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Abstract

We consider the problem of minimizing multi-
modal loss functions with a large number of lo-
cal optima. Since the local gradient points to the
direction of the steepest slope in an infinitesimal
neighborhood, an optimizer guided by the local
gradient is often trapped in a local minimum. To
address this issue, we develop a novel nonlocal
gradient to skip small local minima by capturing
major structures of the loss’s landscape in black-
box optimization. The nonlocal gradient is defined
by a directional Gaussian smoothing (DGS) ap-
proach. The key idea of DGS is to conducts 1D
long-range exploration with a large smoothing ra-
dius along d orthogonal directions in Rd, each of
which defines a nonlocal directional derivative as a
1D integral. Such long-range exploration enables
the nonlocal gradient to skip small local minima.
The d directional derivatives are then assembled
to form the nonlocal gradient. We use the Gauss-
Hermite quadrature rule to approximate the d 1D
integrals to obtain an accurate estimator. The supe-
rior performance of our method is demonstrated in
three sets of examples, including benchmark func-
tions for global optimization, and two real-world
scientific problems.

1 INTRODUCTION

We consider the problem of minimizing multimodal loss
functions in the black-box setting, i.e., searching for the
global minimum of a d-dimensional loss function F (x),
given access to only function queries. This is motivated
by several applications, e.g., hyperparameter tuning of neu-
ral networks [Real et al., 2017], reinforcement learning
[Salimans et al., 2017], and generating adversarial exam-
ples[Chen et al., 2017], in which the loss function’s gradient

is inaccessible. An extensive amount of effort are devoted
to this topic. We refer to [Rios and Sahinidis, 2009, Larson
et al., 2019] for broad overviews on black-box optimization.

The local gradient, i.e.,∇F (x), is the most commonly used
quantities to guide optimization. When ∇F (x) is not di-
rectly accessible, we usually reformulate ∇F (x) as a func-
tional of F (x). One class of methods for reformulation
is Gaussian smoothing (GS) [Salimans et al., 2017, Mah-
eswaranathan et al., 2019]. GS smooths the landscape of
the loss function with d-dimensional Gaussian convolution,
then represents ∇F (x) by the gradient of the smoothed
function. Monte Carlo (MC) sampling is used to estimate
the Gaussian convolution. Several studies have been per-
formed to improve GS. Most of them focus on enhanc-
ing quality of the MC estimators by e.g., variance reduc-
tion [Maggiar et al., 2018], exploiting historical data [Ma-
heswaranathan et al., 2019, Meier et al., 2019], employing
active subspaces [Choromanski et al., 2019], and search-
ing on latent low-dimensional manifolds [Sener and Koltun,
2020]. Despite the improvements, existing work did not
address the challenge of applying the local gradient to opti-
mizing high-dimensional multimodal loss functions. Since
the local gradient points to the direction of the steepest slope
in an infinitesimal neighborhood, an optimizer guided by
the local gradient is often trapped in a local minimum.

We develop a novel nonlocal gradient to skip small local
minima by capturing major structures of the loss’s landscape.
The nonlocal gradient is defined by a directional Gaussian
smoothing (DGS) approach, so we refer to our nonlocal
gradient as DGS gradient hereinafter. The key idea behind
the DGS gradient is to conduct 1D long-range explorations
along d orthogonal directions in Rd, each of which defines
a nonlocal directional derivative as a 1D integral. Then, the
d directional derivatives are assembled to form the DGS
gradient. Compared with the standard GS approach, our
DGS method can use large smoothing radius to achieve
long-range exploration along the orthogonal directions. This
enables the DGS gradient to provide better search directions
than that provided by the local gradient, which makes the
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 DGS gradient particularly suitable for minimizing multi-
modal loss functions.

For accurate and efficient calculation of the DGS gradient,
we use the Gauss-Hermite (GH) quadrature rule [Quarteroni
et al., 2007, Abramowitz and Stegun, 1972] to estimate the
d 1D integrals. It has been theoretically proved that the
GH quadrature can achieve much higher accuracy that MC
methods in estimating the 1D integrals in the DGS gradient.
By leveraging such property, the GH quadrature ensures an
accurate calculation of the DGS gradient even with a large
smoothing radius.

Summary of contributions. Our contribution in this paper
is three fold: (1) we develop the DGS gradient for long-range
exploration with a large smoothing radius, which advances
the global search in high-dimensional black-box optimiza-
tion; (2) we develop an accurate and efficient GH-based
estimator to calculate the DGS gradient; and (3) we demon-
strate the superior performance of our method in minimizing
several high-dimensional multimodal benchmark functions,
and solving two real-world scientific and engineering prob-
lems.

Related works. The literature on black-box optimization is
extensive. We review four types of methods that are closely
related to this work (see [Rios and Sahinidis, 2009, Lar-
son et al., 2019] for thorough reviews). (1) Random search.
This type of methods first randomly generates search di-
rections, then estimates directional derivatives (or performs
direct search) to update the current states. Examples in-
clude two-point approaches [Flaxman et al., 2005, Nesterov
and Spokoiny, 2017, Duchi et al., 2015, Bubeck and Cesa-
Bianchi, 2012], coordinate-descent algorithms [Jamieson
et al., 2012], three-point methods [Bergou et al., 2019], and
binary search with adaptive radius [Golovin et al., 2020].
A theoretical analysis of two-point schemes based on GS
is presented in the seminal paper [Nesterov and Spokoiny,
2017] and extended in [Ghadimi and Lan, 2013] for non-
convex and in [Shamir, 2017] for non-smooth loss functions.
Even though these methods have good scalability with the
dimension, current studies focus on estimating local deriva-
tives rather than nonlocal exploration. (2) Local gradient
estimation. The most straightforward way for local gradi-
ent estimation is to use finite difference. An alternative is
to use linear interpolation in a small neighborhood of the
current state [Berahas et al., 2019b]. Another way is to es-
timate the local gradient by averaging multiple directional
estimates by two-point schemes. The GS-based evolution-
ary strategy (ES) [Salimans et al., 2017, Mania et al., 2018,
Maheswaranathan et al., 2019, Choromanski et al., 2019]
can be assigned to this category. Some studies augmented
ES by integrating the estimated local gradient with differ-
ent gradient-based algorithms, such as alternating direction
method of multipliers [Liu et al., 2017], the adaptive momen-
tum method [Chen et al., 2019], and conditional gradient
methods [Balasubramanian and Ghadimi, 2018]. A compar-

ison of local gradient estimation methods is summarized in
[Berahas et al., 2019a]. (3) Smoothing techniques. Sphere
smoothing is a method similar to GS and is discussed in
[Flaxman et al., 2005]. Analysis of GS applied to step func-
tions is presented in [Addis et al., 2005]. Other strategies
transform a non-convex and noisy optimization problem to
a convex optimization problem, such as p-th power trans-
formation [Li et al., 2001] and `2 regularization [Carlsson,
2019]. An algorithm for estimating computational noise af-
fecting a smooth simulation was developed in [Moré and
Wild, 2011]. (4) Orthogonal exploration. Sampling along
orthogonal directions was also investigated in black-box
optimization. Finite difference can be viewed as a determin-
istic sampling along orthogonal directions. A recent work
[Choromanski et al., 2018] introduced the orthogonal sam-
pling into GS. The main differences between our method
and [Choromanski et al., 2018] are: (i) we perform nonlocal
exploration to define a new nonlocal gradient, while the
study in [Choromanski et al., 2018] performed orthogonal
sampling to approximate the local gradient, and (ii) we use
the GH quadrature for our DGS gradient estimation and
[Choromanski et al., 2018] used (quasi) MC estimator for
the local gradient estimation.

2 BLACK-BOX OPTIMIZATION

We consider the following black-box optimization problem

min
x∈Rd

F (x), (1)

where x = (x1, . . . , xd) ∈ Rd consists of d inputs, and
F : Rd → R is a d-dimensional loss function. We assume
that the gradient ∇F (x) is unavailable, and F (x) is only
accessible via function evaluations. In this work, we are par-
ticularly interested in minimizing multimodal loss functions,
i.e., F (x) has a large number of local minima.

We briefly review the standard GS methods [Flaxman
et al., 2005, Nesterov and Spokoiny, 2017] for estimat-
ing the local gradient. The smoothed loss is defined by
Fσ(x) = Eu∼N (0,Id) [F (x+ σu)] , where N (0, Id) is the
d-dimensional standard Gaussian distribution, and σ > 0
is the smoothing radius. The standard GS [Salimans et al.,
2017] represents the∇Fσ(x) as an d-dimensional integral
and estimates it by drawing M random samples {um}Mm=1

from N (0, Id), i.e.,

∇Fσ(x) =
1

σ
Eu∼N (0,Id) [F (x+ σu)u]

≈ 1

Mσ

M∑
m=1

F (x+ σum)um.
(2)

The MC estimator in Eq. (2) is usually used as an unbiased
estimator of the local gradient∇F (x) by exploiting the fact
that limσ→0∇Fσ(x) = ∇F (x).



 Conceptually, the standard GS-based gradient ∇Fσ could
help skip local minima using a large smoothing radius σ.
However, σ is often set to a small value in practice, espe-
cially for high-dimensional problems, in order to guarantee
the accuracy of the MC estimator for the d-dimensional
integral Eu∼N (0,Id) [F (x+ σu)u] in Eq. (2). Hence, the
standard GS cannot provide the desired long-range explo-
ration capability for capturing major structures of multi-
modal losses.

3 OUR METHOD: A NONLOCAL
GRADIENT VIA DIRECTIONAL
GAUSSIAN SMOOTHING

In this section, we address the lack of long-range exploration
of the standard GS-based local gradient by answering the
following question:

Question: Can we define a new Gaussian smoothing method
that only involves very low-dimensional integrals, in order
to achieve long-range exploration in minimizing multimodal
loss functions?

The answer is yes. Our intuition comes from the fact that
each component of a gradient (no matter it’s a local or a
nonlocal gradient) is a directional derivative that only ex-
plores how a function varies along one direction. Neverthe-
less, such feature is missing in the standard GS formula in
Eq. (2), where each partial derivative of∇Fσ involves a full
d-dimensional exploration. This motivates us to define the
DGS gradient. The key idea of our method is as follows:

Key idea: We conduct 1D long-range explorations along d
orthogonal directions in Rd, each of which defines a non-
local directional derivative as a 1D integral. The Gauss-
Hermite quadrature is used to estimate the d 1D integrals
to provide accurate estimation of the DGS gradient.

3.1 THE DGS GRADIENT

To proceed, we first define a 1D cross section of F (x) as

G(y |x, ξ) = F (x+ y ξ), y ∈ R,

where x is the current state of F (x) and ξ is a unit vector
in Rd. Note that x and ξ can be viewed as parameters of
the function G. We define the Gaussian smoothing of G(y),
denoted by Gσ(y), by

Gσ(y |x, ξ) =
1√
2π

∫
R
G(y + σv |x, ξ) e−

v2

2 dv

= Ev∼N (0,1) [G(y + σv |x, ξ)] ,

(3)

which is the Gaussian smoothing of F (x) along the di-
rection ξ in the neighbourhood of x. The derivative of

Gσ(y|x, ξ) at y = 0 can be represented by a 1D expec-
tation

D [Gσ(0 |x, ξ)] =
1

σ
Ev∼N (0,1) [G(σv |x, ξ) v] , (4)

where D [·] denotes the differential operator. Since Eq. (4) is
a 1D integral, it is easier to conduct long-range exploration
with a large smoothing radius σ.

For a matrix Ξ := (ξ1, . . . , ξd) consisting of d orthonormal
vectors, we can define d directional derivatives like Eq. (4)
and assemble the DGS gradient as

∇σ,Ξ[F ](x) = Ξ>

D [Gσ(0 |x, ξ1)]
...

D [Gσ(0 |x, ξd)]

 . (5)

We emphasize that the differences between ∇σ,Ξ[F ] and
∇Fσ in Eq. (2) are two-fold: (i) ∇σ,Ξ[F ] is used in the
nonlocal setting with a large σ while ∇Fσ is used in the
local setting with a small σ; (ii) ∇σ,Ξ[F ] consists of d 1D
integrals while∇Fσ consists of one d-dimensional integral.

3.2 THE GAUSS-HERMITE QUADRATURE
ESTIMATOR

The DGS gradient in Eq. (5) is not practical until an accurate
estimator is provided. As each component of ∇σ,Ξ[F ](x)
is a 1D integral, the GH quadrature rule [Quarteroni et al.,
2007, Abramowitz and Stegun, 1972] is perfectly suitable
for approximating the integrals with high accuracy. By do-
ing a simple change of variable in Eq. (4), the GH rule
can be directly used to obtain the following estimator for
D [Gσ(0 |x, ξ)], i.e.,

D̃M [Gσ(0 |x, ξ)]

=
1√
πσ

M∑
m=1

wm F (x+
√

2σvmξ)
√

2vm,
(6)

where {vm}Mm=1 are the roots of the M -th order Hermite
polynomial and {wm}Mm=1 are quadrature weights. Both vm
and wm can be found online or in [Abramowitz and Stegun,
1972]. It was proved in [Abramowitz and Stegun, 1972] that
the error of the estimator in Eq. (6) is∣∣∣(D̃M −D)[Gσ]

∣∣∣ ≤ C M !
√
π

2M (2M) !
σ2M−1, (7)

where M ! is the factorial of M , and C is independent of M
and σ. In comparison, the error of an MC estimator is on
the order of 1/

√
M . Applying the GH quadrature to each

component of ∇σ,Ξ[F ](x) in Eq. (5), we obtain the final
estimator for the DGS gradient:

∇̃Mσ,Ξ[F ](x) := Ξ>

D̃M [Gσ(0 |x, ξ1)]
...

D̃M [Gσ(0 |x, ξd)]

 , (8)



 which requires a total of M × d function evaluations. An
illustration of the difference between the DGS gradient and
the local gradient is given in Figure 1.

-0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2
0

200

400

600

400 600
-1

-0.5

0

0.5

1

Figure 1: Illustration of the nonlocal exploration of the DGS
gradient. In the central plot, the blue arrow points to the
local gradient direction and the red arrow points to the DGS
gradient direction. The top and right plots show the direc-
tionally smoothed functions along the two axes. Because
the DGS gradient captures the major structure of F along
both directions, it provides a direction pointing much closer
to the global minimizer than the local gradient.

In the following, we discuss some important features of the
DGS gradient and the GH quadrature estimator.

• The DGS gradient vs. the local gradient. The DGS gra-
dient is designed to be used with a relatively large smooth-
ing radius σ. Thus, the DGS gradient in Eq. (5) and the
GH quadrature estimator in Eq. (8) should not be viewed
as approximations to the local gradient. In fact, Figure 1
illustrates that the DGS gradient can provide better search
directions than the local gradient attributed to its large
smoothing radius. Following experiments further demon-
strate the superior performance of the DGS gradient to the
local gradient in optimizing high-dimensional benchmark
functions (Figure 2 and Table 1).

• Scalability with the dimension: The GH quadrature esti-
mator in Eq. (8) needsM×d function evaluations per iter-
ation. This may not be ideal compared to the 4 + 3 log(d)
evaluations per iteration required by most MC-based lo-
cal gradient estimators. However, when comparing the
performance using the loss decay with the total number
of function evaluations, i.e., #(func eval per iteration)
× #(iteration), our experimental results show that the
DGS gradient has an overall better performance than
several state-of-the-art baseline methods in minimizing
multimodal functions. This is because the DGS gradient

provides a good quality1 of search directions which sig-
nificantly reduces the number of iterations. The efficiency
of the DGS gradient can be further improved by applying
dimension reduction techniques (e.g., in [Choromanski
et al., 2019]) to reduce d in the M × d complexity of the
GH quadrature, which will be explored in future study.

• Applicability to constrained optimization. The DGS gra-
dient can be easily integrated into a gradient-based al-
gorithms, e.g., gradient descent, Adam, and even con-
strained optimization algorithms. This feature is partic-
ularly useful for solving optimization problems arising
from scientific and engineering applications, where con-
straints are usually imposed to ensure certain physical
laws or engineering requirements.

Algorithm 1: The DGS algorithm
1: hyperparameters: M : # GH quadrature points; λt: learning

rate; α: the scaling factor for the rotation ∆Ξ; r, β: the mean
and radius for sampling σ; γ: the tolerance for triggering
random perturbation.

2: Input: The initial state x0

3: Output: The final state xT
4: Set Ξ = Id, and σi = r for i = 1, . . . , d
5: for t = 0, . . . T − 1 do
6: Evaluate {G(

√
2σivm |xt, ξi)}i=1,...,d

m=1,...,M

7: for i = 1, . . . , d do
8: Compute D̃M [Gσi(0 |xt, ξi)] in Eq. (6)
9: end for

10: Assemble ∇̃Mσ,Ξ[F ](xt) in Eq. (8)
11: Set xt+1 = xt − λt∇̃Mσ,Ξ[F ](xt)

12: if ‖∇̃Mσ,Ξ[F ](xt)‖2 < γ then
13: Generate ∆Ξ and update Ξ = Ξ + ∆Ξ
14: Generate σi from U(r − β, r + β)
15: end if
16: end for

Random perturbation of Ξ and σ. The estimator in
Eq. (8) is deterministic for a fixed Ξ and σ, making our
approach short of random exploration. To alleviate this is-
sue, we add random perturbations to Ξ and σ. First, we
add a small random rotation ∆Ξ to Ξ. To make Ξ + ∆Ξ
orthonormal, we generate ∆Ξ as a random skew-symmetric
matrix ∆Ξ = −∆Ξ> with small-value entries (controlled
by α > 0) The Gram–Schmidt operation is then used to
ensure the othornormality of Ξ + ∆Ξ. The perturbation of
σ is conducted by drawing d random samples (one for each
direction) from a uniform distribution U(r− β, r+ β) with
β � r. The random perturbation can be triggered by various
types of indicators, e.g., the magnitude of the DGS gradient,
the number of iterations completed since last perturbation.

Asymptotic consistency. Even though the DGS gradient
is designed to be used with a large smoothing radius σ, it is
interesting to ask the following question from mathematical

1See Eq. (9) and Table 1 for the metric of how to compare the
quality of search directions provided by different methods.



 perspective: “Does the DGS gradient converge to the local
gradient as σ approaches to zero?” This question can be an-
swered easily for F (x) ∈ C1,1(Rd). In this case, there exists
L > 0 such that ‖∇F (x+ξ)−∇F (x)‖ ≤ L‖ξ‖, ∀x, ξ ∈
Rd (‖ · ‖ denotes the L2 norm in this work). Then, the dif-
ference between ∇̃Mσ,Ξ[F ] and ∇F can be bounded by∥∥∥∇̃Mσ,Ξ[F ]−∇F

∥∥∥2 ≤ 2C2πd(M !)2

4M ((2M) !)2
σ4M−2 + 32dL2σ2,

where the first term on the right hand side comes from the
GH quadrature and the second term measures the difference
between∇F and∇σ,Ξ[F ]. It is easy to see the asymptotic
consistency, i.e., limσ→0

∣∣∇F (x)− ∇̃Mσ,Ξ[F ](x)
∣∣ = 0 for

M > 2 regardless of the choice of Ξ. Additional discus-
sion about the consistency is provided in Section 4 of the
Supplementary Material.

4 EXPERIMENTS

We present the experimental results using three sets of prob-
lems. All experiments were implemented in Python 3.6 and
conducted on a set of cloud servers with Intel Xeon E5
CPUs. We compare the DGS method with the following
(a) ES-Bpop: the standard OpenAI evolution strategy in
[Salimans et al., 2017] with a big population (i.e., using the
same number of samples as DGS), (b) ASEBO2: Adaptive
ES-Active Subspaces for Blackbox Optimization [Choro-
manski et al., 2019] with a population of size 4 + 3 log(d),
(c) IPop-CMA: the restart covariance matrix adaptation evo-
lution strategy with increased population size [Auger and
Hansen, 2005], (d) Nesterov: the random search method in
[Nesterov and Spokoiny, 2017], (e) FD: the classical central
difference scheme, (f) Cobyla: constrained optimization by
linear approximation method in [Powell, 1994] (g) Powell:
a conjugate direction method without calculating deriva-
tives [Powell, 1964], (h) DE: differential evolution [Storn
and Price, 1997], (i) PSO: particle swarm optimization in
[Kennedy and Eberhart, 1995], and (j) TuRBO: trust region
Bayesian optimization [Eriksson et al., 2019]. The informa-
tion of the codes used for the baselines is provided in Section
1 of the Supplementary Material. Our code is available at
https://github.com/HoangATran/AdaDGS.

4.1 TESTS ON HIGH-DIMENSIONAL
BENCHMARK FUNCTIONS

We test the performance of the DGS method on six high-
dimensional benchmark functions [El-Abd, 2010], includ-
ing F1(x): Ellipsoidal, F2(x): Sharp Ridge, F3(x): Ackley,
F4(x): Rastrigin, F5(x): Schaffer’s F7, and F6(x): Schwe-
fel. Even though our method is designed for multimodal

2We do not report comparison with some recent work on ES,
e.g., [Akimoto and Hansen, 2016, Loshchilov et al., 2019], as they
underperform ASEBO as shown in [Choromanski et al., 2019].

functions, we still include two single-modal functions F1

and F2 for demonstration. To make the test functions more
general, we applied the following linear transformation to
x, i.e.,

z = R(x− xopt),

where R is a rotation matrix making the functions non-
separable and xopt is the optimal state. Then we substitute
z into the standard definitions of the benchmark functions to
formulate our test problems. Details about those functions
are provided in Section 1 of the Supplementary Material.

The hyperparameters of the DGS method are fixed for the
six test functions. Specifically, we used M = 5 GH quadra-
ture points. A quadratic decay schedule is used for both
the smoothing radius and the learning rate where the max-
imum number of iterations is set to 200. The initial (max-
imum) learning rate is 5% of the diagonal length of the
d-dimensional initial search domain, and the terminal (min-
imum) learning rate is 1% of the initial learning rate. The
initial smoothing radius is 5 times of the length of the initial
search domain for each variable, and the terminal smoothing
radius is 1% of the initial radius. We turned off the random
perturbation by setting γ = 0. The hyperparameters used
for the baseline methods are given in Section 1 of the Sup-
plementary Material. For each test function, we performed
20 trials, each of which has a random initial state, a random
rotation matrix R and a random location of xopt.

The comparison between DGS and the baselines in the
2000D case are shown in Figure 2 and Table 1. The DGS
has the best performance overall. In particular, DGS demon-
strates significantly superior performance in optimizing the
highly multimodal functions F3, F4 and F5. For the ill-
conditioned functions F1 and F2, DGS can match the per-
formance of the best baseline method, e.g., IPop-CMA. For
F6, all the methods fail to find the global minimum because
it has no globally major structure to exploit. How to opti-
mize such kind of functions remains an open question.

We provide additional evidence to explain the superior per-
formance of DGS. We use the averaged cosine distance
in Table 1 to measure the quality of the search directions
provided by each method,

Cos_Dist =
1

T

T∑
t=1

(
1− 〈xt − xt−1,xopt − xt−1〉
‖xt − xt−1‖‖xopt − xt−1‖

)
,

(9)
where T is the number of iterations of an optimization path3.
The Cos_Dist of the test cases in Figure 2 are shown in
Table 1. We have the following findings: (1) DGS provides
smallest Cos_Dist in most cases, which demonstrates that
the DGS gradient is very close to the direction pointing to
the global minimum (even for functions with many local
minima, e.g., F3, F4, F5). Table 1 implies that being able to
find good search directions helps DGS greatly reduce the

3The optimization paths are different for different methods.

https://github.com/HoangATran/AdaDGS


 

Figure 2: Comparison of the loss decay w.r.t. # function evaluations for the 6 benchmark functions in 2000D. Each curve
is the mean of 20 independent trials and the shaded areas represent [mean-3std, mean+3std]. The global minimum is
F (xopt) = 0 for all the six functions. The DGS has the best performance overall, especially for the highly multimodal
functions F3, F4, F5. All the methods fail to find the global minimum of F6 which has no global structure to exploit.

Figure 3: Tests on DGS’s scalability to 4000D, 6000D and 8000D. The hyperparameters are the same as the 2000D case. The
DGS still achieves promising performance, even though the number of function evaluations increases with the dimension.

number of iterations to the achieve its superior performance.
(2) FD achieves similar performance as DGS for F1, F2,
where the local gradients also point to the global minimum,
but FD is trapped in local minima for multi-modal F3, F4,
F5. (3) As Nesterov randomly selects search directions, it is
reasonable that most search directions are perpendicular to
xopt − xt−1. (4) ES-Bpop, ASEBO and IPop-CMA have
too few random samples to capture the optimal direction
xopt − xt−1.

We also test the DGS method in 4000D, 6000D and 8000D
to illustrate its scalability with the dimension. We do not
test F6 because DGS failed to optimize F6 in 2000D. The
hyperparameters are set the same as the 2000D cases. The

results are shown in Figure 3. The DGS method still achieves
promising performance, even though the number of total
function evaluations increases with the dimension.

4.2 APPLICATION OF THE DGS GRADIENT TO
CONSTRAINED TOPOLOGY OPTIMIZATION
FOR ARCHITECTURE DESIGN

We demonstrate the applicability of the DGS gradient to
constrained optimization using a real-world topology opti-
mization (TO) problem. TO has recently attracted attentions
in machine learning [Hoyer et al., 2019, Li et al., 2020].



 F1(x) F2(x) F3(x)

DGS 0.163 ± 0.02 0.131 ± 0.03 0.065 ± 0.01
ES-Bpop 0.343 ± 0.08 0.476 ± 0.12 0.680 ± 0.05
ASEBO 0.946 ± 0.07 0.999 ± 0.08 0.999 ± 0.07
Nesterov 0.987 ± 0.13 0.992 ± 0.10 0.955 ± 0.02
FD 0.201 ± 0.02 0.093 ± 0.02 0.954 ± 0.07
IPop-CMA 1.083 ± 0.04 1.039 ± 0.02 0.999 ± 0.03
Cobyla 0.988 ± 0.03 0.993 ± 0.03 1.053 ± 0.02
Powell 0.308 ± 0.04 0.957 ± 0.03 0.994 ± 0.03
DE 0.599 ± 0.06 0.776 ± 0.04 1.021 ± 0.05
PSO 1.044 ± 0.03 0.503 ± 0.03 0.989 ± 0.03
TuRBO 0.371 ± 0.12 0.961 ± 0.13 0.993 ± 0.09

F4(x) F5(x) F6(x)

DGS 0.198 ± 0.05 0.271 ± 0.03 1.053 ± 0.02
ES-Bpop 0.710 ± 0.11 0.810 ± 0.04 1.000 ± 0.02
ASEBO 0.993 ± 0.04 0.998 ± 0.05 0.912 ± 0.04
Nesterov 0.998 ± 0.10 0.995 ± 0.10 0.939 ± 0.02
FD 1.099 ± 0.05 0.991 ± 0.01 1.032 ± 0.01
IPop-CMA 1.053 ± 0.09 0.999 ± 0.02 1.000 ± 0.03
Cobyla 1.011 ± 0.01 0.945 ± 0.08 1.022 ± 0.04
Powell 0.915 ± 0.13 0.925 ± 0.09 0.932 ± 0.10
DE 0.687 ± 0.16 0.930 ± 0.09 1.017 ± 0.06
PSO 0.999 ± 0.03 0.689 ± 0.11 0.899 ± 0.04
TuRBO 0.943 ± 0.08 0.735 ± 0.12 0.962 ± 0.02

Table 1: The mean and the standard deviation of the co-
sine distance in Eq. (9) for the test cases in Figure 2.
The cosine distance is in the range [0, 2]. The smaller the
cosine distance, the better the performance of a method.
Cos_Dist = 0 means the two vectors point to the same
direction; Cos_Dist = 1 means the two vectors are perpen-
dicular. Our method achieves the smallest cosine distance
for the multi-modal functions F3, F4, F5, which explains its
superior performance.

We use DGS-based TO to design a 2D vertical cross sec-
tion of a bridge from random initial guesses (see Figure
6). The design domain is meshed by 120 × 40 elements,
each of which is a design variable ranging from 0 (void)
to 1 (solid). By assuming the bridge is symmetric, the total
number of independent design variables is 2400 (60× 40)
which is the dimension of the optimization problem. The
constraints include (i) 20% volume constraint, i.e., the vol-
ume of solid materials (black pixels) in Figure 6 cannot
exceed 480 (2400× 0.2), (ii) unit uniform load on the top
and one fixed supports from the bottom. The goal is to op-
timize the material layout to achieve maximum load-carry
capability of the bridge. A conceptually good design is
shown in Figure 5 (Bottom-Right).

The challenges in TO include highly nonconvex and mul-
timodal loss functions and rigid constraints. Extensive re-
search efforts have been made on developing exclusive con-
strained optimization algorithms for TO. The state-of-the-art
is Method of Moving Asymptotes (MMA) [Svanberg, 1987],
which is a gradient-based method. However, MMA is lim-

ited to seek optima using local gradients, either via adjoint
method or FD. Here, we address this issue by inserting the
DGS gradient into the MMA framework, and exploit the
nonlocal exploration ability of the DGS gradient to find a
better design. The hyperparameters of DGS are M = 5,
α = 0.1, r = 0.25, β = 0.2 and γ = 0.01. Note that
there is no learning rate λ in this case because the update
step of design variable is achieved by MMA optimizer. The
hyperparameters for the baselines is given in Section 2 of
Supplementary Material. Figure 6 shows the iterative opti-
mization procedure using the DGS-based MMA optimizer.
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Figure 4: Loss decay for the constrained topology optimization
problem for architecture design.

Figure 4 summarizes the results. We ran each algorithm for 5
times with random initial guesses and plot the mean loss de-
cay. The DGS gradient leads to faster convergence and better
final design than the baselines. FD converges fast initially
but is quickly trapped into a local minimum. ASEBO and
ES-Bpop perform similar to FD. Nesterov may perform well
eventually but converges slowly. The IPop-CMA has the
worst performance because the simple Lagrangian penalty
is insufficient to enforce the constraints. The performances
are shown by the final design in Figure 5. More details and
discussion can be found in Section 2 of the Supplementary
Material.

4.3 INFERENCE OF HYDRAULIC
CONDUCTIVITY FIELD IN SUBSURFACE
ENVIRONMENTS

We demonstrate the performance of DGS in solving an
inference problem in groundwater modeling. Hydraulic con-
ductivity measuring the ease of liquid flow through porous
media is an important parameter in predicting contaminant
transport in groundwater. However, hydraulic conductivity
is very difficult to measure and typically inferred from hy-
draulic heads (easier to measure). In this work, we use a
fully connected neural network (FNN) to approximate a 2D
hydraulic conductivity field (Figure 7 (left)). The FNN has
one hidden layer with 64 neurons. The input is the 2D spatial



 

Good conceptual design

Conceptual
design

Figure 5: Comparison of final typologies. The DGS-based design shows a strong hierarchical tree feature that matches the good
conceptual design (the bottom-right subfigure). IPop-CMA tends to a blurry topology. The other algorithms show many local/minor
features that have negative impacts on load-carry capability and bridge construction.

Figure 6: Illustration of DGS-based TO design process from random initial guess. The topology of the bridge architecture tends to be
more and more clear as the loss function value C(×105) decreases.

coordinates and the output is hydraulic conductivity values.
tanh(·) is used as the activation. The training data are hy-
draulic head samples randomly selected at 50 locations. To
map the output of the FNN to the training data space, we
need to run a blackbox groundwater simulator MODFLOW
[Harbaugh, 2005] which solves a second-order parabolic par-
tial differential equation. The loss function is defined as the
mean squared error between the predicted hydraulic heads
and the training data4. The hyperparameters for the DGS
method are M = 5, α = 0.1, r = 0.1, β = 0.1, γ = 0.001
and λt = 0.99λt−1 with λ0 = 0.1. The hyperparameters
for the baseline methods and the parameter values for MOD-
FLOW are given in Section 3 of the Supplementary Mate-
rial.. The results in Figure 7 (right) clearly demonstrate the
much faster convergence of our DGS method compared to
the baselines.

5 DISCUSSION

The current version of the DGS method has some limita-
tions, including (1) Non-adaptive hyperparameters. We used
a fixed set of hyperparameters for the six benchmark func-
tions and achieved superior results, but we observed some
nonoptimal performance of DGS for some hyperparameter
values. For example, the fluctuation of the DGS’s loss decay
for the Ackley in Figure 2 is caused by the nonoptimal learn-
ing rate decay. Another important hyperparameter in DGS
is the smoothing radius σ. A small σ can result in an insuffi-
ciently smoothed loss function, such that the optimizer may
be trapped in a local minimum. In contrast, if σ is too large,
the loss function is overly smoothed, then the convergence

4The training data is generated by running MODFLOW with
the true hydraulic conductivity field.

Figure 7: (Left): the target hydraulic conductivity field and
the 50 locations (black dots) for collecting hydraulic head
data. (Right): comparison of the loss decay w.r.t. # function
evaluations for predicting the hydraulic conductivity field
using hydraulic head data.

may slow down. How to adaptively adjust the smoothing
radius is still an open question. (2) Suboptimal solution for
loss functions without globally major structures. Figure 2
shows that the DGS cannot find the global minimum of
the Schwefel function that does not have a global structure.
This could happen in real-world applications. For example,
although our method outperforms the baselines in solving
the TO problem, we cannot verify that the design obtained
by our method is globally optimal. (3) Sampling complexity.
Since the GH estimator requires M × d samples per itera-
tion, the DGS gradient is less practical for a large d and for
a limited computing budget. For example, when d = 10000
but only 10000 function evaluations are affordable, then the
current version of the DGS method is inapplicable.



 Although the DGS method shows impressive performance
in minimizing high-dimensional problems, no method can
have superior performance in all dimensions. We tested
several 20D cases (see the Supplementary Material), and
found that DGS is not competitive for very low-dimensional
problems, specifically given a limited number of function
evaluations. For example, Bayesian optimization may be
a better option than the DGS method for low-dimensional
problems [Wu et al., 2017, Eriksson et al., 2018].

Future work. (1) An adaptive DGS method. We plan to
incorporate line search techniques into DGS to replace the
learning rate for better exploiting the good quality of search
directions provided by the DGS gradient. In addition, we
plan on incorporating the adaptation strategy used in CMA-
ES to help adaptively adjust the smoothing radius σ. (2)
Dimension reduction for DGS. We plan to apply dimension
reduction techniques [Choromanski et al., 2019], such as
active subspace and sliced linear regression, to reduce the
dimensionality and then construct the DGS gradient in the
reduced subspace. This strategy will help reduce the sam-
pling complexity in the current version of the DGS method.
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