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Abstract

For a continuous random variable Z, testing con-
ditional independence X |= Y |Z is known to be a
particularly hard problem. It constitutes a key in-
gredient of many constraint-based causal discovery
algorithms. These algorithms are often applied to
datasets containing binary variables, which indic-
ate the ‘context’ of the observations, e.g. a control
or treatment group within an experiment. In these
settings, conditional independence testing with X
or Y binary (and the other continuous) is para-
mount to the performance of the causal discovery
algorithm. To our knowledge no nonparametric
‘mixed’ conditional independence test currently ex-
ists, and in practice tests that assume all variables
to be continuous are used instead. In this paper
we aim to fill this gap, as we combine elements
of Holmes et al. [2015] and Teymur and Filippi
[2020] to propose a novel Bayesian nonparametric
conditional two-sample test. Applied to the Local
Causal Discovery algorithm, we investigate its per-
formance on both synthetic and real-world data,
and compare with state-of-the-art conditional inde-
pendence tests.

1 INTRODUCTION

Conditional independence testing is a fundamental ingredi-
ent of many causal inference algorithms such as the PC
algorithm [Spirtes et al., 1993], FCI [Spirtes et al., 1999],
and the Local Causal Discovery algorithm [Cooper, 1997].
These algorithms can be proven to be complete, sound, or
have other desired properties, but these proofs often invoke
the use of an ‘oracle’ for determining conditional independ-
ence between variables. In practice, the applicability and
performance of the algorithm heavily relies on the reliabil-
ity of the conditional independence test that is being used.

Consequently, incorporating any prior knowledge of the vari-
ables involved into the choice of conditional independence
test can be desirable.

One way of incorporating prior knowledge is by tailoring
the conditional independence tests for X |= Y |Z on whether
the variables involved are discrete or continuous. In the
case that the conditioning variable Z is continuous, condi-
tional independence testing is known to be a particularly
hard problem [Shah and Peters, 2020] and further specifying
whether X and Y are continuous or discrete can be bene-
ficial. For the parametric setting multiple ‘mixed’ tests are
available [Scutari, 2010, Andrews et al., 2018, Sedgewick
et al., 2019]. For the nonparametric setting, recent literature
proposes multiple tests where X and Y are both assumed
to be discrete or both continuous, but to our knowledge no
nonparametric test for either X or Y discrete (and the other
continuous) currently exists.

Such a ‘mixed’ conditional independence test has a partic-
ularly important role in constraint-based causal discovery
algorithms that are applied to datasets which are formed
by merging datasets from different contexts [Mooij et al.,
2020]. Such a context may for example be whether certain
chemicals have been added to a system of proteins (as in
Section 3.3), or may be the country of residence of a re-
spondent in an international survey. When certain features
of interest (system variables) have been measured in dif-
ferent contexts, these measurements can be gathered into
a single dataset by adding one or several (often discrete)
context variables to the dataset, encoding the context that
the observation originates from. Merging datasets in this
manner may render certain causal relations identifiable, and
may improve the reliability of the conditional independence
tests due to an increasing sample size [Mooij et al., 2020].

Among the continuous conditional independence tests is a
recently proposed Bayesian nonparametric test by Teymur
and Filippi [2020] which extends a continuous marginal
independence test [Filippi and Holmes, 2017] by utilising
conditional optional Pólya tree priors [Ma, 2017]. Although
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 this conditional independence test performs well on data
originating from continuous distributions, the prior is mis-
specified in the case of combinations of discrete and continu-
ous variables. Subsequently, the test has close to zero recall
when applied to certain datasets consisting of combinations
of discrete and continuous variables.

In this paper we focus on the simplified case of testing
X |= Y |Z, where Z and either X or Y is continuous, and
the other is binary. We propose a Bayesian nonparametric
conditional two-sample test by combining elements of the
two-sample test by Holmes et al. [2015] and the continu-
ous conditional independence test by Teymur and Filippi
[2020]. The two-sample test [Holmes et al., 2015], inde-
pendence test [Filippi and Holmes, 2017] and our novel
conditional two-sample test are empirically compared to
both classical and state-of-the-art frequentist (conditional)
independence tests when testing for a single (conditional)
independence, and when simultaneously testing for multiple
(conditional) independences as required by the constraint-
based causal discovery algorithm Local Causal Discovery
(LCD) [Cooper, 1997].1 Since p-values do not, unlike Bayes
factors, reflect any evidence in favour of the null hypothesis,
the comparison of Bayesian and frequentist tests in the LCD
setting is not straightforward. We propose a measure which
allows comparison of the LCD algorithm when using tests
from both paradigms, and use it for the comparison of the
ensemble of Pólya tree tests with frequentist tests. We ob-
serve that LCD with the ensemble of Pólya tree tests outper-
forms other state-of-the-art (conditional) independence tests,
while computation time is substantially lower compared to
the competing tests.

We apply the LCD algorithm with the Pólya tree tests to pro-
tein expression data from Sachs et al. [2005], and conclude
that this implementation provides a result that is more likely
to resemble the true model than the output of LCD with the
often used partial correlation test.

2 INDEPENDENCE TESTING USING
PÓLYA TREE PRIORS

If we let X : Ω→ X be a random variable with distribution
P and letM be the space of all probability distributions
on X , then for subsetsM0 ⊂ M andM1 ⊂ M we may
test the hypotheses H0 : P ∈ M0 and H1 : P ∈ M1 by
considering random measures P0 and P1 with distributions
Π0 and Π1 such that P0 ∈ M0 Π0-a.s. and P1 ∈ M1

Π1-a.s. If the posterior distribution of either P0 or P1 is
consistent (depending on whether P ∈ M0 or P ∈ M1)
and both models M0 and M1 are absolutely continuous
with respect to some dominating measure, then we may

1Code for the (conditional) independence tests, simulations
and results on real world data is publicly available at https:
//github.com/philipboeken/PTTests.
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Figure 1: Construction of a one-dimensional Pólya tree
based on canonical partitions.

equivalently state the hypotheses as H0 : X ∼ P0 and
H1 : X ∼ P1, and test these hypotheses by computing the
Bayes factor

BF01 =
P(H0)

P(H1)

∫
M
∏n
i=1 p(Xi)dΠ0(P )∫

M
∏n
i=1 p(Xi)dΠ1(P )

, (1)

where P(Hj) is the prior probability of hypothesis Hj , p is
the Radon-Nikodym derivative of P with respect to the dom-
inating measure, and the integral

∫
M
∏n
i=1 p(Xi)dΠj(P )

is the marginal likelihood of the sample X1, ..., Xn with
respect to hypothesis Hj . In this work we will use the Pólya
tree as a random measure which, under certain assumptions,
has a closed form expression for the marginal likelihood of
a sample of observations. This is a major benefit compared
to e.g. the Dirichlet process, as the Dirichlet process often
requires costly MCMC sampling to calculate the marginal
likelihood.

To construct a Pólya tree on X ⊆ R we consider the set of
canonical partitions of X , which is defined as the recursive
set of partitions

T = {X , {B0, B1}, {B00, B01, B10, B11}, ...} (2)

formed by mapping the family of dyadic partitions of [0, 1]
through the inverse of a cumulative distribution function
G : X → [0, 1] [Ghosal and van der Vaart, 2017]. This
results in a family of partitions of X , where for level j we
have X =

⋃
κ∈{0,1}j Bκ, with

Bκ :=
[
G−1(k−12j ), G−1( k2j )

)
, (3)

and k denoting the natural number corresponding with the
bit string κ ∈ {0, 1}j . A schematic depiction of this binary
tree of partitions is shown in Figure 1. If we define the index
set K := {{0, 1}j : j ∈ N}, then the random measure P
is constructed by letting P(X ) := 1 and recursively assign-
ing random probabilities to Bκ ∈ T by splitting from the
mass that is assigned to Bκ a fraction θκ0 to Bκ0 and a frac-
tion θκ1 to Bκ1, where we let (θκ0, θκ1) ∼ Dir(ακ0, ακ1).
This construction yields a random Borel measure P on X
[Ghosal and van der Vaart, 2017] which adheres to the fol-
lowing definition:
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 Definition 2.1 (Lavine, 1992) A random probability meas-
ure P on (X ,B(X )) is said to have a Pólya tree distribution
with parameter (T ,A), written P ∼ PT(T ,A), if there ex-
ist nonnegative numbers A = {(ακ0, ακ1) : κ ∈ K} and
random variables Θ = {(θκ0, θκ1) : κ ∈ K} such that the
following hold:

1. all the random variables in Θ are independent;

2. for every κ ∈ K, we have (θκ0, θκ1) ∼ Dir(ακ0, ακ1);

3. for every j ∈ N and every κ ∈ {0, 1}j we have
P(Bκ) =

∏j
i=1 θκ1...κi .

Let X be a continuous random variable and consider the
Pólya tree P ∼ PT(T ,A). Drawing a distribution from P is
done by drawing from each of the random variables in Θ. If
we let X1, ..., Xn be a sample from X , then the likelihood
of that sample with respect to a sampled distribution Θ from
the Pólya tree PT(T ,A) is

p(X1:n|Θ, T ,A) =
∏
κ∈K

θnκκ , (4)

where nκ denotes the number of observations lying in Bκ,
i.e. nκ := |X1:n ∩Bκ|. If we integrate out Θ we obtain the
marginal likelihood

p(X1:n|T ,A) =
∏
κ∈K

B(ακ0 + nκ0, ακ1 + nκ1)

B(ακ0, ακ1)
, (5)

where B(·) denotes the Beta function.

The choice of T and A influences certain characteristics
of samples from the Pólya tree. For example, if we let
ακ0 = ακ1 for all κ ∈ K then the Pólya tree is centred on
the base distribution with cumulative distribution function
G, i.e. E[P(Bκ)] =

∫
Bκ
G′(x)dx. Kraft [1964] provides

sufficient conditions on A for the Pólya tree to be domin-
ated by Lebesgue measure. These conditions are satisfied if
for each κ ∈ {0, 1}j we take ακ = |κ|2 with |κ| := j. The
choice of the parameter A is analysed in Section 4.

2.1 A NONPARAMETRIC CONDITIONAL
TWO-SAMPLE TEST

We now propose a conditional independence test of the type
C |= X|Z, where X and Z are continuous one-dimensional
random variables and C is a binary random variable. Let
F be the conditional distribution of X|Z, and let the con-
ditional distributions of X|{C = 0}, Z and X|{C = 1}, Z
be F (0) and F (1) respectively. Then we formulate the con-
ditional independence test between C and X given Z as a
two-sample test, i.e.

H0 : C |= X|Z ⇐⇒ F (0) = F (1) = F

H1 : C 6 |= X|Z ⇐⇒ F (0) 6= F (1).
(6)

Following Teymur and Filippi [2020] we will utilise the con-
ditional optional Pólya tree (cond-OPT) prior [Ma, 2017]
for modelling the conditional distributions F , F (0) and F (1).
The cond-OPT is a random conditional probability meas-
ure on e.g. X × Z , where X is the response variable and
Z is the predictor. In order to construct the cond-OPT, we
first construct a family of partitions TZ of Z according to
the partitioning scheme of the optional Pólya tree (OPT)
[Wong and Ma, 2010], which results in a random subset
of the canonical partitions T as constructed by equation
(3). This random subset of T is obtained by first adding
B∅ := Z to TZ . Then we sample from the random variable
S ∼ Bernoulli(ρ); if S = 1 we stop the partitioning pro-
cedure, and if S = 0 we add B0 and B1 to TZ . Then, for
both B0 and B1 we repeat this procedure; we first draw S
from Bernoulli(ρ) and depending on the outcome we add
the children of B0, then we repeat this to possibly add the
children of B1. This process is iterated, and terminates a.s.
when ρ > 0.

Having obtained the family TZ , we construct a ‘local’ ran-
dom measure P(·|Bκ) on X for each Bκ ∈ TZ by letting
P(·|Bκ) ∼ PT(T ,A), and we define the conditional prob-
ability P(·|Z = z) to be constant and equal to the local
Pólya tree P(·|Bκ) on the stopped set Bκ 3 z. The res-
ulting family of random measures on X is the conditional
optional Pólya tree (cond-OPT) [Ma, 2017]. When using
the canonical partitions for both X and Z and assuming
that all the local Pólya trees are a.s. dominated by Lebesgue
measure, Ma [2017] shows that the cond-OPT places posit-
ive probability on all L1 neighbourhoods of any conditional
density f(·|·) on X × Z .

When we are given n i.i.d. observations
(C1, X1, Z1), ..., (Cn, Xn, Zn), then under the null
hypothesis we are interested in the marginal likelihood
of a sample (X1, Z1), ..., (Xn, Zn) with respect to the
cond-OPT prior. This is obtained by for every Bκ ∈ TZ
considering the subsample X(Bκ) := {Xj : Zj ∈ Bκ}. As
the cond-OPT prior considers a general Pólya tree prior for
this subsample, we simply compute the marginal likelihood

pX(Bκ) := p(X(Bκ)|T ,A) (7)

using equation (5). If Bκ is a so called leaf-set, i.e. the set
contains at most one observation or it has no children in the
family of partitions TZ , then we simply return this marginal
likelihood. If Bκ is not a leaf-set, we continue along the
children Bκ0 and Bκ1. We integrate out the randomness of
the random family of partitions by considering the entire
family of canonical partitions T of Z , and incorporating the
stopping probabilities S by weighing the elements Bκ ∈ T
of level |κ| with E(1 − S)|κ| = (1 − ρ)|κ|. The recursive
mixing formula is given by

ΦX(Bκ) =

pX(Bκ) if Bκ is a leaf-set
ρ · pX(Bκ) +
(1− ρ) · ΦX(Bκ0)ΦX(Bκ1)

otherwise,



 and the resulting quantity ΦX(Bκ) is the marginal likeli-
hood of {(X1, Z1), ..., (Xn, Zn)} ∩ X ×Bκ, with respect
to the cond-OPT.

Under the alternative hypothesis we split the sample into sets
X(0) := {(Xj , Zj) : Cj = 0} and X(1) := {(Xj , Zj) :
Cj = 1}, and compute the marginal likelihoods ΦX(0)(Z)
and ΦX(1)(Z) of these sets with respect to (independent)
cond-OPT priors. We finally test the hypothesis by comput-
ing the Bayes factor

BF01 =
ΦX(Z)

ΦX(0)(Z)ΦX(1)(Z)
, (8)

where we have set the prior odds to 1.

We note that when no data is provided for Z and thus Z
constitutes a leaf-set, this test defaults to the two-sample test
from Holmes et al. [2015]. An overview of this two-sample
test and the continuous independence test by Filippi and
Holmes [2017] is provided in the supplement.

3 EXPERIMENTS

Implementing the conditional independence test requires
choosing certain hyperparameters. As mentioned earlier, we
set ακ = |κ|2. As argued by Lavine [1994] we will only
consider partitions up to a pre-determined level J , making
P into a truncated Pólya Tree. Hanson and Johnson [2002]
provide the rule of thumb J = blog2(n)c, which corres-
ponds to on average finding one observation in each element
of the partition. We find however that J = blog4(n)c, which
corresponds to finding approximately

√
n observations in

each element of the partition, provides similar results and
considerably reduces computation time, so we use this max-
imum depth. Throughout this work we will use the standard
Gaussian cdf G to form the canonical partitions. In conjunc-
tion with this mean measure, we standardise the data before
computing the marginal likelihoods. For computing the mar-
ginal likelihood of the cond-OPT we use ρ = 1/2 [Ma,
2017]. Similar to the computation of marginal likelihoods of
regular Pólya trees, we use a maximum partitioning depth
of blog4(n)c, so we consider Bκ ∈ TZ to be a leaf-set if it
contains at most one value, or if |κ| = blog4(n)c.

All experiments are run on a MacBook Pro with a 3.1 GHz
CPU and 16GB of RAM, with a parallelised R implement-
ation of the LCD algorithm. Code for the (conditional) in-
dependence tests, simulations and results on real world
data is publicly available at https://github.com/
philipboeken/PTTests.

3.1 LOCAL CAUSAL DISCOVERY

As mentioned earlier, a ‘mixed’ conditional independence
test as proposed in Section 2.1 is specifically needed when
applying causal discovery algorithms to datasets containing

binary (or discrete) context variables, which encode the con-
text that observations of the system variables (the variables
of interest) originate from. In accordance with Mooij et al.
[2020], we regard both the context variables and the sys-
tem variables as distributed according to the solution of a
Structural Causal Model (SCM) [Pearl, 2009]. A relatively
insightful causal discovery algorithm is the Local Causal
Discovery (LCD) algorithm [Cooper, 1997]. Although often
referred to as an algorithm, it essentially consists of the
following proposition:

Proposition 3.1 (LCD, Mooij et al. [2020]) If the data
generating process of the triple of random variables
(C,X, Y ) has no selection bias, can be modelled by a faith-
ful simple SCM, andX is not a cause ofC, then the presence
of (in)dependences

C 6 |= X, X 6 |= Y, C |= Y |X (9)

implies that X is a (possibly indirect) cause of Y . If this is
the case, we speak of the ‘LCD triple’ (C,X, Y ).

By repeatedly applying this proposition to different triples of
random variables one can (partially) reconstruct the under-
lying causal graph of the dataset at hand. If we are provided
with a dataset consisting of observations of context variables
(Ck)k∈K for some index setK and system variables (Xi)i∈I
for some index set I for which we assume that the system
variables do not cause the context variables, then we may
iteratively apply Proposition 3.1 to all triples (Ck, Xi, Xi′)
where k ∈ K and i 6= i′ ∈ I, and provide a directed graph
as output where the edges can be interpreted as representing
indirect causal effects.

3.2 SIMULATIONS

In our simulations we repeatedly simulate a triple of ran-
dom variables (C,X, Y ). Each time we simulate a set of
observations, we test for C |= X,X |= Y and C |= Y |X indi-
vidually, and by combining the output of these three tests
we formulate the output of the LCD algorithm. Upon repeat-
ing this scheme a number of times we are able to display
ROC curves for each of the three test cases, and for the
LCD algorithm. To widen the scope of this setup, in each
round of simulations we randomly choose one of the graphs
of Figure 2, and we randomly pick the relations between
C and X and between X and Y from predefined, varying
possibilities. More specifically, if we let E be an external
factor (possibly depending on Y ) we setX equal to g(C,E),

https://github.com/philipboeken/PTTests
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Figure 2: Three SCMs used for the simulations.

which is randomly chosen from

g(c, e) =



e no intervention
(1− c)e+ c(e+ θ) mean shift
(1− c)e+ c(1 + θ)e variance shift
(1− c)e+ cθ perfect intervention
(1− c)e+ c(e+B) mean shift mixture,

(10)

with θ ∼ U({2, 3, 4, 5, 6}) independently drawn per round
of simulations and B ∼ U({−1, θ}) independently drawn
for every observation. These mappings between C and X
can be interpreted as setting X equal to the value E in
context C = 0, and intervening on X in context C = 1. If
we for example inspect the ‘mean shift’, then if C = 1 we
intervene on the distribution ofX by shifting the mean ofX
with the amount θ. When simulating multiple observations,
this intervention on X is performed on approximately half
of these observations, due to C having a Bernoulli(1/2)
distribution. The relation ` between X and Y is randomly
picked from

`(x) =


0 no link
x linear
x2 parabolic
sin(12πx̃) sinusoidal

(11)

where x̃ = x/(max(x1, ..., xn) − min(x1, ..., xn)). It de-
pends on which graph from Figure 2 is chosen whether we
have X `→ Y , X `← Y or X `← L

`→ Y , where in the last
case the two `’s are drawn independently. The possibility
of picking g(c, e) = e and `(x) = 0 ensures the occurrence
of C |= X and X |= Y respectively, which in turn enables
plotting ROC curves of these test cases.

We compare the Pólya tree based ensemble of the two-
sample test [Holmes et al., 2015], independence test [Filippi

and Holmes, 2017] and conditional two-sample test (Sec-
tion 2.1), denoted by polyatree, with both classical and
recently proposed (conditional) independence tests. The
tests that are suitable for mixed testing are mi_mixed and
lr_mixed, where the former is based on mutual informa-
tion and uses the implementation of the bnlearn package
Scutari [2010], and where the latter is a likelihood ratio test
of linear and logistic regressions [Sedgewick et al., 2019].
Among the more classical continuous tests is the Pearson
correlation- and partial correlation test, denoted by ppcor,
implemented using the synonymous R-package [Kim, 2015].
Harris and Drton [2013] promote the use of Spearman’s
(partial) rank correlation test in the context of nonparanor-
mal models, which we denote by spcor. Among the more
state-of-the-art continuous tests is the Generalised Covari-
ance Measure (GCM) [Shah and Peters, 2020], which can
be loosely interpreted as a nonlinear extension of the par-
tial correlation test. The GCM is implemented with pen-
alised regression splines as provided by the R-package
GeneralisedCovarianceMeasure, and is denoted
by gcm. Departing from the regression-type independence
tests, we also consider the Randomised Conditional Correl-
ation Test (RCoT) as proposed by Strobl et al. [2019], which
closely approximates the Kernel Conditional Independence
test by Zhang et al. [2011] at the benefit of significantly
lower computation time. For marginal independence testing
the RCoT defaults to an approximate version of the Hilbert-
Schmidt Independence Criterion [Gretton et al., 2008]. This
ensemble is denoted by rcot. Lastly we compare to the
Classifier Conditional Independence Test (CCIT) [Sen et al.,
2017], denoted by ccit, which uses the XGBoost binary
classifier to assess presence of conditional independence.

Comparing Bayesian and frequentist tests based on their per-
formance in the LCD algorithm is not straightforward, since
the triple of tests for C 6 |= X,X 6 |= Y and C |= Y |X does not
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Figure 3: ROC curves of different ways of scoring an LCD triple (C,X, Y ). See main text for details.

by default output a single confidence score. For each test we
output the p-value, or in case of the Bayesian tests the H0

model evidence P(H0|data).2 We construct ROC curves for
testing ‘positive’ outcomes C 6 |= X , X 6 |= Y and C 6 |= Y |X
by varying the threshold α, representing the upper bound on
the p-value/model evidence for drawing a positive conclu-
sion. The triple (C,X, Y ) is given a ‘positive’ label if the
data is generated according to the relation C → X → Y .
Typically, varying the threshold α from 0 to 1 produces an
ROC curve between the points (0, 0) and (1, 1). If we denote
the frequentist p-values or Bayesian H0 model evidence for
the tests C |= X , X |= Y and C |= Y |X with pCX , pXY and
pCY |X respectively (with independence under the null hy-
pothesis), and if we were to use the same α as threshold
for testing whether pCX < α, pXY < α and pCY |X > α,
then varying α between 0 and 1 does not result in a curve
between (0, 0) and (1, 1), as shown in Figure 3a. To assess
whether we provide a fair comparison between Bayesian and
frequentist tests, we include a Bayesian version of the Pear-
son (partial) correlation test [Wetzels and Wagenmakers,
2012], denoted by ppcor_b. Alternatively we could use α
for testing pCX < α, pXY < α and pCY |X > 1 − α,
as shown in Figure 3b. In this case the level α reflects
the amount of evidence for the desired conclusions C 6 |= X ,
X 6 |= Y and C |= Y |X . For frequentist tests this would not
make sense, as for decreasing α we require more evidence
for H0 : C |= Y |X , and the p-value has a uniform distri-
bution under H0. This is remedied by, when testing for
independence C |= Y |X , only varying α between 0 and a
fixed α0 (Figure 3c). More specifically, for level α the LCD
algorithm outputs the score

sLCD = 1[0,α](pCX) · 1[0,α](pXY )

· 1(α0,1]∪(1−α,1](pCY |X), (12)

where we let α0 = 0.05 for frequentist tests and α0 = 0.5
for Bayesian tests. Although this α0 is quite arbitrarily
chosen, the use of this performance measure is corroborated
by the observation that in Figure 3c the frequentist partial

2Recall that P(H0|data) = 1− (1 + BF01)
−1.

correlation and Bayesian partial correlation tests have sim-
ilar performance.

Figures 4 (a–d) show the results of 2000 rounds of simula-
tions, where in each round we simulate 400 observations.
On the ROC curves we have marked the reference points
α = 0.05 and α = 0.5 for respectively frequentist and
Bayesian tests. Figures 4 (e–h) generalise these results, as
they show the areas under the ROC curves (AUC) for vary-
ing sample sizes. We note that for conditional independence
testing (Figure 4c and 4g), the Pólya tree test from Section
2.1 and the RCoT perform relatively well. It is interesting
to see that the other tests have performance close to ran-
dom guessing. It is however unclear whether this is due
to the nonlinearity `, the intervention g or the fact that C
is binary instead of continuous. From Figures 4d and 4h
we see that the high performance of the Pólya tree tests
accumulates into good performance of the LCD algorithm.
Interestingly, the CCIT also performs quite well, despite its
weak performance in conditional independence testing.

In Figure 5 we display for each independence test the com-
putation times of the three test cases, accumulated over 2000
rounds of simulation at a sample size of n = 400, as per-
formed for generating Figures 4 (a–c). The reader should be
aware that for the GCM the difference in runtime between
marginal and conditional independence testing is due to the
fact that for conditional independence testing two nonlinear
regressions are performed, and for marginal testing a stat-
istic similar to partial correlation is computed. The CCIT
has relatively high computation time due to costly training
of the XGBoost classifier for each round of simulations,
which makes it rather impractical to use. The partial correla-
tion tests clearly perform best in terms of runtime. Overall,
we conclude that the Pólya tree tests provide a very good
trade-off between performance and computation time.

3.3 PROTEIN EXPRESSION DATA

We apply the LCD algorithm, implemented with the
Bayesian ensemble of independence tests, to protein expres-
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Figure 4: ROC and AUC results for simulated data. The first row depicts ROC curves for individual tests (a–c) and for the
LCD algorithm (d) over 2000 rounds of simulations at sample size n = 400. The second row depicts the median AUC for
varying sample size (ranging from 60 to 1500) for individual tests (e–g) and for the LCD algorithm (h) over 200 rounds of
simulations.
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Figure 5: Runtimes of the different tests on 2000 rounds of
simulations at n = 400.

sion data [Sachs et al., 2005]. Sachs et al. provide an ‘expert
network’, depicting the consensus (at that time) among bio-
logists on the true network of signals between 11 proteins
and phospholipids, and 10 reagents that are added to the
cells. They estimate a causal graph which deviates from the
expert network by some edges, refraining from claiming
whether these edges should be added to the true network.
For a detailed description of the data set and a depiction of
the expert network we refer to the supplement.

Many authors have used this data set for estimating the un-
derlying causal network, of which the graph of the original

paper [Sachs et al., 2005] most closely resembles the expert
network [Ramsey and Andrews, 2018]. Furthermore, Ram-
sey and Andrews [2018] and Mooij et al. [2020] provide
sufficient grounds for rejecting the expert network as being
the true causal graph of the data. As we have no reliable
ground truth to compare the output of the LCD algorithm
with, we compare the output of LCD with its implementa-
tion with partial correlation.

The output of the LCD algorithm implemented with the
Bayesian tests and with the partial correlation test is shown
in Figure 6. In both cases we report the output of the LCD
algorithm for multiple thresholds for the statistical tests.
For the Bayesian tests (Figure 6a) we use Bayes factor
thresholds of k = 10 (strong evidence, depicted in black),
k = 4 (substantial evidence, depicted in red) and k = 1
(weak evidence, depicted in blue) [Kass and Raftery, 1995],
and for the partial correlation test (Figure 6b) we report
results for the p-value thresholds α = 0.0001 (strong evid-
ence, depicted in black), α = 0.005 (substantial evidence,
depicted in red) and α = 0.05 (weak evidence, depicted in
blue).

In general, we note that the output of LCD differs strongly
among the use of different statistical tests, corroborating
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Figure 6: The output of LCD on the Sachs data. Edges indicate (possibly indirect) causal effects between the nodes. Black
edges indicate strong evidence, red edges indicate substantial evidence, and blue edges indicate weak evidence.

the premise that the performance of the algorithm highly
depends on the choice of statistical test. Since the partial
correlation test does not detect nonlinear conditional inde-
pendencies, it has relatively low recall when compared with
the Pólya tree test, as shown in Figure 4c. This causes the
LCD algorithm with partial correlations to output more false
positives, resulting in a very dense causal graph, whereas
LCD with the Pólya tree tests produces a graph which is
more likely to resemble the true causal model.

4 SENSITIVITY ANALYSIS

As mentioned earlier, the Pólya tree is parametrised by the
setA, where in the previous section we have used ακ = |κ|2.
In general we can let ακ := ρ(|κ|) for any positive function
ρ, in which case we have

Var(P(Bκ)) =
1

4|κ|

 |κ|∏
j=1

2ρ(j) + 2

2ρ(j) + 1
− 1

 , (13)

and samples from the Pólya tree are dominated by Lebesgue
measure if

∑∞
j=1 ρ(j)−1 < ∞ [Kraft, 1964]. Walker and

Mallick propose to use ρ(j) = cj2 for some c > 0, in
which case decreasing c increases the variance of P , caus-
ing P to be less dependent on the choice of G. We have
chosen c = 1 as a default value in the previous section
as it is promoted as a “sensible canonical choice” by Lav-
ine [1992]. According to Holmes et al. [2015], having c
between 1 and 10 is in general a good choice. To obtain
an better understanding of the dependency of the Pólya
tree on this parameter, we have repeated the experiments
of Figure 4 (e–h) for different choices of ρ. More spe-
cifically, we have repeated the experiments for parameters
ρ(j) = 1

10j
2, 15j

2, j2, 5j2, 10j2, 2j , 4j and 8j [Berger and
Guglielmi, 2001]. The results are shown in Figure 7. We

note that the performance of the tests is not heavily influ-
enced by the choice of A, and that ρ(j) = j2 seems to be
an appropriate default value.

5 DISCUSSION

In this work we have proposed a novel nonparametric condi-
tional two-sample test, which is possibly the first conditional
independence test of this type. The test is analysed in its
own right and as a subroutine of the Local Causal Discovery
algorithm, and in both cases can outperform current state-of-
the-art nonparametric continuous conditional independence
tests and parametric mixed conditional independence tests.
However, we have made some modelling decisions which
might be reconsidered when using this test in practice.

First we note that the choice of A may influence the suit-
ability of the test. Section 4 suggests that ακ = |κ|2 is a
sensible parametrisation, but this may be reconsidered in ap-
plications. Another consideration is the choice of the family
of partitions T . Having canonical partitions increases the
intelligibility of the Pólya tree, but essentially any recursive
partitioning tree suffices. We note that the maximum par-
titioning depth J = blog4(n)c is quite arbitrarily chosen
to reduce computation time. However, as our choice of ακ
implies relatively low dependence on the base measure G
and as we standardise the data to approximately fit the stand-
ard Gaussian base measure, we believe that we have chosen
sensible default parameters.

In general, it is hard to theoretically analyse for which types
of distributions conditional independence tests work prop-
erly. For frequentist tests, the asymptotic distribution of the
test statistic is often provided, which holds under rather tech-
nical assumptions which may be hard to validate against a
provided dataset (see Strobl et al. [2019] for an example of
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Figure 7: Sensitivity of the performance of the Pólya tree tests with respect to the parameter A.

such assumptions). The same holds for theoretical consist-
ency results of the test statistic under the alternative. Shah
and Peters [2020] show that in order to have power against
an acceptably large set of alternatives, one should restrict
the set of distributions considered under H0. In a Bayesian
setting, consistency of the Bayes Factor is determined by
whether the posterior corresponding to the true hypothesis
is consistent (i.e. the marginal likelihood is large), and the
marginal likelihood remains small under the false hypo-
thesis. Sufficient conditions for posterior convergence are
e.g. provided by Doob’s Theorem and Schwartz’s Theorem
[Ghosal and van der Vaart, 2017], but necessary conditions
(which could be used to restrictH0 andH1) are not available
to our knowledge. One should also investigate the behaviour
of the posterior likelihood under misspecification to properly
determine for which H0 and H1 the test works properly.

Many constraint-based causal inference algorithms (other
than LCD) require conditional independence testing of the
form C |= X|Z for d-dimensional Z with d > 1. Extending
our method is straightforward, as the canonical partitions of
Z can be constructed as the per-level cartesian product of d
one-dimensional canonical partitions [Hanson, 2006]. How-
ever, this extension suffers from the curse of dimensionality,
so further research should look into how this problem can
be mitigated.

This work only addresses testing C |= X|Z where C is bin-
ary. Although this test is already of high importance to the
field of causal discovery, extending this test to discrete C
would be of real use and is the subject of current research.

The ensemble of Pólya tree prior based independence tests
provides good results when utilised in a causal inference
algorithm applied on synthetic data, and produces sens-
ible output on real world data. We therefore believe that it
is a promising area of research, which hopefully will im-
prove the robustness and applicability of causal inference
algorithms.
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