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Abstract

Hierarchical learning of generative models is use-
ful for representing and interpreting complex data.
For instance, one application is to learn an HMM
to represent an individual’s eye fixations on a
stimuli, and then cluster individuals’ HMMs to
discover common eye gaze strategies. However,
learning the individual representation models from
observations and clustering individual models to
group models are often considered as two separate
tasks.In this paper, we propose a novel tree struc-
ture variational Bayesian method to learn the indi-
vidual model and group model simultaneously by
treating the group models as the parents of individ-
ual models, so that the individual model is learned
from observations and regularized by its parents,
and conversely, the parent model will be optimized
to best represent its children. Due to the regulariza-
tion process, our method has advantages when the
number of training samples decreases. Experimen-
tal results on the synthetic datasets demonstrate the
effectiveness of the proposed method.

1 INTRODUCTION

The hidden Markov model (HMM) [Rabiner, [1993] is an ef-
fective method for statistically representing time series data,
assuming that each observation in a sequence is generated
conditioned on a discrete state of a hidden Markov chain,
i.e., a hidden state sequence. HMMs have been popularly
applied in many areas that need to analyze time series data,
such as speech recognition [Juang and Rabiner, 1991} |Au
couturier and Mark, |2001]], cognitive science [[Chan et al.|
2018}, Hsiao et al., [2021b]], and music analysis [Qi et al.}
2007]. In particular, recent works using HMMs to model
eye fixation sequences has enabled interesting discoveries
about the role of eye gaze in cognitive processes, including
three processing states in information search tasks [[Simola
et al.| 2008, optimal strategies for face recognition [Chuk

et al., 2017bla, /An and Hsiaol 2021} [Hs1ao et al., 2021a],
masking effects in visual search [Hsiao et al., 2021bf], and
the association of eye gaze patterns to cognitive decline
[Chan et al., 2018], emotion recognition [Zhang et al., 2019,
Chan et al., [2020a], chronic pain [[Chan et al.| 2020clb]], and
decision making [Chuk et al., [2020]].

The previous methods of hierarchical modelling of HMMs
learn sequentially; first the individual models are learned
from observations, then the group models are learned from
the individual models, as shown in Fig. a). Individual
HMMs can be learned from observations using two typical
methods: 1) the Baum-Welch (EM) algorithm [Baum et al.,
1970]], which computes the maximum likelihood parame-
ter estimation of the HMM; 2) variational Bayesian EM
(VBEM) algorithm [Beal et al., 2003|], which computes
the posterior distribution over each parameter of HMM
through maximizing the evidence lower bound (ELBO).
Learning the group models is equivalent to clustering in-
dividual HMMs, with each cluster center representing one
group model. Coviello et al.|[2014] proposed a variational
hierarchical EM (VHEM) algorithm, which clusters HMMs
directly using their probability densities of the observation
sequence, and estimates HMM cluster centers. [Lan et al.
[2021]] proposed a variational Bayesian hierarchical EM
(VBHEM) algorithm, a Bayesian version of VHEM.

In the above, the individual models and group models are
learned as separate tasks. When the data is sufficient, sep-
arately learning individual and group models is fine, such
as experiments in [Coviello et al., 2014]. However, when
the data is insufficient, the individual model may overfit,
which affects the group model. For example, in face recog-
nition [|Chuk et al.|[2014] or in scene perception Hsiao et al.
[2021c]], only one eye fixation sequence is tracked per stim-
ulus. In this case, joint learning of individual and group
models will help learning of individual models through
pooling of common information in the group.

In this paper, we propose to estimate the individual and the
group models simultaneously, as shown in Fig.[I{b), so that
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Fig. 1: Illustration of the hierarchical modelling of HMMs, learning individual (child) models M () and group (parent) models M (P)
through: (a) VBEM and VHEM (sequentially); (b) Our method (simultaneously). {Yi}?:l represent 4 observation sequences. The HMMs

are visualized by its 3 Gaussian emissions.

the group models can regularize the individual models. This
is similar to the hierarchical generative process: 1) there
are group models; 2) individual models are sampled from
the group models; 3) observations are sampled from the
individual models. This generative process is similar to topic
model in document corpora, where documents are organized
in a multi-level hierarchy [Kim et al., 2013]]. Although here
we focus on HMMs, the framework could be applied to
other probabilistic models.

Our Contributions. In this paper, we propose a novel tree
structure variational Bayesian method to learning the in-
dividual models and group models simultaneously, where
the group models are parents and the individual models
are children. The group models regularize the individual
models thereby alleviating overfitting of individual mod-
els, and the group models are estimated from the individual
models, thus iteratively affecting each other. In experiments,
we obtain good clustering performance, and the individ-
ual and group models are close to the ground-truth models,
even for small sample size. Furthermore, the clustering is
inherent in our model and does not resort to other existing
clustering methods. Lastly, our child-parent framework is a
generic regularization method, and could be applied to other
probabilistic models.

2 RELATED WORK

Hierarchical Models and Inference. In Fig. Ekb), the hier-
archical HMMs structure allows us to use the group HMMs
as the prior on the individual HMMs and then to learn the
individual HMMs. Dirichlet process (DP) provides nonpara-
metric prior for the number of mixture components and is
widely considered in learning of HMMs. [Teh et al.| [2006]]
introduced the hierarchical Dirichlet process HMM (HDP-
HMM) to learn an HMM, where each HMM state is repre-
sented by a mixture model, and the mixture models in the
different groups share mixture components. Q1 et al.|[2007]
utilized DP HMM mixture models (DP-H3M) to build an
H3M for a song, where each HMM represents a song clip,
i.e., the individual HMM is the same as one component of

the group H3M. In contrast, for our method, the mixture
models do not share parameters, and each individual model
has its own distribution that is not the same as one of the
group models. The nested HDP [Paisley et al.| 2014 is a
novel prior to perform word-specific path clustering on a
shared tree, which also has shared parameters and has not
been applied to HMMs.

The HDP-HMM uses Markov chain Monte Carlo (MCMC)
[Hastings, |1970} |Gelfand and Smithl [1990] for posterior
inference. MCMC explores the parameter space relying
on sampling. However, when the model is complex (such
as the hierarchal HMM), performing Bayesian inference
via MCMC can be exceedingly expensive. We resort to
variational Bayesian methods for inference on the individual
models and group models. Variational inference (VI) is an
alternative to MCMC, which relies on optimization rather
than sampling. For mixture models, VI may perform better
than a more general MCMC technique (e.g., Hamiltonian
Monte Carlo), even for small datasets [Kucukelbir et al.,
20135]]. [Zhang et al.|[2016] derived a VI for the HDP-HMM.

Regarding VI, the hierarchical structure of priors has been
introduced to relax the mean-field assumption of variational
distributions, e.g., hierarchical variational models (HVMs)
[Ranganath et al.,[2016] and Ladder-VAE [Sgnderby et al.,
2016]. HVM is a two-level model that first draws variational
parameters from a prior and then draws latent variables from
the corresponding likelihood. In this perspective, our model
is a three-level model since we also have a hyper-prior over
variational parameters, i.e., p(M?P). Also, Bouchacourt et al.
[2018]] developed a multi-level variational autoencoder (ML-
VAE) for learning a disentangled representation of a set of
grouped observations. However, these works focus on the
hierarchical structure of latent variables (or latent code),
such as assignment variable, not on the model parameters,
while our method focuses on the hierarchical structure of
the model parameters.

Regularization via Clustering. In our model, the group
models are actually cluster centers when clustering the in-



dividual models, and the clustering regularizes the learning
of individuals. The idea of using clustering as regulariza-
tion has been explored in other domains. Pang et al.|[2014]
simultaneously regularized the between- and within-class
scatter matrices to learn regularized linear discriminant anal-
ysis. [Price et al.| [2021]] proposed a penalized likelihood
framework for estimating the C precision matrices with
cluster regularization. Cluster-based regularization has also
been of interest in semisupervised learning, active learning,
transfer learning, and other areas of Al [[Soares et al., 2012,
Sellars et al.l 2020, [Hubert and Arabie, [1985, [Zhao et al.,
2019, |Long et al., 2013]. Soares et al.| [2012] proposed a
robust algorithm, cluster-based regularization (ClusterReg)
for semisupervised learning (SSL), which takes advantage
of partitions resulting from a clustering algorithm, and uses
such information to regularize prediction. The method is
also extended to Ensemble Learning [Soares et al., 2017]].
Sellars et al.|[2020]] used clustering based regularization to
improve decision boundaries within a novel SSL framework
called two-cycle learning. In contrast to these methods, our
method is a Bayesian generative model, where the cluster-
ing is inherent in our model, and does not resort to other
existing clustering methods.

Hidden Markov (Mixture) Model. We briefly review hid-
den Markov models (HMMs) and the hidden Markov mix-
ture model (H3M) [Smythl [1997]], and define the notation
used in the paper. An H3M models a set of observation se-
quences as samples from a group of K hidden Markov mod-
els (HMMs), and is parameterized by M = {w;, Mi}fil,
where M; is the ith HMM and w; is the corresponding
mixture component weight. An observation sequence with
length 7 is denoted by y = (y1, ¥2, ---, Y- ), and depends on a
hidden state sequence x = (z1, 3, ..., Z- ). The observation
likelihood for y ~ M is p(y|M) = >, wip(y|M;), where
the ith HMM M, with S states is specified by parameters
M; = {r*, A" {01 }7_,}. In detail, 7 = [r},..., 7] is
the initial state probability, where 7t = p(z1 = k|M;).
A = laj w]sxs is the state transition matrix, where
= D(xe41 = K'|xy = k, Mj) is the transition probabil-
ity from state k to k. ©% is the parameter set of emission
density at state k. Here, we assume the emissions are Gaus-
sian distributions, p(y:|zs = k, My) = N (ye|ut, (AL)71),
with mean p}, and precision matrix A% .

3 METHODOLOGY

In this section, we introduce our tree structure variational
Bayesian method based on HMMs. Our hierarchical model
consists of the following generative process: 1) a parent
H3M is sampled from a prior, with each HMM compo-
nent corresponding to a group; 2) a child HMM is sam-
pled around the parent model, specifically, via a distribution
formed using the parent H3M parameters; 3) observations
are sampled from the child HMM. Here we use “parent” and
“child” to refer to the group and individual models.
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Fig. 2: Graphical model representation of our model. The solid line
plate denotes a set of i.i.d. samples. y,, is an observation sequence,
and z;, is the state sequence that emits y,,. Z; indicates the
assignment of Mi(c) to an HMM component in M (P) The dashed
line plate denotes an HMM: child HMM Mi(c) with parameters
{m(@i Al)i ()i ALY and parent M;p) with parameters
{Tr(p)’j,A(p>’],u(p)’J,A(p)’j}. The variables outside the plate,
(NP, @) @) 30 ) @) o0 (o) gy

K(C),K(p)

are hyperparameters, and ® = {¢"/};2, %" are a set of state

permutation matrices.

3.1 FRAMEWORK

Formally, consider a set of K(¢) grouped samples Y =
{11,Ya,..., Y}, where Y; = {yi,v5,...,yk, } are
drawn from the ith child model Mi(c), and each sample
Yn = (Yn.1,Yn2>---»>Yp ) is a time series with length 7,
and y, , € R%. Each observation (or emission) y, , at time
t depends on the state of a discrete hidden variable xﬁl’t, and

the sequence of hidden states xf, = (%, 1,2} 5,...,2% 1)
evolves as a first-order Markov chain. The hidden variable
x,, . can take one of S(©) values, i.e., r,€{1,..., S},

Each child model M is an hidden Markov model (HMM)
with S(°) states. The parent model M (P) is a hidden Markov
mixture model (H3M) consisting of components M. j(p ),
je{l,..., K@}, K® < K and each M;p) has S(»)
states, S®) < $§(°). The child and parent are connected
through a child-parent distribution, from which the child
model Mi(c) is sampled around the corresponding parent
model M”), Note that we will always use superscripts (p)
and (c) to distinguish the parameters for parent and child
model, ¢ and j to index the components in the mixture
model of parents and children, and k£ and [ to index the
hidden states in the parent and child model, respectively.

An illustration of the probabilistic graphical model is shown
in Fig.[2] Given the hyperparameters related to the parent
model (e.g., a(()p )), a parent model is sampled from its prior,
ie, M"Y ~ p(MP), and weight w®) ~ p(w®) (the
hyperparameters are omitted to reduce clutter). Then, we in-
troduce the assignment variable Z;, which takes one of K (7)

values to assign the child model Mi(c) to one of the com-



ponents in parent model, and the state permutation matrix
gbi’j , which has size S(©) x S, to match the states between
two HMMs M®) and M ;p ). We assume the priors p(Z; =
jlo®) = i and p(¢) = T3, TI, (1/8@)%H4, re-
spectively. Given the assignment Z; = j, the generative
process of the data Y] is:

1. Sample a child model M, ~ p(M | MP);

2. Sample (i.i.d.) data sequences y’ ~ Mi(c), n
1,...,N;.

Note that only the variables {y/ }/* I ~2% are observed. All
the parameters (white circles) are unknown and are treated
as hidden variables. The child models are affected by obser-
vations and parent models together, and the parent models
are affected by the child models. Also, one child in our
model only has one parent, but one parent may have several
children, as shown in Fig.

3.2 VARIATIONAL INFERENCE

The very large parameter space resulting from the hierarchi-
cal HMM comes with a large computational burden. Thus,
we resort to the variational Bayes, which is a faster alter-
native to MCMC methods, to approximate the posterior
distributions of the hidden variables. First, we posit a family
of approximate densities ¢(-) € Q over the hidden variables.
Then, we find the member of that family that minimizes
the Kullback-Leibler (KL) divergence to the exact posterior.
Finally, we approximate the posterior with the optimized
member of the family ¢*(-) [Blei et al.l|2017].

ELBO. Formally, our goal is to find the best candidate in the
family Q, i.e., the one closest in KL divergence to the exact
posterior. Inference now amounts to solving the following
optimization problem,

q*(H) = argmin KL (q(H)|[p(H|Y)), (1)
q(H)eQ

where H = {M®) M(), Z & X} and the assumed Q can
be found in Sec. [3.4] Minimizing the KL divergence in (T)) is
equivalent to maximizing the evidence lower bound (ELBO)
[Blei et al.,|2017]] as below (see Appendix A for details),

logp(Y) > Y " Eyoaim) [log p(Yi| MP))] — KL(g(M®))[|p(M )
2 L(MP) M),
where

ﬁ(M(p) MC) ZE M<C>)[logp(Y|M )}

i g

+ Z Z 2ijEq(wm) [log wj(-p)] + B log p(w™®)

i g

+ZE M(p))[logp M(p)
J

- Z B, [log a(M{)]

Z Z Zij10g 24

— Eywmj[loga(w®)]

= D E, 0y [loga(M;")], @
J

and 2; ; = Eg(z)[2;]. The best child model M. and the
best parent model M., fp ) are obtained via

{M(p) MC)} = arg max L(M
M), M)

M(C))

It is important to note that although here we focus on HMMs,
our framework could be used for any child and parent prob-
ability distributions. The whole algorithm is summarized
in Alg. [Tl We explain each step in the following subsec-
tions, in particular the prior distributions and the variational
distributions for approximating the posterior.

3.3 PRIORS DISTRIBUTIONS

Priors on Child Models. The key element in our ELBO in

is to construct the child-parent model p(M, i(c) | M ](p ) ). It
can be considered as the prior on child model MZ.(C)

assignment to parent model M ;p )

M) are generated. Since M\ and M ;p ) are both HMMs
with their own states, a hidden state permutation matrix gbi’j
has been introduced to match their states, where ¢, = 1 if

given
, from which instances of

the kth state in MZ-(C) corresponds to the [th state in M ](p ),

otherwise qﬁ;g]l = 0. We assume that each child state k is

. ) (»)
assigned to only one parent state [, i.e., Zf 1 qb

Vk € {1,...,S8(9}, although multiple child states can be
assigned to the same parent state.

With ¢/, we obtain a lower bound on log p(M .| M j(p M,
M(p))d(bi,j
J

(q(¢™)[Ip(¢™)),

where we introduce a variational posterior distribution

q(¢™7). In the generative process, we assume that the state
permutation ¢/ is applied to the parent model and then the
child model parameters (initial probability, transition matrix,
and emission densities) are sampled. By marginalizing over
the state permutation matrix distribution g(¢*7), we avoid
the issue of multiple equivalent parameterizations of the
hidden states.

log p(M|MP)) = log / (M) g3

> Ey(gia) [logP(M(c)W’jy Mj(p))] - KL

Next, we construct the child-parent model, where the parent
HMM parameters serve as the “mean” of the prior distribu-
tions of the child HMM parameters,

(©)i|ale) pid ()

log p(Mi(C) |p% M](p)) = log p(m



+ log p(u (e):#) giod (p)7j7ﬂéc)7A(p),j’ z/éc))

+ logp(A““leé'), ¢, AW), 3)
where aéc), eéc), (gc)’ and 1/(()0) are scalar hyperparameters
to control the regularization effect from the parent models.

Eq. is the key that connects the parent model M ;p ) and

child model Mi(c). Specifically, we take the priors on the
child model parameters to be their corresponding conjugate
priors [Diaconis et al.| [1979]:

1. Prior on ith child initial probabilities 7 (),
p(’]T(c)’L|O[(C) QS’L"] W(F)J) — Dlr(ﬂ-(c)’Z'de)’

where &' = qﬁz (P is a concentration hyperpa-
rameter, and ¢W 7P is a state permutation of P,

2. Prior on ith child transition matrix A(€)

(A, ¢, APV = HDlr )

where a(c)’ is the kth row of A ¢hi =

el v A(p)’J (¢*9)T is the concentration hyperparam-
eter of the kth row of the permuted matrix.

3. Priors on 7th child emission mean and precision,
p(ult ATy,
= TTTT VG i (507

ko1

®).g 5(()0)7 AP V(()C))
(C),i)_l)
WAL AP 10 0]

where W(-|W, v) is a Wishart distribution with scale
matrix W and degrees-of-freedom v. With this prior,

we have E[uéc)’i] Zz ¢k lulp),j and E[Aic),i} _

i, A (P)sJ
2 ¢k,zAl
Priors on Parent Models. Next, we consider the priors on
parent models,

K®
(M) = p ) T (M),
j=1

s

,j Hp (P)J

Similar to the child models, we assume conjugate priors on
parent models parameters to simplify the analysis,

w® ~ Dlr(w(p)\n(p))
7@ < Dir(r®h o),
Ml(p)uml(p)d ~ N(Ml(p)J |m(()17)’ (ﬂép)Al(P)»])—l)’
A[(P)vj N, W(AZ(P)7J|W(P) V(P)).

(M(p) (I)),j’ Al(p)J)'

al(P)J N Dir(al(p)’j |Eép))’

(») (p) W(p) (p) 5(1)

The hyperparameters 7

Vép ) are all scalars. Note that p(M (p)) serves as both the
prior on M () and the hyper-prior on M (¢,

3.4 VARIATIONAL DISTRIBUTIONS

The ELBO in () is maximized via coordinating ascent w.r.t.
the variational distribution over each hidden variable, i.e.,
iteratively optimizing each factor, (M), g(M(9)), ¢(Z),
q(®), and ¢(X), while holding the others fixed, resulting
in the approximate posterior distributions for each hidden
variable. Specifically, our method has two alternating steps:

1. Given ¢(M ) and q(M(“)), update g(X), ¢(®), and
q(Z) via maximizing (2).

2. Update q(M®)) and g(M () via maximizing .

Here we restrict the family of distributions ¢(H) with a
mean field assumption, i.e., the ¢ distribution factorizes w.r.t.
each parameter. In the optimization, many of the parameters
have closed form updates (similar to Beal et al.| [2003]),
while others need numeric solvers. We derive the optimal
variational distributions in the following.

3.4.1 Variational Distributions for 7, ®, and X

We provide the optimal variational distributions for the as-
signment variables Z, the state permutation matrices ®, and
the hidden state sequences X . With the mean field assump-
tion of variational distribution ¢, we are only interested in
the functional dependence of the RHS in (2)) on the variables
Z, ®, and X, respectively.

For the variational distribution ¢(Z)

=1L HJ(Z”)ZJ and
1 - x E E 1 M@ E ) »)
0g 2ij X B\ 0 E, o logp(M;”|M;") + E o logw,”.
After normalizing, the optimal solution is

P) exp {]EM_(“) EM(’” logp(Mi(c) |M](p))}

By = — R , (4
> exp By oy log p(M,”|M"))}

where & w = Ellog w(p )] and the expectation term is ap-

prox1mated by a lower bound (see Appendix B.1). Z;; is
(p)

the responsibility for the parent model M;"" explaining the

child model Mi(c) and the corresponding observations Y;.

For the variational distribution ¢(®) = [T, I]; ¢(¢™),
q(¢™7) =TT, [L;( kjl)¢kl, and thus E[¢,] = ¢/ More-
over, we assume » . (;SZJI > 1, which means at least one

state in M is assigned to the /th state in M ;p ) There is no
closed form solution for ¢/ and we solve for the optimal
@"J via the optimization problem

s.t. Zgbkl—l

max £(¢"7)

Zw >1, (5)

where

L") o< By By log p(ML M),



Algorithm 1 Co-learning M ®) and M (¢)

Input: data Y = {V1,Ys,..., Yo}, 5@, K, §®),
K@ and hyperparameters a(() ), 600)’ 500)’ (e ), 77( o) mép ).

W(p) (P) (p) ﬁ )
Output M(”) M(°) andZ

1: Initialize M) and M(©),
2: repeat
3: for i=1to K andj=1to K® do

4: Compute ¢ via (3).

5: Compute z;; via {@).

6: end for

7:  for eachY;,7i=1to K© do

8: Compute responsibilities 77, , , and 7}, , , ., via
©: o

9: Update M(C) update a(c)’/, efj}c’, , (C)’Z B(C)’l

(C)’ , and W(C o’ V1a , and @) respectlvely,

for k=1,. S

10:  end for

11:  Update M?) via and solving and .
12: until £(M @) M(©)) converges.

which contains all terms in 12) involving ¢*J (see Appendix
B.2). ¢, provides the probabilities of the kth child state
corresponding to the /th parent state.

For the variational distribution ¢(X) = [[, I, a(; ¢, since
each x! is independent of the parent model, ¢(x!)) can be
solved using the traditional variational Bayesian EM for
HMM s [Beal et al., 2003] given y¢,. The responsibilities

T;,t,k = E[x;tk],

kK € {1,...,8©}, are solved using the forward-
backward algorithm. T;,t, « 18 the responsibility for the %

Tntkk = E[xn,t,k’xn,t—l,k]’ (6)

th Gaussian for observation v/, ,, and 7 ,, ,, is a transition
responsibility.

3.4.2 Variational Distributions for Child Models

With the conjugate priors of M (9 assumed in Sec.
q(M(®)) is determined automatically by optimization of the
variational distributions and has the same form as the priors

(similar to Beal et al.|[2003]). For q(Mi(C)),
7% ~ Dir(n(®): ), a,(:)’i ~ Dir(a,(:)’i|e,(€c)’i),
i N i (8780 7,

AL WO W),
fori e {1,--- ,K©®}, ke {1, --,S}. The parameters

(O egf)’i, m,(:)’i, ﬁl(cc)’i, Wéc)’i, V]ic),i are all updated by
closed form solutions that combine observations and priors.

Specifically, for initial and transition probabilities,

(C)Z_ +a0 ZZ’L]ZQSZ]A(I))J (7)

where on the RHS, NI’ = rn 1k is the number of
observations in Y; with the kth state at t = 1, and the second
term is the number of virtual samples provided by parent
models with the kth state at ¢ = 1 and 777 = E[z{"].
Similarly,

;ec;c,' _Nk K’ +€o Zzwzzﬁbﬁ l(:l;’ ;SIJJH ®)

where N}, o = >3, "1, 7% 4 1 s 1S the number of obser-
vations which transition from kth state to &’th state in the
sequences, and the second term is the number of virtual sam-
ples provided by parents models with the same transition

and al(]? = E[a 1(32 gl

For the emission probability density, we have

ml(cc)’i = 5<c> = [500) g + N}cyki| &)

B~ N,

)i . N (e) i VN _
ng = NS+ =5 (G5, — mi) (g — )"

B((‘) 7
+Boc Ck+zzljz¢ ( ) [(A(p)]) ]7

= N;c +VéC),

where

) p 1 ) )
Ne=32D Thaw U= 37 20 D Phtalins:
n t E n t
. 1 . . o y
Sk = o 2 Z Pk W = 50 Wi — 7"

= WP —d =1, 10)

The regularization effect of the parent model is seen in the
update steps, where each update is a mix of observations
(from data) and a regularization term (from parents). For ex-
ample, in (9)), m,(f)’l is updated by ﬂéc) virtual samples m},
from parents and N; observations ¥ which are assigned
to the ith child with kth state. 8\”" and v/{”"" are updated
by the number of observations assigned to the kth child
state N} plus the virtual samples size ﬁo and VO , respec-
tively. For W,Ec) Z, the first line is the same with VBEM,
and the second line shows the variance provided by the
parent models. Note that, with the constraint 3~ ¢ > 1,
the regularization effect will not lose efficacy — even 1f Ni,
N}, 4 and N7 ; are all zeros for the kth state in child M,
that state will not degenerate. Comparing with VBEM, our
method is equivalent to giving each parameter an exclusive
prior, and the prior is pr0V1ded by its parent models and
averaged with weight 2;; oud i
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Fig. 3: Illustration of HMMs from synthetic data. The first row is the ground-truth (GT). The following rows show parent HMMs in M ®)
from VBEM+VHEM (BV), EM+VHEM (EV), VBEM+VBHEM (BB), EM+VBHEM (EB), and our method, respectively. The last three
rows show child HMMs in M (© from VBEM (VB), EM, and our method.

3.4.3 Variational Distributions for Parent Models

The functional form of the factors ¢(M (P)) cannot be deter-
mined automatically by optimization of the variation distri-
bution. Thus, we assume g(M (p)) has the following form,

w® ~ Dir(w(p)m(p)),

7P)J . Dir(x 7| PH), al(P)J ~ Dir(agp)’jkl(p)’j),
Ml(p),j - N-('ul(p),jlml(p),j7 (5l(p)’jAl(p)’j)_l),

Al(p),j -~ W(Agp),jm/l(p),j’ Vl(p),j).

The variational parameters are estimated by optimizing (2))
w.r.t. each parameter (see Appendix C).

For variational parameters {n](-p ) Bl(p )3 ,ml(p ):d }, the up-
dates are

Uj(-p) = Z z ),
i

, , 4 L1
ml(p)u _ [ﬁéc) Bl + ﬁ(()p) Vl(p),J Wl(p)u]

P =B+ B, an

. (ﬁéc)m{ + Bép) Vl(p)vj VVl(p)Jm(()fo))7

and the aggregated statistics from child models are

B =325 3 ditn W
k

%

N NS i (@ (@)
mi = 4 Y S W m
k

%

PN (Z)ml o (W)
M= ij kL g ST g1 :
i

%

The child models conversely influence the parent models
through: 1) the total precision B/, which is the summation
of precisions of the child models that are assigned to the

[th state in jth parent model M j(p ); 2) the total modified
mean m{ , which is the summation of means of the child
models that are assigned to the [th state in M J(p ); (iii) and
the total number of assignments 'yl], which are the num-
ber of child models assigned to the Ith state in M j(p ), and



Tab. 1: Synthetic experiment results, averaged over 100 trials: (a) SSKL between parents M ®) and ground-truth; (b) clustering Rand-index;
(¢) SSKL between children M (®) and ground-truth. Standard deviations are in parentheses.

Methods 7 =100 7T=280 7 =250 =230 T=10
VBEM+VHEM 18.70 (61.2) 41.94 (103.4) 28.37 (95.6) 29.97 (59.8) 35.62 (12.3)
EM+VHEM 387.49 (234.3) 284.65 (183.4) 208.83 (131.2) 247.81 (194.5) 158.68 (134.8)
(a) VBEM+VBHEM 69.64 (110.5) 61.43 (95.1) 58.67 (93.9) 142.12 (92.9) 89.68 (125.9)
EM+VBHEM 220.59 (153.7) 259.98 (172.3) 99.12 (68.7) 312.63 (164.0) 233.65 (159.7)
Ours 0.63 (1.6) 0.73 (1.8) 1.10 (2.5) 1.98 (4.5) 3.43 (5.6)
VBEM+VHEM 1.000 (.00) 1.000 (.00) 1.000 (.00) 1.000 (.00) 1.000 (.00)
EM+VHEM 0.646 (.22) 0.837 (.22) 0.830 (.20) 0.781 (.19) 0.843 (.19)
(b) VBEM+VBHEM 0.990 (.07) 0.990 (.07) 0.990 (.07) 0.990 (.07) 0.990 (.07)
EM+VBHEM 0.843 (.22) 0.780 (.24) 0.705 (.22) 0.660 (.18) 0.758 (.18)
Ours 1.000 (.00) 1.000 (.00) 1.000 (.00) 1.000 (.00) 1.000 (.00)
VBEM 0.75 (2.24) 0.85 (2.32) 1.44 (3.71) 2.83 (1.23) 6.70 (8.88)
(©) EM 32.20 (15.47) 31.77 (15.32) 26.01 (12.34) 25.72 (11.91) 21.43 (34.74)
Ours 0.31 (0.76) 0.36 (0.93) 0.54 (1.28) 1.21 (1.18) 2.23 (5.32)

1 Ty (WL(P)aJ')flVI(QC)viW)iC)J
d ul(p)’j—d—l

Al(p )7 and Aéc)’i are similar.

) is near to 1 if the precisions

For a(p)’j, el(p )+ , and I/l(p -3 , there are no closed-form so-
lutions, and they are solved through numeric solvers. For
a)J and el(p )J_ we solve the optimization problems:

max £(aP)7),
@7y st e >0,

max E(I/l(p)’j)7

s.t. P > 0, (12)

max L(e

s.t. Vl(p)’j >d+1,

where £(a/P)7), E(el(p)’j), and ﬁ(yl(p)’j) contain all terms

(P),d (P)J
l 1

involving alPri e ,and v in objective function l)

respectively. We restrict ,,Z(P 9 s d+ 1, and thus the expec-
tation in (I0) will always exist.

Interestingly, for W)/, setting the derivative of £(TW,*7)

W.I.L. VVl(p )3 o zero, we obtain a special case of an Alge-
braic Riccati Equation (see Appendix D),

_2CWZ(P)J + WZ(P)JRWZ(P)J - Q =0, (13)

where

_ A
_ AP,

R= VZ(P)J [ﬂ(()p) (ml(p)'] _ mép))(ml(p)’J _ m((JP))T + (W(EP))—l]’
_ 1 g (c) 5
Q= 7 _p_1 \pw7 T 10 22 2ij 2

Note that R and () are both symmetric positive definite
matrices, since they are the weighted sums of symmetric
positive definite matrices with positive coefficients. The

following Lemma guarantees that Wl(p ) s a symmetric
positive definite matrix.

Lemma 3.1 The Algebraic Riccati Equation (ARE)
—2cP+PRP-Q =0

oW

has a unique positive definite solution when R and Q) are
symmetric positive definite matrix.

The proof can be found in [Fazayeli and Banerjeel [2016]].
There are several numerical methods to solve the ARE (see
[Anderson and Moorel 2007]). In this paper, we use the
Matlab ARE solver (icare) to find the solution of (I3).

4 EXPERIMENTS

In this section, we test our method on synthetic data and
real data to show that our method can: (1) learn M (©) and
M ®) simultaneously; (2) jointly regularize M () and M ®);
and (3) give good clustering results.

4.1 SYNTHETIC DATA

We first conduct experiments on synthetic data.

4.1.1 Experiment setup

We generate a synthetic dataset via: (1) randomly generating
2 ground-truth (GT) HMM s with 3 states in R?; (2) sample
50 sample sets from each GT HMM and each sample con-
sists of 30 sequences with length 7 = 100 [Chan and Hsiao,
2018]); (3) add noise e ~ N(02,15) to each observation.
Thus, K =2, K(©) =100, $(©) = 3, and S = 3.

We compare our method with two-stage hierarchical
model learning methods: EM+VHEM, EM+VBHEM,
VBEM+VHEM, and VBEM+VBHEM. The child HMMs
are learned with standard EM or VBEM. The parent HMMs
are learned via hierarchical clustering, VHEM [|Coviello
et al.l [2014] or VBHEM [Lan et al., 2021]]. We test on se-
quences with different lengths, 7 € {100, 80, 50, 30, 10},
to show the effect on small sample size.

In order to quantify how close M ) and M (©) are to the GT,
we define a simple symmetric KL divergence (SSKL) be-
tween two HMMs, M; = {m;, A;,6;}, 4 = 1,2, as the sum
of SKL between each pair of HMM parameters (7;, 4;, 6;),
which is minimized over all state permutations,

SSKL(M1||M2) = Hslgl {SKL(’]T1||7T2) + SKL(A1HA2)
+ SKL(01]/02) },



Tab. 2: Averaged log-likelihood for different number of sample
sets V. Standard deviation in parenthesis.

Tab. 3: Eye movement data: Average log-likelihood on held-out
test data. Standard deviation in parenthesis.

N =10 N =20 N =50 N =100

T=3 T=5 7=10 T=15

VBEM -8.76 (.024) -8.51 (.014) -8.47 (.007) -8.43 (.005)
Ours -8.59 (.029) -8.47 (.012) -8.44 (.006) -8.42 (.005)

where SP is all possible state permutations. Note that here
we compare the HMM parameters separately, rather than
the whole HMM (as a time-series density), since we are
interested in recovering and interpreting the GT parameters.

4.1.2 Experiment results

The SSKL between M () and GT are shown in Tab. a).
Our method has significantly lower SSKL than other meth-
ods on sequences of every length, indicating that our method
well recovers the GT parent models. As the sequence length
7 decreases, the SSKL will increase in most cases — our
method has the least amount of increase and smallest stan-
dard deviation.

Fig. [3| shows five different GT HMMs for each test. Our
method is closer to the GT compared with other methods,
even though the emission distributions may have large over-
laps. When 7 = 10, our method is the only one that is close
to the GT, which is due to the good regularization from
the parent model, which pool common information from
the children. Some methods poorly estimate the emission
densities (e.g., the green state in EV(a)) because of wrong
clustering or badly learned individual HMMs.

The SSKL between M(®) and GT HMMs are shown in
Tab. [T[c). Our method also has lowest SSKL and smallest
standard deviation. Fig. E] (bottom) shows the individual
models learned by three methods. VBEM and EM meth-
ods tend to overfit, e.g., the HMMs for VB(b) and EM(e),
while our method overcomes this problem and learns better
individual HMMs.

Next, we compare the clustering performance using Rand-
index [Hubert and Arabie, |1985] against the ground-
truth clusters, shown in Tab. IIkb). Our method and
VBEM+VHEM have perfect clustering results, while
VBEM+VBHEM is second best. Although VBEM+VHEM
obtains perfect clustering results, our estimates of the parent
model are much better than those of VBEM+VHEM (see
Tab. [Th), which is due to our iterative updating between the
child and parent models. Our child model estimates are also
better than VBEM (Tab. [I(c)). The individual HMM from
VBEM may have wrong emission densities (see Fig. [3[c),
VB), leading to bad group HMMs (Fig.[3(c), VB+BV).

Finally, to demonstrate the regularization effect, we cal-
culate the log-likelihood (LL) of held-out test data (K =
2,5 = 3,7 = 10) for models learned with VBEM and Ours
using different numbers of sample sets. The results are aver-
aged over 100 trials, and appear in Tab. 2] The LLs of our
method are consistently higher than VBEM, especially for
small N (for each NV, paired t-test p < .001).

VBEM -123.94 (42.83) -47.51 (13.48) -15.52 (2:41) -14.09 (5.14)
Our -14.73 (2.49) -12.22 (0.94) -11.44 (0.47) -11.56 (0.67)

In summary, the experiment results show that our method
can learn M(©) and M®) simultaneously, M (¢) and M (®)
regularize each other, and also obtain good clustering re-
sults.

4.2 EYE MOVEMENT DATA

Hsiao et al.|[2021c]|| collect eye movement data from stimuli
with different feature layouts to explore participant groups
with consistent eye movement patterns. The data contains
the eye movement sequences of 61 participants when they
view 120 stimuli. With these data, we demonstrate that our
method has good regularization effect.

Following [Hsiao et al., 2021c], for each stimulus, we have
K© = 61 and set S©© = 3, S®) = 3, and K® = 2.
Each individual HMM models the eye fixation sequence of
one participant viewing one stimulus. We train individual
HMM using different length of fixations sequence, i.e., T €
{3,5,10,15} and use the remaining data as test data, and
compare with VBEM. We calculate the log-likelihood of
individual HMMs on test data to examine the performance
of regularization effect.

Tab. [3] shows the log-likelihood on test data, averaged
over participants and stimuli. Comparing with VBEM, our
method has larger log-likelihood under all scenarios, espe-
cially when 7 = 3. Moreover, with the decrease of the length
of training data, our method degrades less significantly than
VBEM, which shows the individual HMM learned by our
method has a good generalization ability. The illustration
of individual HMMs is shown in the Appendix. In sum-
mary, our framework effectively learns HMMs with good
performance.

S CONCLUSION

In this paper, we propose a tree structure variational
Bayesian method, which learn individual models and group
models simultaneously. The group model regularizes the
individual models, which shows advantages on small data
sets. We test our method on synthetic data and real data,
and demonstrate our method learns individual models and
group models together and has good clustering results. In
the future, we will extend our method to automatically de-
termine the number of components and the number of states
in individual models and group models. We will also apply
our model to real applications in other fields.
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