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Abstract

Recent years have witnessed the deployment
of adversarial attacks to evaluate the robust-
ness of Neural Networks. Past work in this
field has relied on traditional optimization al-
gorithms that ignore the inherent structure of
the problem and data, or generative methods
that rely purely on learning and often fail to
generate adversarial examples where they are
hard to find. To alleviate these deficiencies,
we propose a novel attack based on a graph
neural network (GNN) that takes advantage
of the strengths of both approaches; we call
it AdvGNN. Our GNN architecture closely
resembles the network we wish to attack. Dur-
ing inference, we perform forward-backward
passes through the GNN layers to guide an
iterative procedure towards adversarial exam-
ples. During training, its parameters are esti-
mated via a loss function that encourages the
e�cient computation of adversarial examples
over a time horizon. We show that our method
beats state-of-the-art adversarial attacks, in-
cluding PGD-attack, MI-FGSM, and Carlini
and Wagner attack, reducing the time required
to generate adversarial examples with small
perturbation norms by over 65%. Moreover,
AdvGNN achieves good generalization perfor-
mance on unseen networks. Finally, we provide
a new challenging dataset specifically designed
to allow for a more illustrative comparison of
adversarial attacks.

1 INTRODUCTION

Ever since Szegedy et al. [2013] showed that Neural
Networks (NNs) are susceptible to adversarial attacks,

it has become common practice to evaluate their ro-
bustness to various types of adversarial attacks. Most
attack schemes use standard techniques from the opti-
mization literature without significant adaptation for
the specific problem at hand [Szegedy et al., 2013,
Moosavi-Dezfooli et al., 2017, Goodfellow et al., 2015,
Madry et al., 2018, Papernot et al., 2016]. At the other
end of the spectrum are purely machine learning based
techniques, which aim to learn the underlying probabil-
ity distribution of adversarial perturbations to generate
adversarial examples [Baluja and Fischer, 2017, Zhao
et al., 2018, Poursaeed et al., 2018, Song et al., 2018].
However, the inductive bias incorporated in the net-
work architectures of generative models ignores the
iterative structure of optimization-based attacks. As
a result, generative models often fail to match the
performance of iterative optimization-based methods
on finding minimal perturbations leading to adversar-
ial examples. We therefore introduce a novel attacking
method that combines the optimization based approach
with learning.

Specifically, we propose the use of a graph neural net-
work (GNN) that assists an iterative procedure resem-
bling standard optimization techniques. The architec-
ture of the GNN closely mirrors that of the network we
wish to attack. Given an image, its true class and an in-
correct target class, at each iteration the GNN proposes
a direction for potentially maximizing the di�erence
between the logits of the incorrect class and the correct
class. Henceforth, we refer to the objective function
we wish to maximize via the GNN as the adversarial
loss function. Every single evaluation of the GNN is
made up of one or more forward and backward passes
that mimic a run of the network that we are attacking.
When training the GNN we consider a horizon with a
decay factor to output a direction of movement that
maximizes the adversarial loss function. By using a
parameterization of the GNN that depends only on the
type of neurons and layers and not on the underlying
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 architecture, we can train a GNN using one network
and test it on another.

Our other main contribution is introducing a new
method to assess the strength and e�ciency of ad-
versarial attacks. In the literature adversarial attacks
are often compared using a trained model and some
fixed allowed perturbation size. The method that man-
ages to find an adversarial example for the highest
number of images is considered to be the strongest one.
However, the network to be attacked is often robust
for a significant proportion of images. All attacks on
these images will therefore fail. Conversely, for other
images adversarial perturbations are very easy to find,
again not demonstrating significant di�erences between
methods. We therefore introduce a challenging dataset
on three di�erent neural networks of di�erent sizes that
are solely made up of properties for which adversarial
examples exist. The size of the allowed perturbation
is deliberately chosen for each element in the dataset
leading to a very high level of di�culty. We hope that
providing this new dataset will allow for a more e�cient
and meaningful comparison of di�erent adversarial at-
tacks in the future.

We compare our method, which we call AdvGNN,
against various attacks on this dataset. AdvGNN re-
duces the average time required to find adversarial
examples by more than 65% compared to several state-
of-the-art attacks and also significantly reduces the rate
of unsuccessful attacks. AdvGNN also achieves good
generalization performance on unseen larger models.

2 RELATED WORK

In this work we focus on white-box image-dependent
targeted attacks, the strongest form of adversarial at-
tacks.

Studying adversarial attacks, and white-box attacks in
particular, has become an active field of research over
the last few years. Adversarial attacks can be separated
into three main categories [Serban et al., 2020]. One
class of attacks aims to find an adversarial example
that lies within some allowed perturbation and that
the network misclassifies with a high level of confidence.
Goodfellow et al. [2015] proposed the Fast Gradient
Sign Method (FGSM) that takes a single step towards
the gradient of the adversarial loss function. The Itera-
tive Fast Gradient Method (I-FGSM) [Kurakin et al.,
2016] and Projected Gradient Attack (PGD) [Madry
et al., 2018] both apply FGSM iteratively, taking sev-
eral steps towards the sign of the gradient. Dong et al.
[2018] proposed adding momentum to I-FGSM, thus
significantly improving its performance (MI-FGSM).

A similar line of research aims to find an adversar-

ial example with the smallest possible perturbation.
Szegedy et al. [2013] proposed using limited-memory
box constrained optimization (BFGS) to find the small-
est perturbation required to change the prediction of
the network. Carlini and Wagner [2017] approximate
the objective function using a simpler linear function
that can be solved using standard optimization algo-
rithms. Moosavi-Dezfooli et al. [2016] introduced the
Deepfool attack that exploits the assumption that the
network behaves linearly near the original input. Both
of these types of attacking strategies ignore the rich
inherent structure of the problem and the data, infor-
mation that can be used to come up with better ascent
directions.

A third class of attacks includes generative methods.
Baluja and Fischer [2017] train a second neural net-
work (ATN) that, given an input, aims to output an
adversarial example. Poursaeed et al. [2018] trained a
generative method that also learns to generate image-
specific perturbations. Xiao et al. [2018] propose the use
of a GAN that learns to approximate the distribution
of the original images. All of these methods ignore the
iterative nature of many optimization algorithms, re-
sulting in a lower success rate in generating adversarial
examples that are very close to original images.

We propose using a Graph Neural Network (GNN) to
combine the strengths of both the optimization based
and learning based methods to generate adversarial
examples more e�ciently. GNNs have been used in
Neural Network Verification to learn the branching
strategy in a Branch-and-Bound algorithm [Lu and Ku-
mar, 2020] and to estimate better bounds [Dvijotham
et al., 2018, Gowal et al., 2019], but to the best of our
knowledge they have not yet been used to generate
adversarial examples. We show in this work how they
can be employed successfully for this task.

3 PROBLEM DEFINITION

In this section we define the problem of finding adver-
sarial examples, and outline some of the most popular
approaches to solving it.

We are given a neural network f : Rd ‘æ Rm that takes
a d-dimensional input and outputs a confidence score
for m di�erent classes. Specifically, we consider an
L layer feed-forward neural network, with non-linear
activations ‡ such that for any x0 œ C ™ Rd, f(x0) =
x̂L œ Rm, where

x̂i+1 = W i+1xi + bi+1, for i = 0, . . . , L ≠ 1,
(1)

xi = ‡(x̂i), for i = 1, . . . , L ≠ 1.
(2)



 The terms W i and bi refer to the weights and biases
of the i-th layer of the neural network f, and C is some
convex input domain. Every convolutional filter can be
rewritten as a linear layer; hence for the sake of clarity
we treat convolutional layers like we do linear ones.
Given an image x, its true class y, an incorrect class ŷ,
and an allowed perturbation ‘, a targeted attack aims
to find xÕ, such that

f(xÕ)ŷ Ø f(xÕ)y and d(x, xÕ) Æ ‘, (3)

for some distance measure d. In other words we aim
to find an adversarial example xÕ that is close to the
original input but is misclassified as ŷ. Problem (3) is
often reformulated as follows:

maxxÕœB(x,‘) L(xÕ, y, ŷ) = f(xÕ)ŷ ≠ f(xÕ)y, (4)

where B(x, ‘) is an ‘-sized norm-ball around x, that is,

B(x, ‘) := {xÕ | d(x, xÕ) Æ ‘}. (5)

We refer to L as the adversarial loss from now on. If
L(xÕ, y, ŷ) Ø 0 then xÕ is considered an adversarial
example.

FGSM [Goodfellow et al., 2015], a fast attack on the
lŒ norm, aims to solve (4) by using the sign of the
gradient of the adversarial loss:

xÕ = x + ‘ sgn(ÒxL(xÕ, y, ŷ)). (6)

Madry et al. [2018] proposed applying this step iter-
atively, which equates to running Projected Gradient
Descent (PGD) on the negative adversarial loss:

xt+1 = �B(x,‘)
!
xt + – sgn(ÒxL(xÕ, y, ŷ)

"
. (7)

Using the sign of the gradient of the adversarial loss as
the direction of movement is e�ective when we don’t
have access to more information about the problem.
However, we argue that in the white-box setting, where
we have access to more information, the e�ectiveness of
this approach is limited. We aim to replace the gradient
by a more informed direction that, along with the
gradient, takes the inherent structure of the problem
and the data into consideration.

4 GNN FRAMEWORK

The key observation of our work is that several previ-
ously known attacks can be thought of as performing
forward-backward style passes through the network to
compute an ascent direction for the adversarial loss
function. Examples include, PGD, I-FGSM, and C&W
(the method proposed by Carlini and Wagner [2017]).
However, the exact form of the passes is restricted to

those suggested by standard optimization algorithms,
which are agnostic to the special structure of adversar-
ial attacks. This observation suggests a natural gen-
eralization: parameterize the forward and backward
passes, and estimate the parameters using a training
dataset so as to exploit the problem and data structure
more successfully. In what follows, we first provide an
overview of our approach that achieves this general-
ization through graph neural networks (GNN). The
remaining subsections describe the various components
of the GNN and the forward and backward passes in
greater detail.

4.1 OVERVIEW

We propose to use a GNN for the e�cient computa-
tion of adversarial examples. Since previous attacks
perform forward and backward passes on the network
they wish to attack, it makes sense to use a GNN
that mimics the architecture of that network as closely
as possible. To this end, we treat the neural network
as a graph GNN = (VNN , ENN ) and provide it as
input for the GNN. We denote the GNN as an isomor-
phic graph to GNN , that is, GGNN = (VGNN , EGNN )
where there is a one-to-one correspondence between
the nodes VNN and VGNN , and edges ENN and EGNN .
For every node v œ VGNN we first compute a feature
vector f , which contains local information about the
node. We then use this feature vector and a learned
function g to compute an embedding vector µµµ. The
high-dimensional embedding vector encapsulates a lot
of the important information about the correspond-
ing node, the structure of the neural network, and the
state of the optimization algorithm. The embedding
vectors are initialized based on the node features and
then updated using forward and backward passes in
the GNN. Exchanging information with its neighbours
ensures that the embedding vectors capture the global
information of the structure of the problem. Once we
have gotten a learned representation of each node we
will convert the embedding vectors into a direction of
movement. Having provided an overview we will now
describe the GNN’s main elements in greater detail.

4.2 GNN COMPONENTS

Nodes. We create a node vk[i] in our GNN for every
node in the original network, where k indexes the layer
and i the neuron. We denote the set of all nodes in
the GNN by VGNN .

Node Features. For each node vk[i] we define a cor-
responding q-dimensional feature vector fk[i] œ Rq de-
scribing the current state of that node. Its exact def-
inition depends on the task we want to solve. In our



 experiments the feature vectors consist of three parts:
the first part captures the gradient at the current point;
the second part includes the lower and upper bounds
for each neuron in the original network based on the
bounded input domain; and the third part encapsu-
lates information that we get from solving a standard
relaxation of the adversarial loss from the incomplete
verification literature. A more detailed analysis can be
found in Appendix C.

While more complex features could be included, we
deliberately chose the simple features described above
and rely on the power of GNNs to e�ciently compute
an accurate direction of movement.

Edges. We denote the set of all the edges connecting
the nodes in VGNN by EGNN . The edges are equivalent
to the weights in the neural network that we are trying
to attack. We define ek

ij to be the edge connecting nodes
vk[i] and vk+1[j] and assign it the value of W k

ij .

Embeddings. For every node vk[i] we compute a cor-
responding p-dimensional embedding vector µµµk[i] œ Rp

using a learned function g:

µµµk[i] := g(fk[i]). (8)

In our case g is a simple multilayer perceptron (MLP),
which is made up of a set of linear layers �i and non-
linear ReLU activations. We have the following set of
trainable parameters:

�0 œ Rq◊p, �1, . . . , �T1 œ Rp◊p. (9)

Given a feature vectors fk, we compute the following
set of vectors:

µµµ0
k = relu(�0 · fk), µµµl+1

k = relu(�l+1 · µµµl
k). (10)

We initialize the embedding vectors to be µµµk = µµµT1
k ,

where T1 + 1 is the depth of the MLP.

4.3 FORWARD AND BACKWARD PASSES

So far, the embedding vector µµµ solely depends on the
current state of that node and does not take the underly-
ing structure of the problem or the neighbouring nodes
into consideration. We therefore introduce a method
that updates the embedding vectors by simulating the
forward and backward passes in the original network.
The forward pass consists of a weighted sum of three
parts: the first term is the current embedding vector,
the second is the embedding vector of the previous
layer passed through the corresponding linear or con-
volutional filters, and the third is the average of all

neighbouring embedding vectors:

µµµÕ
k[i] = relu

Q

a�for
1 µµµk[i] + �for

2
!
Wkµµµk≠1 + bk≠1

"
[i]

+ �for
3

Q

a
ÿ

jœN(i)
µµµk≠1[j]/Qk+1[j]

R

b [i]

R

b .

(11)

Similarly, we perform a backward pass as follows:

µµµk[i] = relu

Q

a�back
1 µµµÕ

k[i]

+ �back
2 (W T

k+1
!
µµµÕ

k+1 ≠ bk+1
"
)[i]

+ �back
3

Q

a
ÿ

jœN Õ(i)
µµµÕ

k+1[j]/QÕ
k+1[j]

R

b [i]

R

b .

(12)

Here �for
1 , �for

2 , �for
3 , �back

1 , �back
2 , �back

3 œ Rp◊p are
all learnable parameters and W and b are the weights
and biases of the target network as defined in equations
(1) and (2). Both (11) and (12) can be implemented
using existing deep learning libraries. To ensure better
generalization performance to unseen neural networks
with a di�erent network architecture we include normal-
ization parameters Q and QÕ. These are matrices whose
elements are the number of neighbouring nodes in the
previous and following layer respectively for each node.
We repeat this process of running a forward and back-
ward pass T2 times. The high-dimensional embedding
vectors are now capable of expressing the state of the
corresponding node taking the entire problem structure
into consideration as they are directly influenced by
every other node, even if we set T2 = 1.

4.4 UPDATE STEP

Finally, we need to transform the p-dimensional embed-
ding vector of the input layer to get a new direction x̃.
We simply use a linear output function ���out to get:

x̃ = ���out · µµµ0. (13)

Ideally the GNN would output a new ascent direction
that will lead us directly to the global optimum of
equation (4). However, as the problem is complex this
may not be feasible in practice without making the
GNN very large, thereby resulting in computationally
prohibitive inference. Instead, we propose to run the
GNN a small number of times to return directions that
gradually move towards the optimum.



 Given a step size –, our previous point xt, and the new
direction x̃ we update as follows:

xt+1 = �B(x,‘)
!
xt + –x̃

"
. (14)

The hyper-parameters for the GNN computation of new
directions of movement are the depth of the MLP (T1),
how many forward and backward passes we run (T2),
the embedding size (p), and the stepsize parameter –.

5 GNN TRAINING

Having described the structure of the GNN we will
now show how to train its learnable parameters. Our
training dataset D consists of a set of samples di =
(xi, yi, ŷi, ‘i, W i, bi), each with the following compo-
nents: a natural input to the neural network we wish to
attack (x), for example an image; the true class (y); a
target class (ŷ); the size of the allowed perturbation (‘),
which in our case is an ¸Œ ball; and the weights and
biases of the neural network (W, b). We note that the
allowed perturbation can be unique for each datapoint.

In order to get the individual components that make up
the feature vectors, we first compute the intermediate
bounds of each node in the network using the method
by Wong and Kolter [2018] which is explained in greater
detail in Appendix C.1. We further solve a standard
relaxation of the robustness problem via methods from
the verification literature (C.2). Finally, we generate s
di�erent starting points which we sample uniformly at
random from the input domain B(x, ‘).

Recall that we do not use the GNN to directly compute
the optimum adversarial example. Instead, we run it
iteratively, where each iteration computes a new direc-
tion of movement. In order for the training procedure
to closely resemble its behaviour at inference time, it
is crucial to train the GNN using a loss function that
takes into account the adversarial loss across a large
number of iterations K.

Given the i-th training sample di =
(xi, yi, ŷi, ‘i, W i, bi) œ D, and the j-th initial
starting point we define the loss Li,j to be:

Li,j = ≠
Kÿ

t=1
L(xi,j,t, yi, ŷi) ú “t. (15)

Instead of maximizing over the adversarial loss, we mini-
mize over the negative loss. If the decay factor “ œ (0, 1)
is low then we encourage the model to make as much
progress in the first few steps as possible, whereas if “
is closer to 1, then more emphasis is placed on the final
output of the GNN, sacrificing progress in the early
stages. Readers familiar with reinforcement learning
may be reminded of the discount rates used in algo-
rithms such as Q-learning and policy-gradient methods.

We sum over the individual loss values corresponding
to each data point and each initial starting point to
get the final training objective L:

L =
|D|ÿ

i=1

sÿ

j=1
Li,j . (16)

In our experiments we train the GNN using the Adam
optimizer [Kingma and Ba, 2015] and with a small
weight decay.

Running Standard Algorithms using AdvGNN. As
mentioned earlier, the motivation behind our GNN
framework is to o�er a parameterized generalization of
previous attacks. We now formalize the generalization
using the following proposition.

Proposition 1 AdvGNN can simulate FGSM [Goodfel-
low et al., 2015], PGD attack [Madry et al., 2018], and
I-FGSM [Kurakin et al., 2016] (proof in Appendix D).

6 A NEW DATASET FOR COMPARING
ADVERSARIAL ATTACKS

In this section we describe our new dataset that has
been specifically designed to compare state-of-the-art
adversarial attacks.

Previously, adversarial attacks were compared on how
well they attack a trained neural network on a set num-
ber of images for a fixed allowed perturbation [Madry
et al., 2018, Dong et al., 2018, Carlini and Wagner, 2017,
Moosavi-Dezfooli et al., 2016]. However, for many of
the images there either does not exist an adversarial
example in the allowed perturbed input space or there
exist a large number of di�erent adversarial examples.
In the first case, we don’t learn anything about the
di�erences between di�erent methods as none of them
return an adversarial example, and for the latter case
all attacks will terminate very quickly, again not provid-
ing any insights. In practice only a small proportion of
test cases a�ect the di�erences in performance between
the various methods.

To alleviate this problem we provide a dataset where
the allowed input perturbation is uniquely determined
for every image in the dataset. This ensures that for
every property there exist adversarial examples, but so
few that only e�cient attacks manage to find them.

We generate a dataset based on the CIFAR-10 dataset
[Krizhevsky et al., 2009] for three di�erent neural net-
works of various sizes. One which we call the ‘Base’
model, one with the same layer structure but more
hidden nodes which we call the ‘Wide’ model, and one
with more hidden layers which we refer to as the ‘Deep’



 model. All three are trained robustly using the methods
of Madry et al. [2018] against lŒ perturbations of size
up to ‘ = 8/255 (the amount typically considered in
empirical works). Our dataset is inspired by the work of
Lu and Kumar [2020] who created a verification dataset
to compare defense methods on the same three models.
The di�erent network architectures are explained in
greater detail in Appendix A.

We generate the dataset by repeatedly picking an image
from the CIFAR-10 test set, asserting that the network
classifies the image correctly, and picking an incorrect
class at random. We then aim to compute the smallest
perturbation for which there exists an adversarial exam-
ple by running an expensive binary search using PGD
attacks with a large number of steps and restarts. A
more detailed description of the algorithm can be found
in Appendix B. We also generate a second dataset on
the ‘Base’ model which we call the validation dataset
and use to optimize various hyper-parameters for the
attacks used in the next section.

Finally, we note that in the literature only the success
rate is reported when comparing di�erent methods.
The time taken by di�erent methods is not analysed
and the e�ciency of the attacks is thus sometimes
hard to determine. We propose to compare methods by
reporting the success rate over running time to show
both the speed and the strength of adversarial attacks.

7 EXPERIMENTS

We now describe an empirical evaluation of our method
by comparing it to several state-of-the-art attacks on
the CIFAR-10 dataset. We first outline the experimen-
tal setting (§7.1), before describing the attacks we
compare our method to (§7.2), and finally analysing
the results (§7.3).

7.1 SETUP

We run experiments on the dataset described in the
previous section. The dataset is based on the CIFAR-
10 dataset and includes three di�erent networks to
attack. All properties are SAT, meaning that there
exists at least one adversarial example in the given
input domain for each image and an overall success rate
of 100% is theoretically achievable. We use a timeout of
100 seconds for each property. As most of the attacks
we use rely on random initialisations the performance
varies depending on the random seed. We thus run
every experiment three times with three di�erent seeds
and report the average over the di�erent runs.

All the experiments were run under Ubuntu 16.04.4
LTS. All attacks were run on a single Nvidia Titan V

GPU and three i9-7900X CPUs each. The implementa-
tion of our model as well as all baselines is based on
Pytorch [Paszke et al., 2017].

7.2 METHODS

We evaluate our methods by comparing it against PGD-
Attack, MI-FGSM+, a modified version of MI-FGSM,
and Carlini and Wagner attack, which according to
several surveys on adversarial examples are all state-of-
the-art methods [Akhtar and Mian, 2018, Chakraborty
et al., 2018, Serban et al., 2020, Huang et al., 2020].

PGD. The first baseline we run is PGD-attack [Madry
et al., 2018]. As described before, PGD-attack picks
an initial starting point uniformly at random and then
iteratively performs Projected Gradient Descent on the
negative adversarial loss (7). Based on an extensive
hyper-parameter analysis (see Appendix E.1) we pick
the stepsize parameter – = 0.1, and set the number of
iterations to T = 100 . We perform random restarts
until we have either managed to find an adversarial
example or the time limit has been reached.

MI-FGSM+. MI-FGSM is I-FGSM with an added
momentum term. MI-FGSM starts at the image x and
takes T steps of size ‘/T . Defining the stepsize as such
ensures that the current point lies in the feasible region
throughout the entire algorithm without the need to
project. To strengthen the attack we perform random
restarts as we do for PGD. To ensure that not all
runs of MI-FGSM on the same image are identical we
therefore have to choose the initial point randomly
as well. Furthermore, we perform a hyper-parameter
search not only over the momentum term µ and the
number of iterations T as done in the original paper, but
also over the stepsize – (see Appendix E.2 for details).
We run it with the following optimized parameters:
– = 0.1, µ = 0.5, and T = 100. This modified version
of MI-FGSM is denoted as MI-FGSM+.

C&W. The third baseline we use is C&W, the
optimization-based attack proposed by Carlini and
Wagner [2017]. C&W aims to find the smallest per-
turbation required to find an adversarial example
by minimizing a loss function of the form l(v) =
c · F (x + v) + Î(v ≠ ·)+Î1 for some surrogate func-
tion F , and constants c and · . There are a total of six
hyper-parameters which we optimize over on a valida-
tion dataset and which we describe in greater detail in
Appendix E.3. We note that in the original implementa-
tion C&W is often run until the minimum perturbation
for which there exist at least one adversarial example
is found. However, to be able to compare it to the
other methods we stop the C&W attack as soon as an



 

(a) ‘Base’ model (b) ‘Wide’ model (c) ‘Deep’ model

Figure 1: Cactus plots for experiments on the ‘Base’ model (left), ‘Wide’ model (middle) and the ‘Deep’ model
(right). For each, we compare the di�erent attacks by plotting the percentage of successfully attacked images as a
function of runtime. Baselines are represented by dotted lines. AdvGNN beats all baselines on all three models
for any chosen timeout value.

adversarial example is found for the given perturbation
value or when the time limit is reached.

AdvGNN. The final attack we run is AdvGNN. We
train our AdvGNN on the ‘Base’ model and on 2500
images of the CIFAR-10 test set that are not part
of the dataset we test on. The ‘ values which define
the allowed perturbation for each training sample are
computed in a similar procedure to the test datasets
described above. We train the GNN using the loss
function described in section §5 with a horizon of 40 and
with decay factor “ = 0.9. The training loss function
is minimized using the Adam optimizer [Kingma and
Ba, 2015] with a weight decay of 0.001. The initial
learning for Adam is 0.01, and is manually decayed
by a factor of 0.1 at epochs 20, 30, and 35. We pick
the following values for the hyper-parameters of our
AdvGNN: the stepsize – is 1e-2, the embedding size is
p = 32, and we perform a single forward and backward
pass (T1 = T2 = 1). To improve the performance on
the ‘Deep’ model we fine-tune our AdvGNN for 15
minutes on the ‘Deep’ model before running the attack.
Fine-tuning is run on 300 images that are not included
in the ‘Deep’ test set. We use a fixed ‘ value of 0.25 for
all images.

7.3 RESULTS

‘Base’ Model. We run all four methods described in
the previous section on the ‘Base’ model with a timeout
of 100 seconds and record the percentage of properties
successfully attacked as a function of time (Figure 1a
and Table 1). C&W only manages to find an adversarial
advantage for less than 5% of all images. PGD outper-

Table 1: ‘Base’ Model. We compare average (mean)
solving time and the percentage of properties that the
methods time out on when using a cut-o� time of 100s.

Method Time(s) Timeout(%)
PGD Attack 87.412 82.995
MI-FGSM+ 40.438 27.145

C&W 97.385 95.164
AdvGNN 13.527 9.412

forms C&W but still only manages to solve 17% of all
properties. MI-FGSM+ outperforms PGD, timing out
on 26% of all images with an average time of 40 seconds.
AdvGNN beats all three methods reducing both the
average time taken and the proportion of properties
timed out on by more than 65%.

Table 2: ‘Wide’ Model. We compare the methods on
the ‘Wide’ model.

Method Time(s) Timeout(%)
PGD Attack 80.415 75.358
MI-FGSM+ 31.144 20.462

C&W 96.366 93.729
AdvGNN 24.089 18.482

‘Wide’ Model. Next we compare the methods on the
‘Wide’ model (Figure 1b and Table 2). AdvGNN has
not seen this network during training and before run-
ning these experiments. MI-FGSM+ is again the best
performing baseline, and AdvGNN the best perform-
ing method overall both in terms of average solving



 

Figure 2: Cactus plots for experiments on the easier version of the dataset on the ‘Base’ model (left), ‘Wide’
model (middle) and the ‘Deep’ model (right). We add a small constant ” = 0.001 to each perturbation size ‘i. For
each model, we compare the attacks by plotting the percentage of successfully attacked images as a function of
runtime. AdvGNN is the best performing attack on all three models.

time and percentage of properties successfully attacked.
AdvGNN reduces the time required to find an adver-
sarial example by over 70% compared to PGD and
C&W , and by 20% compared to MI-FGSM+. This
demonstrates that AdvGNN achieves good generaliza-
tion performance and can be trained on one model and
used to run attacks on another.

Table 3: ‘Deep’ Model. We compare the di�erent meth-
ods on the ‘Deep’ model.

Method Time(s) Timeout(%)
PGD Attack 84.349 80.533
MI-FGSM+ 60.578 47.867

C&W 99.321 97.600
AdvGNN 51.669 43.200

‘Deep’ Model. We also run experiments on the ‘Deep’
model (Table 3, Figure 1c). We remind the reader
that the AdvGNN parameters have been fine-tuned
on this model for 15 minutes to achieve better results.
AdvGNN outperforms all three other attacks on this
larger ‘Deep’ model both with respect to the total
number of successful attacks and the average time of
each attack. Figure 1c shows that AdvGNN is still
the best performing method even if we pick a shorter
timeout of less than 100 seconds.

Easy Dataset. As some of the baselines, C&W in par-
ticular, struggle to successfully attack most of the prop-
erties in the previous experiment, we further compare
the methods on a simpler dataset. We add a constant
delta (0.001) to each epsilon value in the above dataset
and reduce the timeout to 20 seconds. Increasing the
allowed perturbation simplifies the task of finding an

adversarial example as can be seen in Figure 2. All
methods manage to find adversarial examples more
quickly than on the original dataset and time out on
significantly fewer properties. The relative order of the
methods is the same on all three models in both the
original and the simpler dataset. In particular, Ad-
vGNN outperforms the baselines on all three models,
reducing the percentage of unsuccessful attacks by at
least 98% on the ‘Base’ model and by more than 65%
on the ‘Wide’ and ‘Deep’ model. We provide a more
in-depth analysis of the results on the original and the
easier dataset in Appendix F.

8 DISCUSSION

We introduced AdvGNN, a novel method to generate
adversarial examples more e�ciently that combines
elements from both optimization based attacks and
generative methods. We show that AdvGNN beats var-
ious state-of-the-art baselines reducing the average time
taken to find adversarial examples by between 65 and
85 percent. We further show that AdvGNN generalizes
well to unseen methods. Moreover, we introduced a
novel challenging datasets for comparing di�erent ad-
versarial attacking methods. We show how it enables
an illustrative comparison of di�erent attacks and hope
it will encourage the development of better attacks in
the future.

Future work might include using AdvGNN for adver-
sarial training, or for adversarial image detection. Fur-
thermore, one could try incorporating AdvGNN into a
complete verification method.
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