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Abstract

Adversarial training has shown its ability in produc-
ing models that are robust to perturbations on the
input data, but usually at the expense of a decrease
in the standard accuracy. To mitigate this issue, it
is commonly believed that more training data will
eventually help such adversarially robust models
generalize better on the benign/unperturbed test
data. In this paper, however, we challenge this con-
ventional belief and show that more training data
can hurt the generalization of adversarially robust
models in classification problems. We first inves-
tigate the Gaussian mixture classification with a
linear loss and identify three regimes based on the
strength of the adversary. In the weak adversary
regime, more data improves the generalization of
adversarially robust models. In the medium ad-
versary regime, with more training data, the gen-
eralization loss exhibits a double descent curve,
which implies the existence of an intermediate
stage where more training data hurts the general-
ization. In the strong adversary regime, more data
almost immediately causes the generalization error
to increase. Then we analyze a two-dimensional
classification problem with a 0-1 loss. We prove
that more data always hurts generalization of ad-
versarially trained models with large perturbations.
Empirical studies confirm our theoretical results.

1 INTRODUCTION

In recent years, modern machine learning methods have
exhibited their superiority over traditional models in an
abundance of machine learning tasks, e.g., image classifi-
cation [Krizhevsky et al., 2012], speech recognition and
language translation [Graves et al., 2013, Bahdanau et al.,
2015], medical diagnosis [Lakhani and Sundaram, 2017,

Xiao et al., 2019], text recognition and information extrac-
tion [Long et al., 2020, Mei et al., 2018, Wang et al., 2012],
online fraud detection [Pumsirirat and Yan, 2018], and self-
driving cars [Ramos et al., 2017], among others. However,
they can also be extremely vulnerable to adversarial, human-
imperceptible data modifications [Szegedy et al., 2014,
Carlini and Wagner, 2018, Kos et al., 2018]. This vulnerabil-
ity is even more concerning and dangerous when machine
learning methods are used in scenarios directly connected
to human safety such as medical diagnosis (misinterpret-
ing medical images) or self-driving cars (misreading traffic
signs). To circumvent these issues, practitioners introduce
adversarial training in order to produce adversarially robust
models [Huang et al., 2015, Shaham et al., 2018, Madry
et al., 2018, Zhang et al., 2019a, Gao et al., 2019, Song
et al., 2019] that can still make consistently correct predic-
tions, even when faced with perturbed data.

There is a large body of work dedicated to adversarially
robust models [Zhang and Zhu, 2019, Santurkar et al., 2019,
Zhang et al., 2019b, Diochnos et al., 2019, Wei and Ma,
2019, Zhai et al., 2019]. In particular, it has been shown
that there exists a trade-off between the generalization of a
model (i.e. the standard accuracy) and its robustness to ad-
versarial perturbation [Tsipras et al., 2019]. Along a similar
vein, Schmidt et al. [2018] showed that adversarially robust
models need more training data compared to their standard
counterparts in order to achieve the same generalization
performance. In this paper, we want to further investigate
these ideas and explore whether simply adding more data
is enough for adversarially robust models to catch up to the
generalization ability of their standard counterparts.

Previous works have studied the generalization of adversar-
ially robust models from a variety of perspectives. For in-
stance, Yin et al. [2019], Khim and Loh [2018] and Awasthi
et al. [2020] gave bounds on the generalization error of
adversarially robust models via Rademacher complexity.
Bhagoji et al. [2019] and Pydi and Jog [2020] studied the
problem from the view of optimal transport. More recently,
Chen et al. [2020b] studied the influence of a larger training
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 set upon the gap between the generalization performance of
an adversarially robust model and a standard model. They
proved that more training data could result in expansion
of the gap and denied the belief that more training data
always helps adversarially robust models reach a similar
generalization performance to the standard model. Building
on these works, our goal is to move past bounds and gaps,
and directly characterize how the size of training set affects
the accuracy of adversarially robust models on unperturbed
test data.

1.1 OUR CONTRIBUTIONS

A conventional wisdom in machine learning is that a larger
training set will result in better generalization on the test
data. We provably establish a surprising, and to some ex-
tent even paradoxical, result that more training data can
hurt the generalization of adversarially robust models. We
first consider a linear classification problem with a linear
loss function and identify three regimes of different adver-
sary strengths, i.e., the weak, medium, and strong adversary
regimes. The strength of the adversary here refers to the
magnitude of the perturbation allowed.

• In the strong adversary regime, the generalization
of adversarially robust models deteriorates with more
training data, except for a possible short initial stage
where the generalization is improved with more data.

• The medium adversary regime is probably the most
interesting one among the three regimes. In this regime,
the evolution of the generalization performance of ad-
versarially robust models could be a double descent
curve. In particular, at the initial stage, the generaliza-
tion loss on the test data is reduced with more training
data. At the intermediate stage, however, the gener-
alization loss increases as there is more training data
(more data hurts the generalization of adversarial ro-
bust models). At the final stage, more training data
improves the generalization performance.

• In the weak adversary regime, the generalization is
consistently improved with more training data.

We then move to the analysis of the 0-1 loss and investi-
gate a two-dimensional classification problem where the
candidate decision boundary is given by a piecewise con-
stant function. Similar weak and strong adversary regimes
are observed under this setting. In particular, in the strong
adversary regime, more data always hurts the generalization
of adversarially robust models.

We complement the above theroetical results with empirical
studies on important machine learning models, including
support vector machines (SVMs), linear regression, and
Gaussian mixture classification with 0-1 loss. We observe a
similar phenomenon that more data hurts generalization in

adversarial training. These empirical results suggest that the
observed phenomenon may be ubiquitous across different
models and loss functions and that we need to reflect on the
true role that the size of the training set plays in adversarial
training.

2 RELATED WORK

In this section, we briefly discuss some additional papers
on the generalization of adversarially robust models and the
double descent phenomenon, which are most relevant to our
work.

Schmidt et al. [2018] showed that adversarially robust mod-
els need more training data compared to their standard coun-
terpart. They considered a Gaussian mixture model similar
to ours and proved that the training of a robust model re-
quires a training set with size Ω(d) where d is the dimension
of the data, whereas the standard model only needs a con-
stant number of data points. Xie et al. [2020] practically
showed that adversarial examples sometimes can help stan-
dard generalization under certain cases, and pointed out
that this requires the adversarial examples to be used in a
right manner. Their findings indicate a complicated connec-
tion between the standard accuracy and adversarial training.
Bubeck et al. [2019] studied a binary classification problem
under a statistical query setting and showed that to train
a robust classifier one needs exponentially (in dimension
d) many queries, while only polynomially many to train a
standard classifier. The main difference between their work
and our work is that we quantify the training dynamic in
terms of the size of the training set. Very recently, Javan-
mard et al. [2020] precisely characterized the trade-off of
standard/robust accuracy under the linear regression setting.
Raghunathan et al. [2019] gave empirical evidence that ad-
versarial training could hurt the standard accuracy, despite
its improvement on robustness. The PAC-learning setting
has also been studied by several authors [Cullina et al., 2018,
Diochnos et al., 2019, Montasser et al., 2020]. Cullina et al.
[2018] provided a polynomial (in the VC dimension) up-
per bound for the sample complexity, while Diochnos et al.
[2019] gave a lower bound for the sample complexity which
is exponential in the dimension of the input.

The strength of the adversary is crucial in the adversarial
training. Theoretically, Dohmatob [2019] showed that a clas-
sifier with high standard accuracy can inevitably be fooled
by a strong adversary. Empirically, Papernot et al. [2016]
and Tsipras et al. [2019] found that a strong adversary can
drive down standard accuracy for robust models. Ilyas et al.
[2019] found that the adversarial training tends to learn non-
robust features and omit robust ones if the adversary is too
strong. There has also been some work in mitigating the re-
duction in the standard accuracy. Empirically, it was shown
that if the perturbation is relatively small and does not push
the data across the decision boundary, then the generaliza-



 tion can be improved [Stutz et al., 2019]. Moreover, using
specially chosen adversarial examples to do the adversarial
training can also be helpful [Zhang et al., 2020].

The double/multiple descent phenomenon has been stud-
ied by several authors. Belkin et al. [2019a,b], Mei and
Montanari [2019], Chen et al. [2020a] provably showed the
existence of double/multiple descent curves for the general-
ization error. However, we would like to remark that the dou-
ble/multiple descent curve that they considered is in terms of
the number of parameters (model complexity), while ours
is sample-wise. Empirically, Nakkiran et al. [2019] also
discovered a sample-wise double descent phenomenon.

In a concurrent and independent work, Raghunathan et al.
[2020] performed a finite-sample analysis of the trade-off
between the robustness and the standard accuracy. They
considered using the robust self-training estimator [Carmon
et al., 2019, Najafi et al., 2019] to mitigate the robust error
without sacrificing the standard accuracy. As a comparison,
they studied a linear regression model while our focus is on
classification problems. In their setting, the original training
dataset was augmented with perturbed examples and they
investigated a regime where the optimal predictor has zero
standard and robust error. Our analysis covers the magni-
tude of the perturbation changing from small (i.e. the weak
regime) to large (i.e. the strong regime), demonstrating the
standard test performance of robust classifiers trained under
different regimes.

3 PRELIMINARIES

Throughout this paper, let [n] be a shorthand notation for
{1, 2, . . . , n}. Assume the data point (x, y) consists of the
input variable x and label y, and (x, y) is generated from
some distribution D. Denote the loss function by `(x, y;w)
and the robust classifier is defined as follows Goodfellow
et al. [2015], Madry et al. [2018]:

wrob
n = arg min

w∈Θ

n∑
i=1

max
x̃i∈B∞xi

(ε)
`(x̃i, yi;w) , (1)

where Θ is the parameter space and B∞x (ε) := {x̃ ∈
Rd|‖x̃− x‖∞ ≤ ε} is an `∞ ball centered at x with radius
ε. The radius ε characterizes the strength of the adversary.
A larger ε means a stronger adversary. This robust classifier
minimizes the robust loss, or equivalently, maximizes the
robust reward (i.e., negative loss).

The generalization error of the robust classifier is given by

Ln = E{(xi,yi)}ni=1

[
E(x,y)[`(x, y;wrob

n )]
]
, (2)

where the inner expectation is over the randomness of
the test data point (x, y) ∼ DN and the outer expec-
tation is over the randomness of the training dataset

{(xi, yi)}ni=1
i.i.d.∼ DN . The test and training data are as-

sumed to be independently sampled from the same distri-
bution. The generalization error can be interpreted as the
expected loss of the robust model over standard/unperturbed
test data.

4 THEORETICAL RESULTS

In this section we study two different binary classification
models. In Section 4.1, we analyze the Gaussian mixture
model under linear loss and prove the existence of three pos-
sible regimes (weak, medium and strong adversary regimes),
in which more training data can help, double descend, or
hurt generalization of the adversarially trained model, re-
spectively. In Section 4.2, we construct a model called the
Manhattan model that enables us to analyze the 0-1 loss and
prove that analogous weak and strong adversary regimes
also exist under a different loss function.

4.1 GAUSSIAN MIXTURE WITH LINEAR LOSS

In this subsection, we consider the Gaussian mixture model
with linear loss. More specifically, the distribution for the
data generation is specified by y ∼ Unif({±1}) and x |
y ∼ N (yµ,Σ), where µ(j) ≥ 0 for all j ∈ [d] and Σ =
diag(σ2(1), σ2(2), . . . , σ2(d)). In the remaining parts we
denote this distribution by (x, y) ∼ DN . We consider the
linear loss `(x, y;w) = −y〈w, x〉 and we set the constraint
set as w ∈ Θ = {w ∈ Rd|‖w‖∞ ≤ W} where W is a
positive constant, similar to [Chen et al., 2020b, Yin et al.,
2019, Khim and Loh, 2018]. In this setting, by (1) the robust
classifier is

wrob
n = arg min

‖w‖∞≤W

n∑
i=1

max
x̃i∈B∞xi

(ε)
(−yi〈w, x̃i〉)

= arg max
‖w‖∞≤W

n∑
i=1

min
x̃i∈B∞xi

(ε)
yi〈w, x̃i〉 .

(3)

We study how the generalization error of the robust model
evolves as the size of the training dataset changes, i.e., the
dependence of Ln on n. By (2) the generalization error of
the robust classifier under linear loss is given by

Ln = E
{(xi,yi)}ni=1

i.i.d.∼DN

[
E(x,y)∼DN [−y〈wrob

n , x〉]
]
. (4)

For the Gaussian classification problem under the linear loss,
we identify that the behavior of Ln exhibits a phase transi-
tion which is determined by the strength of the adversary.
Our main result is summarized by Theorem 1.

Theorem 1 (Proof in Section 1 of the supplementary mate-
rial). Given n i.i.d. training data points (xi, yi) ∼ DN , if
the robust classifier is defined by (3) and its generalization
error is defined by (4), then there exist 0 < δ1 < δ2 < 1,
such that
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(c) Strong adversary

Figure 1: This cartoon illustrates the three adversary regimes (i.e., weak, medium, and strong) and the corresponding results
of Theorem 1. In the weak adversary regime, more training data always improves generalization. The medium adversary
regime exhibits a double descent curve. When the size of training set n ≤ N1 (the initial stage), more training data improves
the generalization; when N2 < n < N3 (the intermediate stage), generalization is hurt by more data; when n ≥ N4, more
data helps with generalization again. In the strong regime, generalization deteriorates with more data when the size of
training size is sufficiently large.

(a) Weak adversary (b) Medium adversary (c) Strong adversary

Figure 2: The test loss versus the size of the training dataset under the linear loss and the one-dimensional (d = 1) Gaussian
data generation model described in Section 4.1. The parameters of the Gaussian data model are set as follows: µ0 = 1 and
σ0 = 2. In each plot, the solid curves correspond to robust models and the dashed curve corresponds to the standard model.

(a) If 0 < ε < δ1 ·minj∈[d] µ(j), then Ln < Ln−1 for all
n. That is, the loss Ln monotonically decreases as the
number of training points n increases.

(b) If δ2 · maxj∈[d] µ(j) < ε < minj∈[d] µ(j), and we
further assume that µ(j)

σ(j) is the same for all j, then
there exist N1 < N2 < N3 < N4 such that

Ln


< Ln−1 for 0 < n ≤ N1 ,

> Ln−1 for N2 < n < N3 ,

< Ln−1 for N4 ≤ n .

(c) If maxj∈[d] µ(j) ≤ ε, then there exists N5 such that
Ln > Ln−1 for all n > N5.

Remark 1. In part (b), we assume that µ(j)/σ(j) is the
same for all j. This assumption is only for the convenience
of the proof. In general, the medium regime (i.e., double
descent) still exists if the assumption is relaxed. Indeed,
Lemma 3 in the appendix shows that the generalization
curve Ln can be decomposed as a weighted sum of losses
L(vj , ε

′
j) over all dimensions j ∈ [d]. Therefore, if we

have different ratios µ(j)/σ(j) for each j, then the curves
L(vj , ε

′
j) will have different thresholds N2 and N3 for each

j. When the d curves are added together, there will be an
increasing stage in the intersection of the increasing stages
of the majority of curves.

Theorem 1 proves the existence of three possible regimes
during the commonly used adversarial training procedure
and gives conditions for when the phase transition between
these regimes will take place. Part (a) identifies the weak
regime, showing that when the strength of the adversary ε
is small compared to the signal µ, the generalization error
decreases as the size of the training dataset increases. In this
regime, the generalization benefits from the use of a large
training set. This regime is illustrated by Fig. 1a, where the
curve is always decreasing.

However, as the adversary becomes stronger, we reach the
medium regime and things change. Part (b) proves the exis-
tence of a double descent curve for the generalization error.
It shows that when ε becomes larger and approaches the
signal in magnitude, the generalization error will first de-



 crease as more training data is used. Surprisingly, once it
reaches a certain point, it will start increasing as we feed
more data. This increasing stage continues until the dataset
size reaches some threshold N2 and then the error will de-
crease again. The medium adversary regime is illustrated
by Fig. 1b, where the three stages are marked by three dif-
ferent colored areas. We would like to provide high-level
intuition for this regime. On one hand, a larger training
dataset provides the adversary with more data to corrupt
(which is bad). On the other hand, with more data, the em-
pirical risk approximates the population risk better (which
is good). Small perturbation magnifies its positive influence
while large perturbation magnifies the negative influence.
Medium perturbation makes both influences comparable.
The medium regime happens when the negative influence
prevails over the positive one at a temporary intermediate
stage.

If the adversary’s strength reaches the signal level or be-
comes even stronger, then for all sufficiently large n, the
generalization error monotonically increases as the size of
training set increases. This strong regime is described in
part (c) of Theorem 1 and illustrated by Fig. 1c. Note that
despite the decreasing stage near the very beginning, the
loss keeps going up after the threshold N5.

Based on our findings, we believe the signal-to-perturbation
ratio is the key to the non-monotonicity. We hypothesize that
there is a trade-off between the data size and the adversary’s
power to perturb the data. Specifically, given more data, the
model tends to learn better. However, this also means the
adversary can have more data to manipulate with. Therefore,
when the ratio is large, the learner wins. When the ratio is
low, the adversary has the advantage.

We would like to remark that the part for the strong regime is
added mainly for the purpose of completeness of the results.
It should be mentioned that the magnitude of adversarial
perturbation usually does not exceed the signal level in
practice. We also remark that although our theoretical results
prove such non-monotonicity of the standard error versus the
sample size in the medium and strong regime (i.e., when the
perturbation is no longer negligible compared to the signal),
in practice, similar phenomena have been observed in very
realistic settings such as MNIST under quite appropriate
perturbation level (see, for example, figure 1(a) in [Tsipras
et al., 2019] and figure 1 in [Raghunathan et al., 2020]).

Furthermore, we see that in the medium regime, the length
of the increasing stage is given by N3 −N2, according to
part (b) of Theorem 1. We would like to remark that the
model can have an arbitrarily long increasing stage, which
depends on the adversary’s strength. To better interpret this
idea and the meaning behind Theorem 1, we consider the
following special case where µ(j) = µ0 and σ(j) = σ0 for
all j ∈ [d]. In this special case, it can be shown that in the
medium regime, as ε approaches the signal strength µ0, the

increasing stage grows and can be arbitrarily long.

Corollary 2 (Proof in Section 1). Under the same assump-
tion as Theorem 1 and further assuming that µ(j) = µ0 and
σ(j) = σ0 for all j ∈ [d], we have

(a) If 0 < ε < δ1µ0, then Ln < Ln−1 for all n.
(b) If δ2µ0 < ε < µ0, then there exist N1(ε) < N2(ε)

such that

Ln


< Ln−1 for 0 < n ≤ N1 ,

> Ln−1 for N1 < n < N2 ,

< Ln−1 for N2 ≤ n ,

and limε→µ−0
N2(ε)−N1(ε) = +∞.

(c) If µ0 ≤ ε, then there exists N3(ε) such that Ln >
Ln−1 for all n > N3.

Part (a) and (c) of Corollary 2 are a re-statement of corre-
sponding parts of Theorem 1 in the simplified setting. Part
(b) additionally states that as ε increases towards µ0, the
length of the increasing stage goes to infinity. In this setting,
the three regimes are marked by the thresholds δ1µ0, δ2µ0

and µ0.

Fig. 2 illustrates the behavior of the generalization error in
this simplified setting. In the simulation we set the param-
eters as d = 1, µ0 = 1 and σ0 = 2 (for all three plots).
Fig. 2a shows the weak adversary regime. We see that the
generalization error maintains a decreasing trend when ε
is as large as half the signal strength. In Fig. 2b, it is clear
that the generalization error has a double descent curve. At
first there is a decreasing stage, which is followed by an
increasing stage. Also observe that as ε becomes larger, the
error increases faster during the increasing stage. The error
will finally start decreasing as the size of training dataset
reaches the second decreasing stage. On the contrary, in the
strong adversary regime, the increasing stage lasts forever
and the error keeps increasing no matter how much data is
provided, as illustrated by Fig. 2c.

4.2 MANHATTAN MODEL

In general, the 0-1 loss is mathematically intractable for
most data models and computationally prohibitive to opti-
mize in practice. With this in mind, we introduce a concep-
tual classification model that we call the Manhattan model.
Note that this model is highly simplified and thus unlikely to
be suitable for modeling real-world problems. Instead, the
purpose of the Manhattan model is to allow a mathematical
study of the 0-1 loss, and thus provide a springboard for the
study of 0-1 loss in more complicated models.

We start by describing the data distribution. Assume we
have data points (x, y) ∈ R2 × {±1}, where the support of
x is given as x = (s, t) ∈ {(i, yµ) : i ∈ [N ], y ∈ {±1}},
where 0 < µ < 1/4. In other words, every data point (x, y)



 

Figure 3: An illustration of the Manhattan model. The data
is in the R2 plane and the support is 2N points on opposite
sides of the axis. The distance between any point and the
axis is µ, and the shaded square denotes the ε perturbation.
The red curve shows a possible classifier.

consists of a positive or negative label y and a point on the
2-D plane x = (s, t) where s is an integer between 1 and N
and t is either µ or −µ depending on whether the label y is
+1 or −1. Thus, the support consists of exactly 2N points
with half in the positive class and half in the negative class.
The data is uniformly sampled from these 2N points and
this distribution is denoted by D2N .

Next, we consider a conceptual classifier of the form of a
step function over the 2-D (s, t)-plane. That is, a classifier
is defined by a function t = f(s) such that f ∈ F where

F = {f :f(s) =

M∑
j=1

αj1[s ∈ Ij ], M ∈ N, αj ∈ R,

Ij ⊆ R are intervals}.

A point x = (s, t) is classified +1 if t > f(s) and −1 if
t < f(s). If t = f(s), then x is classified as either +1 or
−1 uniformly at random. Fig. 3 illustrates the support of the
data distribution, as well as a possible classifier f(s).

Since we consider the 0-1 loss, one can note that for this
data model, there can be infinitely many classifiers. For
example, f(s) = c can attain 100% standard accuracy for all
c ∈ (−µ, µ). Therefore, we add an infinitesimal `1 penalty
to the 0-1 loss for the purpose of tie-break, i.e., making
the minimizer unique. This penalized 0-1 loss of a classifier
f(·) can then be written asH (−y(t− f(s)))+λ‖f‖1 with
λ → 0. For a given training set {(xi, yi) : i ∈ [n]}, We
define the robust classifier over this training set as

f rob
n ∈ lim

λ→0+
S(λ) , (5)

where S(λ) is defined by

arg min
f∈F

n∑
i=1

max
‖x̃i−xi‖∞<ε

H
(
−yi(t̃i − f(s̃i))

)
+ λ‖f‖1,

and
H(s) = 1[s > 0] +

1

2
1[s = 0]

is the Heaviside step function.

Note that the RHS of Eq. (5) is the limit of a sequence of sets.
This slight abuse of notation is justified by the following
Lemma 3, which shows for all sufficiently small λ, the set
S(λ) remains fixed. We define the set of candidate classifiers
without the penalty as

S = arg min
f∈F

n∑
i=1

max
‖x̃i−xi‖∞<ε

H
(
−yi(t̃i − f(s̃i))

)
,

and we have the following lemma.

Lemma 3 (Proof in Section 2 of the supplementary mate-
rial). For all sufficiently small λ > 0 and for any ε < 1/2,
the set S(λ) defined by Eq. (5) is equivalent to the following
set which is nonempty

S2 = S ∩ arg min
f∈S

‖f‖1. (6)

Lemma 3 shows that by picking a small enough λ, the
minimizers with `1 penalty actually coincide with the mini-
mizers under 0-1 loss with the smallest `1 norm. Therefore,
limλ→0+ S(λ) = S2 and we can write f rob ∈ S2 as an
equivalent definition of the robust classifier to Eq. (5).

The generalization error of f rob
n is then given by

Ln = E{(xi,yi)}ni=1

[
E(x,y)H

(
−y
(
t− f rob

n (s)
))]

, (7)

where the inner expectation is taken over the test data point
(x, y) ∼ D2N , and the outer expectation is taken over the
training data {(xi, yi)}ni=1

i.i.d.∼ D2N . Note that here we can
get rid of the `1 term due to Lemma 3. Theorem 4 shows that
the generalization error can be zero for all n when ε < 2µ
and can increase with n as ε > 2µ.

Theorem 4 (Proof in Section 3 of the supplementary ma-
terial). Assume the training data (xi, yi) ∼ D2N where
i ∈ [n]. For the robust classifier defined by (5) and its gen-
eralization error defined by (7), we have

(a) If 0 < ε < 2µ, then Ln = 0 for all n.
(b) If 2µ < ε ≤ 1/2, then Ln+1 > Ln for all n ≥ 1.

Again, the purpose of the Manhattan model is not to model
any real-world problems, but instead to show that adversarial
training under a 0-1 loss can also be characterized with
weak/strong regimes. More generally, we have now shown
that the existence of weak/strong regimes is not solely an
artifact of the linear loss used in Section 4.1, and thus that it
may not be surprising to see analogous results for a much
broader class of loss functions.

5 EMPIRICAL RESULTS

In this section, we empirically study the generalization error
of robust models in three settings.



 

(a) Agnostic tiebreak (b) Optimal tiebreak (c) SVM (small ε) (d) SVM (large ε)

Figure 4: Figs. 4a and 4b present the test loss vs. the size of the training dataset for Gaussian mixture in the 0-1 loss setting
described in Section 5.1. Figs. 4c and 4d illustrate the test loss vs. the size of the training dataset for the support vector
machine model described in Section 5.2.

(a) Gaussian, small ε (b) Gaussian, large ε (c) Poisson, small ε (d) Poisson, large ε

Figure 5: The test loss versus the size of the training dataset under 1-dim linear regression model with the squared loss. The
data generation follows either a Gaussian or Poisson distribution: in Fig. 5a and Fig. 5b, x ∼ N (0, 1); in Fig. 5c and Fig. 5d,
x ∼ Poisson(5) + 1. The solid curves correspond to robust models and the dashed curve corresponds to the standard model.
Here L̃n = (Ln − Ee2)/Ex2 is the scaled test loss.

5.1 GAUSSIAN MIXTURE WITH 0-1 LOSS

We consider the 1-dimensional Gaussian mixture model
with 0-1 loss. The data generation is the same as in Sec-
tion 4.1 with d = 1. Here we set Θ = R and the clas-
sifier is represented by a real number w ∈ R. That is, a
point is classified as positive or negative depending on
whether x is greater than or less than w. If x = w, it is
uniformly randomly classified as positive or negative. Given
a data point (x, y), the 0-1 loss of classifier w is given by
`(x, y;w) = 1[y(x− w) < 0].

We remark that under this setting, the robust classifier is
not unique and the set of classifiers is an interval. As a
consequence, in order to select a classifier, we need to
use some tiebreaking methods. To see this, let the train-
ing dataset be {(xi, yi)}ni=1 and we define the neuralized
dataset {(x′i, yi)}ni=1 that satisfies x′i = xi − yiε for all
i ∈ [n]. In other words, for a positive sample (xi, yi = 1),
we obtain its neutralized sample by shifting xi to the nega-
tive direction by ε, i.e., x′i = xi − ε; for a negative sample
(xi, yi = −1), its neutralized sample is obtained by shifting
xi to the positive direction by ε, i.e., x′i = xi + ε. With
this definition, the robust classifier can be expressed as the
following.

Proposition 5 (Proof in Section 4.1 of the supplementary
material). Given the training dataset {(xi, yi)}ni=1 and the
neuralized dataset {(x′i, yi)}ni=1, the robust classifier is

given by

wrob
n ∈ arg min

w∈R

n∑
i=1

yi1[x′i < w] . (8)

Now one can see the tiebreaking issue in light of Proposi-
tion 5. To see this, let s be the permutation of [n] such that
x′s(1) ≤ x′s(2) ≤ · · · ≤ x′s(n). The n points divide the real
line into n + 1 intervals: (−∞, x′s(1)], (x′s(i), x

′
s(i+1)] for

1 ≤ i ≤ n − 1, and (x′s(n),∞). Let w∗ be a minimizer of
(8). If w∗ lies in any of the above n+ 1 intervals, then any
other point in the same interval is also a minimizer, since at
these two points the objective function has the same value.
Therefore, a tiebreaking procedure is required here.

Thus to select a classifier, we consider two tiebreaking meth-
ods. One is the agnostic tiebreak, which means the classifier
is chosen uniformly at random from the interval. The other
is the optimal tiebreak in hindsight, referring to picking the
classifier from the interval with the smallest expected test
loss.

For the agnostic tiebreak, ifw∗ ∈ (x′s(i), x
′
s(i+1)], it chooses

wrob
n uniformly at random from the interval. If w∗ > x′s(n),

it chooses wrob
n arbitrarily close to x′s(n) from above. If

w∗ ≤ x′s(1), it chooses wrob
n = x′s(1).

For the optimal tiebreak in hindsight, we first note that the



 test loss of a classifier w is given by

E(x,y)∼DN [1[y(x− w) < 0]]

=
1

2
+

1

2

(
Φ

(
w − µ
σ

)
− Φ

(
w + µ

σ

))
,

(9)

where Φ is the CDF of the standard normal distribution.
In Section 4.2, we explain that the optimal classifier in
hindsight is the one that is closest to 0 among the interval
of classifiers.

Fig. 4a and Fig. 4b illustrate the test loss versus the size
of the training dataset under the agnostic tiebreak and the
optimal tiebreak in hindsight. We set µ = σ = 1 and use
the same set of values for ε for both tiebreaking methods.
We have three observations. First, the generalization error is
increasing in nwhen ε is larger than the signal strength. This
confirms the existence of the strong adversary regime under
the 0-1 loss. Second, for small enough ε (e.g. ε ≤ 0.5), the
generalization error is decreasing in n (more precisely after
n = 3), thus also confirming a weak adversary regime. For
the medium adversary where ε is in between 0.7 and 1.0,
the curve has an increasing stage followed by a decreasing
stage, which is very similar to what we see in Fig. 2b.

5.2 SUPPORT VECTOR MACHINE

We study the soft-margin support vector machine with hinge
loss. The dimension d equals 2 and the data is generated as
y ∼ Unif({±1}) and X ∼ N (yµ, I) where µ = (1, 1)>.
We consider the common setting of hinge loss with `2
penalty, under which the robust classifier is defined by

wrob
n ∈ arg min

w

(
1

n

n∑
i=1

`i(w)

)
+

1

2
λ‖w‖22 , (10)

where

`i(w) := max
‖x′i−xi‖∞≤ε

max {0, 1− yi (〈w, x′i〉 − b)} .

The results are shown in Fig. 4c and Fig. 4d. The standard
test loss (the y-axis in Fig. 4c and Fig. 4d) of the robust
classifier is given by

E(x,y) max {0, 1− y (〈w, x〉 − b)} ,

where the penalty term is not included. The robust classifier
wrob
n is solved for by optimizing (10) which is convex in w

using gradient descent.

We find that for small ε the standard test loss keeps decreas-
ing, while for large ε it keeps increasing. The curves reveal
a transition from the weak to the strong regime as ε grows,
and such transition occurs when ε is in between 0.5 and 0.7.
Note that at ε = 0.7, the test loss increases even though the
strength of the adversary is still weaker than the signal level.
This may indicate that for more complicated models (such
as SVMs), even relatively weaker adversaries can result in
situations where more data always increases the test loss.

5.3 LINEAR REGRESSION

Besides classification problems, we also identify similar phe-
nomenon in one-dimensional linear regression y = w∗x+ e
where e ∼ N (0, 1) with squared loss `(x, y;w) = (y −
wx)2. Fig. 5 shows experimental results for linear regres-
sion. Given the coefficient w trained on n data points, the
test loss is

Ln = Ex,y[(y − wx)2] = Ex,e[(w∗x+ e− wx)2]

= E((w∗ − w)x)2 + Ee2 = (w − w∗)2Ex2 + Ee2.

Therefore, in Fig. 5, we report the scaled test loss given by

L̃n =
(Ln − Ee2)

Ex2
= (w − w∗)2.

We use two different distributions for x: the Gaussian
distribution N (0, 1) and the shifted Poisson distribution
Poisson(5) + 1. We add 1 to the outcome of Poisson(5)
in order to guarantee a nonzero x. In both Gaussian and
Poisson cases, we observe weak and strong regimes. When
the perturbation strength ε is less than a threshold, it falls
into the weak regime where the (scaled) test loss is reduced
with more training data. When ε exceeds the threshold, it ex-
hibits the strong regime where more data hurts the (scaled)
test loss. However, the threshold is remarkably different
for these two distributions. The threshold for N (0, 1) is be-
tween 0.6 and 0.8, while it resides between 4.0 and 7.0 for
Poisson(5) + 1. This observation suggests that the Poisson
data distribution appears to be more robust to adversarial
perturbation. A possible explanation could be that the dis-
tribution Poisson(5) + 1 is supported on positive integers
so the minimum distance between data points is 1, while
there is no such minimum distance for data points follow-
ing N (0, 1) and it becomes increasingly crowded as we
have more data. As a result, adversarial perturbation has a
stronger influence on Gaussian data.

6 CONCLUSION

The goal of adversarial training is to produce robust models
that provide protection against attacks that make perturba-
tions to the data at test time. While protection against such
attacks is undoubtedly important, we still want our robust
models to perform well on unperturbed data. However, our
theoretical work shows the existence of scenarios in which
current robust models do not achieve the desired low gen-
eralization error on both datasets simultaneously. This is a
theoretical evidence of the gap between the standard accu-
racy of standard and robust models. Our findings suggest
that the current adversarial training framework may not be
ideal and that new ideas may be required to develop models
that can reliably perform well on both perturbed and un-
perturbed test sets. It would also be interesting to develop
theoretical results for the sample-wise non-monotonicity of
more complicated models such as the neural nets.
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