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Abstract

Reinforcement learning policies based on deep
neural networks are vulnerable to imperceptible
adversarial perturbations to their inputs, in much
the same way as neural network image classifiers.
Recent work has proposed several methods to im-
prove the robustness of deep reinforcement learn-
ing agents to adversarial perturbations based on
training in the presence of these imperceptible per-
turbations (i.e. adversarial training). In this paper,
we study the effects of adversarial training on the
neural policy learned by the agent. In particular,
we follow two distinct parallel approaches to inves-
tigate the outcomes of adversarial training on deep
neural policies based on worst-case distributional
shift and feature sensitivity. For the first approach,
we compare the Fourier spectrum of minimal per-
turbations computed for both adversarially trained
and vanilla trained neural policies. Via experiments
in the OpenAI Atari environments we show that
minimal perturbations computed for adversarially
trained policies are more focused on lower fre-
quencies in the Fourier domain, indicating a higher
sensitivity of these policies to low frequency per-
turbations. For the second approach, we propose a
novel method to measure the feature sensitivities of
deep neural policies and we compare these feature
sensitivity differences in state-of-the-art adversari-
ally trained deep neural policies and vanilla trained
deep neural policies. We believe our results can
be an initial step towards understanding the rela-
tionship between adversarial training and different
notions of robustness for neural policies.

1 INTRODUCTION

Deep neural networks (DNNs) have led to notable progress
across many areas of machine learning research and appli-
cations including computer vision Krizhevsky et al. [2012],
natural language processing Sutskever et al. [2014], and
speech recognition Hannun et al. [2014]. More recently
deep neural networks (DNNs) have been employed in deep
reinforcement learning by Mnih et al. [2015] to approximate
the state-action value function for large action size or state
size MDPs. With this initial success deep reinforcement
learning became an emerging subfield with many applica-
tions such as robotics Kalashnikov et al. [2018], financial
trading Noonan [2017] and medical Daochang and Jiang
[2018], Huan-Hsin et al. [2017].

While the success of DNNs grew, a line of research focused
on their reliability and robustness. Initially, Szegedy et al.
[2014] demonstrated that it is possible to fool image clas-
sifiers by adding visually imperceptible perturbations to
neural network inputs. Follow up work by Goodfellow et al.
[2015] showed that these perturbations demonstrate that
deep neural networks are learning linear functions. Several
studies focused on overcoming this susceptibility towards
specifically crafted visually imperceptible perturbations, and
proposed training neural networks to be robust to these
worst-case perturbations Madry et al. [2018]. However, ad-
versarial training also has drawbacks: adversarially trained
classifiers tend to have lower accuracy on standard inputs,
and may be less robust to other types of distribution shift
beyond worst-case `p-norm bounded perturbations Zhang
et al. [2019]. While there is a significant amount of study
focusing on adversarial training several works suggest that
the existense of adversarial perturbations may be inevitable
Dohmatob [2019], Mahloujifar et al. [2019], Gourdeau et al.
[2019].

In this paper we focus on searching for answers to the fol-
lowing questions: (i) What are the sensitivity differences
between state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies at a high
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 level? (ii) Does adversarial training move the sensitivities
to worst-case `p-norm bounded distributional shift towards
different directions in the input for deep neural policies?
(iii) Does adversarial training create a new set of non-robust
features while eliminating the existing ones? Therefore, in
this paper we focus on examining the affects of adversarial
training on neural policies in deep reinforcement learning
and make the following contributions:

• We investigate the properties of adversarially trained
neural policies via two different perspectives. The first
is based on the response of adversarially trained poli-
cies to worst-case perturbations, and the second is
based on probing adversarially trained policies via their
sensitivity to features.

• For the worst-case perspective, we compare the fre-
quency domain of the perturbations produced by Car-
lini and Wagner [2017] for adversarially trained models
and vanilla trained models.

• We show that the perturbations produced from adver-
sarially trained models are suppressed in high frequen-
cies and more concentrated in lower frequencies in
the Fourier domain compared to vanilla trained neural
policies.

• For the sensitivity perspective, we propose a novel algo-
rithm to detect feature based vulnerabilities of trained
deep neural policies.

• We show that adversarially trained policies have a dis-
tinctive sensitivity pattern compared to vanilla trained
deep neural policies. Furthermore, we demonstrate that
while adversarially training removes the sensitivity of
the neural policies towards some non-robust features, it
also creates sensitivity towards a new set of non-robust
features.

2 BACKGROUND

2.1 PRELIMINARIES

In this paper we focus on deep reinforcement learning for
Markov decision processes (MDPs) given by a set of con-
tinuous states S, a set of discrete actions A, a transition
probability distribution P on S×A×S, and a reward func-
tion r : S ×A→ R. A policy π : S → P(A) for an MDP
assigns a probability distribution on actions to each s ∈ S.
The goal for the reinforcement learning agent is to learn a
policy π that maximizes the expected cumulative discounted
reward R = E

∑T−1
t=0 γtr(st, at) where at ∼ π(st). In Q-

learning the learned policy is parametrized by a state-action
value function Q : S ×A→ R, which represents the value
of taking action a in state s. Let a∗(s) = argmaxaQ(s, a)
denote the highest Q-value for an action in state s. The ε-
greedy policy of the agent for Q-learning is given by taking

action a∗(s) with probability 1− ε, and a uniformly random
action with probability ε.

2.2 ADVERSARIAL EXAMPLES

Manipulating the output of neural networks by adding im-
perceptible perturbations was introduced by Szegedy et al.
[2014] based on a box constrained optimization method.
While this proposed method was computationally expen-
sive, Goodfellow et al. [2015] proposed a faster and simpler
method based on gradients in a nearby ε-ball,

xadv = x+ ε · ∇xJ(x, y)
||∇xJ(x, y)||p

, (1)

where x represents the input, y represents the labels, and
J(x, y) represents the cost function used to train the net-
work. Kurakin et al. [2016] further proposed an iterative
search method inside this ε-ball using the fast gradient sign
method (FGSM) proposed by Goodfellow et al. [2015].

x0adv = x, (2)

xN+1
adv = clipε(x

N
adv + αsign(∇xJ(xNadv, y))) (3)

This method is also known as projected gradient descent
(PGD) as in Madry et al. [2018]. Carlini and Wagner [2017]
formulated the problem of producing adversarial perturba-
tions in a more targeted way and proposed a method based
on distance minimization for a given label in image classifi-
cation. For deep reinforcement learning this formulation is
based on distance minimization for a given a target action
which is not equal to the best action decided by the trained
policy,

min
sadv∈Dε,p(s)

‖sadv − s‖p

subject to argmax
a

Q(s, a) 6= argmax
a

Q(sadv, a),

Note that Q(s, a) denotes the state-action value function
of the deep neural policy. Athalye et al. [2018] showed
that the Carlini and Wagner [2017] adversarial formulation
can break several proposed defenses. For this reason, in
this paper we will focus on perturbations produced by the
Carlini and Wagner [2017] formulation.

2.3 PERTURBATION FORMULATIONS AND
ADVERSARIAL TRAINING

Initially adversarial examples were introduced in the deep
reinforcement learning domain by Huang et al. [2017] and
Kos and Song [2017] concurrently by utilizing FGSM as
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Figure 1: Fourier spectrum of the perturbations computed via Carlini and Wagner [2017] for state-of-the-art adversarially
trained models and vanilla trained models. First Row: Adversarially trained. Second Row: Vanilla trained.

proposed by Goodfellow et al. [2015]. Several studies have
been conducted to make deep reinforcement learning poli-
cies more robust to such specifically crafted malicious ex-
amples. Mandlekar et al. [2017] use adversarial examples
produced by FGSM in the training data to regularize the pol-
icy in an attempt to increase robustness. Pinto et al. [2017]
model the interaction between the perturbation maker and
the agent as zero-sum Markov game and proposes a joint
training algorithm to improve robustness against an adver-
sary which aims to minimize the expected cumulative re-
ward of the agent. Gleave et al. [2020] model the relation-
ship between the adversary and the agent as zero-sum game
where the adversary is limited to taking natural actions in
the environment rather than minimal `p-norm bounded per-
turbations, and proposes an approach based on self-play to
gain robustness against such an adversary. Quite recently
Zhang et al. [2020] proposed a modified MDP called state-
adversarial MDP with the aim of obtaining theoretically
principled robust polices towards natural measurement er-
rors and `p-norm worst case perturbations.

3 INVESTIGATING VULNERABILITIES

In this paper we aim to seek answers for several questions:

• What are the susceptibility differences between state-
of-the-art adversarially trained deep neural policies and
vanilla trained deep neural policies?

• Do the sensitivities of deep neural policies shifts from
worst-case `p-norm bounded perturbations towards dif-

ferent directions in the input with adversarial training?

• Does adversarial training create a new set of non-robust
features while eliminating the existing ones?

In our experiments we use OpenAI Brockman et al. [2016]
Atari baselines Bellemare et al. [2013]. Our models are
trained with DDQN Wang et al. [2016] and SA-DDQN
Zhang et al. [2020]. We test trained policies averaged over
10 episodes. Note that SA-DDQN is certified against `∞-
norm bounded at 1/255. Therefore, we also bound the per-
turbation by this threshold and find the perturbations with
`∞-norm lower than this value.

4 NEURAL POLICY PERTURBATIONS
IN THE FOURIER DOMAIN

For the adversarially trained agents, we focus on the state-
of-the-art adversarial training algorithm SA-DQN proposed
by Zhang et al. [2020]. In this study the authors model the
interaction between the neural policy and the introduced per-
turbations as a state-adversarial modified Markov Decision
Process (MDP). The authors claim that the agents trained in
SA-MDP with the proposed algorithm SA-DQN are more
robust to adversarial perturbations and natural noise intro-
duced to the agent’s perception system. Furthermore, the
authors demonstrate the robustness of SA-DQN against per-
turbations produced by the PGD attack proposed by Madry
et al. [2018].

In this section we conduct an investigation on the frequency



 

Figure 2: Power spectrum of the perturbations computed via Carlini and Wagner [2017] for adversarially trained models and
vanilla trained models in Fourier domain for RoadRunner, BankHeist and Freeway.

domain of the perturbations computed from vanilla trained
agents and adversarially trained agents. In particular, we
compute a minimum length perturbation via Carlini and
Wagner [2017] which causes the agent to change its optimal
learned action. We found that the certified defence proposed
by Zhang et al. [2020] can be overcome via Carlini and
Wagner [2017] for the certified bound given in Zhang et al.
[2020]. For these minimal perturbations we compute the
Fourier transform of the perturbation and record this data.
By comparing the results of this experiment for adversarially
trained versus vanilla trained agents, we can understand the
affects of adversarial training on the directions to which the
neural policy is sensitive. We now describe the details of the
experimental setup.

In more detail, we ensure that the perturbations η = sadv−s
produced by Carlini and Wagner [2017] satisfies two require-
ments:

• The optimal action in state s changes i.e. a∗(s) 6=
a∗(sadv).

• The perturbation is bounded by the certified defense
level proposed by Zhang et al. [2020] ‖η‖∞ < 1

255 .

In Figure 1 we visualize the Fourier transform of a mini-
mal perturbation for both vanilla trained and adversarially
trained agents in RoadRunner, BankHeist, and Freeway.
The center of each image corresponds to the Fourier ba-
sis function where both spatial frequencies are zero, and
the magnitude of the spatial frequencies increases as one
moves outward from the center. There is a distinctive differ-
ence between vanilla and adversarially trained agents in the
qualitative appearance of Fourier transforms of the minimal
pertubations. Further, from these visualizations it is clear
that the perturbations for the adversarially trained models
generally have their Fourier transform concentrated at lower
frequencies than those of the vanilla trained models.

To make this claim formal, for each number f we compute
the total energy E(f) of the Fourier transform for basis
functions whose maximum spatial frequency is equal to f .
In Figure 2 we plot the average of E(f) over the minimal
perturbations computed in our experiments. We find that the

minimal perturbations computed for adversarially trained
neural policies are indeed shifted towards lower frequencies
when compared to those for vanilla trained neural policies.
This shift in the frequency domain of the computed perturba-
tions implies that adversarially trained neural policies may
be more sensitive towards low frequency perturbations.

5 VISUALIZING NEURAL POLICY
VULNERABILITIES

In this section we propose two different methods to visu-
alize vulnerabilities of deep neural policies to their input
observations. First, we describe our proposed method of
feature vulnerability mapping KMAP in detail. To be able to
visualize weaknesses we record the drop in the state-action
value Q(s, a) caused by setting each pixel in s to zero one
at a time. In particular, let Zi,j : S → S be the function
which sets the i, j coordinate of s to zero and leaves the
other coordinates unchanged. We define,

K(i, j) = Q(s, a∗)−Q(s, argmax
a

Q(Zi,j(s), a)). (4)

Note that the difference in Equation 4 represents the drop
in the Q-value in state s, when taking the optimal action
for the state Zi,j(s). Therefore, K(i, j) aims to measure
the drop in the Q-values of the neural policy with respect
to individual pixel changes. In other words, K(i, j) is a
mapping of features to an importance metric determined by
the deep neural policy. We describe our proposed KMAP
method in detail in Algorithm 1.

As a natural point of comparison we propose another al-
gorithm HMAP to visualize input based vulnerabilities. In
particular, HMAP is based on measuring the effect of each
individual pixel on the decision of the deep neural policy
by measuring the cross-entropy loss between π(s, a) and
π(Zi,j(s), a).

H(i, j) = −
∑
a∈A

π(s, a) log(π(Zi,j(s), a)) (5)



 Algorithm 1: KMAP Feature vulnerability mapping
Input: State-action value function Q(s, a),actions a,
states s, Td size of the dimension d of the state s, and
s(i, j) is the value of the i, j-th pixel in state s.
Output: Visual weakness mapping function K(i, j)
saug = s
for i = 1 to T1 do

for j = 1 to T2 do
saug(i, j) = 0
a∗aug = argmaxa Q(saug, a)
a∗ = argmaxa Q(s, a)
K(i, j) += Q(s, a)−Q(s, a∗aug)
saug = s

end for
end for
Return: K(i, j)

where we compute the policy π(s, a) via the softmax of the
state-action value function Q(s, a),

π(s, a) =
eQ(s,a)/T∑
a∈A e

Q(s,a)/T
. (6)

Note that T represents the temperature constant. We de-
scribe the HMAP method in detail in Algorithm 2.

6 RESULTS ON KMAP AND HMAP

In Figure 3 we show the KMAP and HMAP heatmaps for
a state-of-the-art adversarially trained neural policy and
vanilla trained neural policy in RoadRunner. One intriguing
observation from the KMAP heatmap for the adversari-
ally trained deep neural policy is the vulnerability to pixel
changes in a certain column shown in Figure 3. In compari-
son, the vanilla trained agent’s vulnerability is concentrated
on several rows in a different part of the input. Another inter-
esting fact about Figure 3 is that the vulnerability pattern for
the vanilla trained agent is concentrated on a portion of the
input image with which the agent does not interact during
the game. In fact, in RoadRunner, the vulnerability pattern
for the vanilla trained agent is in a portion of the input that
the agent is not able to even visit.

Figure 5 the BankHeist KMAPK(i, j) results show a similar
sensitivity pattern between the adversarially trained deep
neural policy and the vanilla trained deep neural policy. In
particular adversarially trained KMAP K(6 : 10, 29 : 31)1

is quite similar to vanilla trained K(3 : 7, 23 : 25)2. Thus,

1K(k : m, l : n) denotes K(i, j) values for the set of coordi-
nates i ∈ {k, . . . ,m}, j ∈ {l, . . . , n}.

2This portion of the input observation corresponds to the fuel
gauge in BankHeist. In this game the player loses a life when the
fuel runs out.

Algorithm 2: HMAP Feature vulnerability mapping
Input: State-action value function Q(s, a), actions a,
states s, policy π(s, a), Td size of the dimension d of the
state s, and s(i, j) is the value of the i, j-th pixel in state
s.
Output: Visual weakness mapping functionH(i, j)
saug = s
for i = 1 to T1 do

for j = 1 to T2 do
saug(i, j) = 0
π(s, a) = softmax(Q(s, a))
π(saug, a) = softmax(Q(saug, a))
H(i, j) +=−

∑
a∈A π(s, a) log(π(saug, a))

saug = s
end for

end for
Return:H(i, j)

in this setting we observe that the vulnerabilities towards
a certain set of features remians the same with adversarial
training.

Figure 8 and Figure 7 show heatmaps of KMAP K(i, j)
and HMAPH(i, j) for Freeway. We observe that while the
KMAP K(i, j) pattern for the vanilla trained agent lies on
the portion of the input where the optimal policy is executed
by the agent, the KMAPK(i, j) for the adversarially trained
deep neural policy has a straightforward grid pattern. Based
on these results, we hypothesize that adversarial training
decouples vulnerability from the features relevant to the
optimal policy learned by the agent.

The decoupling of relevant features and vulnerability can
be seen as an additional way in which adversarial training
shifts the vulnerabilities of deep neural policies. This com-
plements the results of Section 5, where we observe a vul-
nerability shift by looking at worst-case `p-norm bounded
perturbations, and observing that these perturbations are
more concentrated on lower frequencies in adversarially
trained agents.

While visual observation indicates very different vulnera-
bility patterns for these two disjoint training strategies, we
also introduce a quantitative metric to compare the results
of KMAP and HMAP for vanilla and adversarially trained
agents. In particular, we use the ratio of the `1 and `2 norms
to measure the sparsitiy via,

S(K) =
‖K‖1
‖K‖2

. (7)

Here smaller values of S(K) correspond to sparser vul-
nerability patterns. We also measure how spread out the
vulnerability pattern is via the entropy of the softmax of
K(i, j),
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Figure 3: KMAP K(i, j) heatmaps for state-of-the-art adversarially trained deep neural policy and vanilla trained deep
neural policy in RoadRunner. Left: Adversarially trained. Right: Vanilla trained.

Adversarially Trained Vanilla Trained

Figure 4: HMAP H(i, j) heatmaps for state-of-the-art adversarially trained deep neural policy and vanilla trained deep
neural policy in RoadRunner. Left: Adversarially trained. Right: Vanilla trained.

Table 1: Sparsity results of KMAP K(i, j) and HMAP H(i, j) for adversarially trained and vanilla trained deep neural
policies.

Training Method Vanilla Trained Adversarially Trained Vanilla Trained Adversarially Trained
Sparsity S(K) S(K) S(H) S(H)
Freeway 53.7272 20.4641 83.9999 83.91587
BankHeist 38.4085 4.8812 83.99999 83.99994
RoadRunner 33.1493 11.3216 83.999992 83.999993
Pong 49.7993 1.9508 83.99999 83.9999

H(K) = −
∑
i,j

softmax(K)i,j log(softmax(K)i,j) (8)

In Table 1 and Table 2 we show the sparsity and entropy
results respectively for KMAP K(i, j) and HMAP H(i, j)

for adversarially trained deep neural policies and vanilla
trained deep neural policies. We observe that for KMAP the
vulnerability of adversarially trained models with respect to
features are more sparse than the vanilla trained agents. The
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Figure 5: KMAP K(i, j) heatmaps for state-of-the-art adversarially trained deep neural policy and vanilla trained deep
neural policy in BankHeist. Left: Adversarially trained. Right: Vanilla trained.

Adversarially Trained Vanilla Trained

Figure 6: HMAP H(i, j) heatmaps for state-of-the-art adversarially trained deep neural policy and vanilla trained deep
neural policy in BankHeist. Left: Adversarially trained. Right: Vanilla trained.

Table 2: Entropy of KMAP K(i, j) and HMAP H(i, j) for adversarially trained deep neural policies and vanilla trained
deep neural policies.

Training Method Vanilla Trained Adversarially Trained Vanilla Trained Adversarially Trained
Entropy H(K) H(K) H(H) H(H)
Freeway 8.8287 0.0807 8.8616 0.5677
BankHeist 0.0055 1.542e−20 8.8616 0.54405
RoadRunner 1.2346 0.6973 8.8610 8.8608
Pong 8.8615 8.5658 8.8616 8.8615

results for HMAP are more mixed, and it is often barely
possible to detect the sparsity difference via S(H) and only
possible in half of the games via H(H). In general, KMAP
K(i, j) provides a better estimation of sensitivity of deep

neural policies to individual pixel changes than HMAP
H(i, j). While KMAP K(i, j) captures the actual impact of
the feature change on the decision of the deep neural policy
HMAPH(i, j) captures the difference between the softmax



 

Figure 7: KMAP K(i, j) heatmaps for state-of-the-art adversarially trained deep neural policy and vanilla trained deep
neural policy in Freeway. Left: Adversarially trained (SA-DDQN). Right: Vanilla trained (DDQN).

Figure 8: HMAP H(i, j) heatmaps for state-of-the-art adversarially trained deep neural policy and vanilla trained deep
neural policy in Freeway. Left: Adversarially trained (SA-DDQN). Right: Vanilla trained (DDQN).

policy distributions π(s, a) and π(Zi,j(s), a), which do not
necessarily correspond to the decisions made by the neural
policy.

7 CONCLUSION

In this paper we focused on investigating the vulnerabil-
ities of deep neural policies with respect to their inputs.
We examined the vulnerability shifts between state-of-the-
art adversarially trained deep neural policies and vanilla
trained policies. First, we investigate through worst-case
`p-norm bounded distributional shift. We explored and com-
pared the frequency domain of the perturbations computed
from state-of-the-art adversarially trained neural policies
and vanilla trained neural policies. We found that the pertur-

bations computed from adversarially trained models were
more concentrated in lower frequencies compared to the
vanilla trained neural policies. Second, we propose two dif-
ferent algorithms that we call KMAP and HMAP to detect
vulnerabilities with respect to input in deep neural policies.
We compare the state-of-the-art adversarially trained neural
policies and vanilla trained neural policies with our pro-
posed methods KMAP and HMAP via several experiments
in various environments. We found that while adversarial
training removes sensitivity to certain features, it builds
sensitivity towards a new set of features. We believe this
work lays out the vulnerabilities of adversarially trained
neural policies in a systematic way, and can be an initial
step towards building robust and reliable deep reinforcement
learning agents.



 References

Anish Athalye, Nicholas Carlini, and David A. Wagner. Ob-
fuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning
Research, pages 274–283. PMLR, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael.
Bowling. The arcade learning environment: An evalu-
ation platform for general agents. Journal of Artificial
Intelligence Research., page 253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv:1606.01540, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 39–57, 2017.

Liu Daochang and Tingting. Jiang. Deep reinforcement
learning for surgical gesture segmentation and classifi-
cation. In International conference on medical image
computing and computer-assisted intervention., pages
247–255.Springer, Cham, 2018.

Elvis Dohmatob. Generalized no free lunch theorem for ad-
versarial robustness. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 1646–
1654. PMLR, 09–15 Jun 2019.

Adam Gleave, Michael Dennis, Cody Wild, Kant Neel,
Sergey Levine, and Stuart Russell. Adversarial policies:
Attacking deep reinforcement learning. International
Conference on Learning Representations ICLR, 2020.

Ian Goodfellow, Jonathan Shelens, and Christian Szegedy.
Explaning and harnessing adversarial examples. Interna-
tional Conference on Learning Representations, 2015.

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and
James Worrell. On the hardness of robust classification. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
nett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 7444–7453, 2019.

Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Diamos Greg, Erich Else, Ryan Prenger, Sanjeev
Satheesh, Sengupta Shubho, Ada Coates, and Andrew Ng.
Deep speech: Scaling up end-to-end speech recognition.
arXiv preprint arXiv:1412.5567, 2014.

Sandy Huang, Nicholas Papernot, Yan Goodfellow, Ian
an Duan, and Pieter Abbeel. Adversarial attacks on neural
network policies. Workshop Track of the 5th International
Conference on Learning Representations, 2017.

Tseng Huan-Hsin, Sunan Cui, Yi Luo, Jen-Tzung Chien,
Randall K. Ten Haken, and Issam El. Naqa. Deep rein-
forcement learning for automated radiation adaptation in
lung cancer. Medical physics 44, pages 6690–6705, 2017.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz,
Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan
Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and
Sergey. Levine. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

Jernej Kos and Dawn Song. Delving into adversarial attacks
on deep policies. International Conference on Learning
Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In 6th Inter-
national Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody,
and David Evans. Empirically measuring concentration:
Fundamental limits on intrinsic robustness. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 5210–5221, 2019.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and
Silvio Savarese. Adversarially robust policy learning:
Active construction of physically-plausible perturbations.
In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3932–
3939, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, arc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane



 Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

Laura Noonan. Jpmorgan develops robot to execute trades.
Financial Times, page 1928–1937, July 2017.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Ab-
hinav Gupta. Robust adversarial reinforcement learning.
International Conference on Learning Representations
ICLR, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V. . Le. Sequence
to sequence learning with neural networks. Advances in
neural information processing systems, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dimutru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In Proceedings
of the International Conference on Learning Representa-
tions (ICLR), 2014.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Has-
selt, Marc Lanctot, and Nando. De Freitas. Dueling net-
work architectures for deep reinforcement learning. In-
ternation Conference on Machine Learning ICML., page
1995–2003, 2016.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing,
Laurent El Ghaoui, and Michael I. Jordan. Theoretically
principled trade-off between robustness and accuracy. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 7472–7482. PMLR, 2019.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan
Liu, Duane S. Boning, and Cho-Jui Hsieh. Robust deep
reinforcement learning against adversarial perturbations
on state observations. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020.


	Introduction
	Background
	Preliminaries
	Adversarial Examples
	Perturbation Formulations and Adversarial Training

	Investigating Vulnerabilities
	Neural Policy Perturbations in the Fourier Domain
	Visualizing Neural Policy Vulnerabilities
	Results on KMAP and HMAP
	Conclusion

