nnz(A) + poly(d/e)) time.
Since G is a block diagonal matrix and A is sparse, comput-
ing GA takes O(nnz(A) + poly(d/e)) time. Calculating
Gb takes n + poly(d/e) time. Minimizing || GAx — Gb||
up to a (1 + €) factor takes O(nnz(A) + poly(d/e)) time.
Using the fact that n < nnz(A), the total running time is
O(nnz(A) + poly(d/e)).

For the case of p = oo, note that R is also a block diagonal
matrix, so RG can be computed by multiplying the corre-
sponding blocks, which amounts to O(2°(*/ 62)nlOgE#)

time. A is sparse and RG is a block matrix so comput-
ing RGA takes another O(2°(/<)nnz(A)) time. Com-
puting RGb takes O(20(1/<) 160/ time, Since n <
nnz(A), in total these take (’)(2@(1/52)nnz(A)) time. This
concludes the proof. O

Remark 3. Definition 4 shows for sketching complex vec-
tors in the £, norm, all one needs is an embedding ly — £y,
In particular, for complex ls-regression, the identity map
is such an embedding with no distortion. Hence, complex
lo-regression can be sketched exactly as for real-valued
ly-regression, while for other complex {,-regression the
transformation is non-trivial.

3.2 NUMERICAL EVALUATION

We evaluate the performance of our proposed embedding
for ¢; and ¢ regression on synthetic data. With A €
C100%30 b e €19, we solve mingecso ||Ax — b|; or
min,eeso ||Ax — bl|. Each entry of A and b is sampled
from a standard normal distribution (the real and imaginary
coefficients are sampled according to this distribution inde-
pendently). Instead of picking the heavy (Pj) and light
(Py) pairs , we construct a ¢t X 2 (or s X 2 if p = 00)
Gaussian matrix for each pair (that is, we treat all pairs
as heavy), as it turns out in the experiments that very small
tor s is sufficient. For /1 complex regression, we test with
t=2,4,6,8,10, 20, and the result is shown in Figure 3(a).
For ¢, complex regression, we test with s = 2,3,4,5,6 as
shown in Figure 3(b). In both figures, the z-axis represents
our choice of ¢ or s, and the y-axis is the approximation
error ||X — x*||2, where X is the minimizer of our sketched
regression problem.

4 SKETCHING
VECTOR-MATRIX-VECTOR QUERIES

The sketches in Section 2 can also be used for vector-matrix-
vector queries, but they are sub-optimal when there are a
lot of cancellations. For example, if we have ATDA =
S d;a;a] where a; = ay = -+ = a,, d =
d2 = - 'dn/Qs and dn/2+1 = dn/2+2 = - = dn, then
ATDA = 0, yet our sampling techniques need their num-
ber of rows to scale with || A T|D|A | r, which can be arbi-
trarily large. In this section, we give a sketching technique
for vector-matrix-vector product queries that scales with
|ATDA/| r instead of || A T|D|A|| r. Therefore, for vector-
matrix-vector product queries, this new technique works
well, even if the matrices are complex. Such queries are
widely used, including standard graph queries and indepen-
dent set queries [ s ].

In particular, we consider a vector-matrix-vector product
query u' Mv, where M = ATB = Dy a;b] has a
tensor product form, a;, b; € C¢, for all i € [n]. One has to
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Figure 3: Approximation error of sketched ¢, regression with complex entries.

either sketch M or compute M first. Then the queries u and
v arrive [ s ]. In reality, this may be due to
the fact that n >> d and one cannot afford to store A and B.
Our approach is interesting when M is non-PSD and A, B
might be complex. This can indeed happen, for example, in
a graph Laplacian with negative weights [ , ].

Algorithm 4 Tensor Sketch For Vector-Matrix-Vector Prod-
ucts
1: Input: {a;}" ;,{b;}7; CC% u,veC?
2: LetS : C? @ C¢ — CF be a TensorSketch [
s ] with k hash buckets.

3: Compute q = Y ;- , S(a; ® b;) € C*.
4: Compute p = S(u® v) € Ck.
5: Output: (p, q)

Theorem 6. With probability at least 0.99, for given in-
put vectors u,v € C% A, B € C"*? Algorithm 4 re-
turns an answer z such that |z — uTATBV| < € in time

Proof. Tt is known that TensorSketches are unbiased, that
is,

E[(S(ATB),S(u® v))] = u' AT Byv,
where S(ATB) = 37" S(a;, b;) follows from the linear-
ity of TensorSketch [ ]. The variance is
bounded by

Var ((S(A BAS(n 0 v))) < O ({IvIBIIZIATBIE).

see, e.2., [ ]. By Chebyshev’s inequality,
2 2 T 2
setting k = O (\IVHzl\uHQJA Blx

2 ) produces an estimate of
u' A "Bv with an additive error e.

Note that computing the sketches S(ATB) takes time
nnz(A) + nnz(B) + nklogk, and computing the inner

product (S(ATB),S(u ® v)) takes only k time. As a com-
parison, computing u' AT Bv naively takes nd? + O(d?)
time, which can be arbitrarily worse than our sketched ver-
sion. Note that it is prohibitive in our setting to compute
u' AT and Bv separately. O

S CONCLUSION

Our work highlights the many places where non-PSD ma-
trices and their “square roots", which are complex matri-
ces, arise in optimization and randomized numerical lin-
ear algebra. We give novel dimensionality reduction meth-
ods for such matrices in optimization, the sketch-and-solve
paradigm, and for vector-matrix-vector queries. These meth-
ods can be used for approximating indefinite Hessian matri-
ces, which constitute a major bottleneck for second-order
optimization. We also propose a hybrid sampling method for
matrices that satisfy a relaxed RIP condition. We verify these
numerically using Newton-CG, trust region, and Newton-
MR algorithms. We also show how to reduce complex £,,-
regression to real £,-regression in a black box way using
random linear embeddings, showing that the many sketch-
ing techniques developed for real matrices can be applied to
complex matrices as well. In addition, we also present how
to efficiently sketch complex matrices for vector-matrix-
vector queries.
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