

Multi-output Gaussian Processes for Uncertainty-aware Recommender Systems

Yinchong Yang1 Florian Buettner*2,3,4,5

1, 2Siemens AG
1, 2Contributed equally to this work

3German Cancer Consortium
4German Cancer Research Center

5Frankfurt University

Abstract

Recommender systems are often designed based
on a collaborative filtering approach, where user
preferences are predicted by modelling interac-
tions between users and items. Many common ap-
proaches to solve the collaborative filtering task
are based on learning representations of users and
items, including simple matrix factorization, Gaus-
sian process latent variable models, and neural-
network based embeddings. While matrix factor-
ization approaches fail to model nonlinear rela-
tions, neural networks can potentially capture such
complex relations with unprecedented predictive
power and are highly scalable. However, neither
of them is able to model predictive uncertainties.
In contrast, Gaussian Process based models can
generate a predictive distribution, but cannot scale
to large amounts of data. In this manuscript, we
propose a novel approach combining the represen-
tation learning paradigm of collaborative filtering
with multi-output Gaussian processes in a joint
framework to generate uncertainty-aware recom-
mendations. We introduce an efficient strategy for
model training and inference, resulting in a model
that scales to very large and sparse datasets and
achieves competitive performance in terms of clas-
sical metrics quantifying the reconstruction error.
In addition to accurately predicting user prefer-
ences, our model also provides meaningful uncer-
tainty estimates about that prediction.

1 INTRODUCTION

Collaborative filtering (CF) provides a powerful solution
to recommender systems. Recommending a new item to a

* Work done for Siemens AG

user is based on the assumption that users demonstrating
similar rating or purchasing patterns are interested in similar
items. A database describing such user-item interactions
often takes the form of a matrix, where each entry describes
the interaction between one user and one item. The overall
rating or purchasing pattern of a user can therefore be de-
scribed by the corresponding row in such a matrix. However,
since there are typically large numbers of users and items
in the database, and each user is usually only interested in
a small subset of items, this user-item matrix is often large
and sparse. It is therefore inefficient to define the similarity
between users in the high dimensional feature space defined
by all items. Instead, it is more advantageous to derive ab-
stract feature vectors that represent users and items, which
inspired a large variety of low-rank matrix decomposition
models such as non-negative matrix decomposition [Zhang
et al., 2006], biased matrix decomposition [Koren et al.,
2009] and non-parametric decomposition [Yu et al., 2009].
These methods aim at learning low dimensional representa-
tions for all users and items, allowing for the prediction of
the unobserved interaction between a new pair of user and
item.

Most of these state-of-the-art representation learning meth-
ods in form of matrix decomposition, however, focus on
point estimates and do not quantify any predictive uncer-
tainty. This limits the applicability of these methods in
safety-critical situations. For instance, the recommendation
of a treatment in the context of clinical decision support
needs to be interpreted with much more caution than the
recommendation of movies, and transparent uncertainty es-
timates are crucial to assess the quality of such recommen-
dation. Similarly, when recommender systems are used to
detect novel drug-target interactions to facilitate new drug
discoveries, it is crucial for such systems to be uncertainty
aware, since large costs are associated with studies required
for target validation. Other applications could arise in the
context of multi-armed bandits for exploration and exploita-
tion during recommendation. Furthermore, missing ratings
in collaborative filtering tasks are usually not completely

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Yinchong Yang <yinchong.yang@siemens.com>
mailto: Florian Buettner <buettner.florian@siemens.com>

 random [Schnabel et al., 2016, Marlin et al., 2012], and
good performance in terms of RMSE and MAE does not
always promise good recommendations[Cremonesi et al.,
2010]. In this context, the predictive uncertainty serves as
a practical way to make this bias in the training data trans-
parent in a principled manner. The model can communicate
the uncertainty of a prediction to the user, such that the user
knows which individual predictions are likely to translate
into good recommendations.

Gaussian processes (GP) are a well known class of models
that generates prediction uncertainty alongside point esti-
mates via its kernel function, which measures the similarity
between data samples. While Gaussian processes are primar-
ily used to solve a wide range of supervised modelling tasks,
they have also been applied to perform probabilistic matrix
decomposition with a focus on dimensionality reduction,
via the Gaussian Process Latent Variable Model (GPLVM).
Here, a Gaussian process is used as a prior distribution for
a function that maps a low-dimensional latent space to the
high-dimensional data matrix. The individual components
of this mapping function are modelled as independent draws
from a Gaussian process, assuming all dimensions of the
data matrix are independent. This independence assumption
is problematic in the context of collaborative filtering, where
modelling the interdependency of both users and items has
proven beneficial [Dong et al., 2014, Nickel et al., 2011].
While GPLVM has been used as matrix factorization method
for collaborative filtering in the past [Lawrence and Urta-
sun, 2009], as for other matrix decomposition approaches,
practical applicability can be limited also for computational
reasons. Being designed primarily as a dimensionality re-
duction method for data with few missing values, it is not
readily amenable to the triple-based learning paradigm of
collaborative filtering. That is, one trains a learning model
with data samples in form of triples of indices and the corre-
sponding target values, e.g. (i, j, yi,j). The learning model
will have to query the corresponding rows i and j from the
respective factor matrices and attempt to regress them to the
target entry yi,j . This paradigm facilitates efficient model-
ing of large and highly sparse datasets such as large user-
item matrices or even tensor representation of knowledge
graphs [Nickel et al., 2015]. However, the GPLVM-based
recommender systems typically require storing the dense
data matrix. More specifically, in the triple-based learning
paradigm we only need iterate through all observed, i.e.,
non-zero scalar entries in a sparse matrix.

In this work, we propose a novel approach to combine multi-
output Gaussian processes with representation learning for
collaborative filtering via matrix decomposition. We learn a
latent representation vector for each entity type (i.e. users
and items) jointly with a multi-output GP that predicts not
only a point estimate of the user-item interaction, but also
its predictive variance. We thereby explicitly model not only
dependencies between users, but also between items. We

motivate this design by connections to coregionalization
with separable kernels in multi-output Gaussian processes
as well as to the GPLVM. We exploit variational sparse
approximations [Titsias, 2009, Hensman et al., 2015] and
combine them with a sparse matrix representation so that
our approach scales to datasets consisting of large numbers
of users and items via minibatch learning. Furthermore, we
propose a new approach for evaluating and visualizing the
quality of predictive variance of such uncertainty-aware
models by stratifying predictions by their associated uncer-
tainty.

2 RELATED WORK

Matrix decomposition methods applied to collaborative fil-
tering and recommender systems attempt to learn explana-
tory latent features for users and items. Non negative matrix
factorization [Luo et al., 2014, Zhang et al., 2006] restrict
the factor matrices to be non-negative, in order to enable
better interpretability of the representations. Such methods
are trained to minimize the reconstruction error in terms of
the entire matrix, and are therefore no longer efficient or reli-
able in case of high sparsity in the matrix. In contrast, biased
matrix factorization [Koren et al., 2009, Gomez-Uribe and
Hunt, 2015] has proven to be very efficient in decomposing
sparse matrices by training only based on observed entries.
However, these methods are prone to overfitting and require
careful tuning and validation [Nickel et al., 2015].

The Gaussian Process Latent Variable Model (GPLVM)
[Lawrence, 2004] applies GP regression in an unsupervised
setting. Given a matrix Y , the GPLVM learns a latent repre-
sentation vector ai for each row yi. A GP regression model
is then used to map the unobserved latent variables ai to the
multiple output dimensions y·,j . Since the latent variables
are of lower dimensionality than the outputs, GPLVM can
be seen as a dimension reduction approach. While GPLVM
models are typically applied to dimensionality reduction
tasks, [Lawrence and Urtasun, 2009] apply GPLVM to large-
scale matrices to perform item recommendation by collab-
orative filtering. While the GPLVM is usually viewed as a
matrix factorization approach and has also an interpretation
as probabilistic PCA, it can also be interpreted as a multi-
output GP regression model where the vectors of different
outputs are drawn independently from the same Gaussian
process prior.

Multi-output GP regression models can be used to predict
vector-valued functions in a supervised manner by construct-
ing a covariance matrix that describes the dependencies
between all the input and output variables. Most imple-
mentations of multi-output GPs are formulated around the
framework of the Linear Model of Coregionalization (LMC)
[Alvarez et al., 2012], in the context of supervised learning.
Within this framework, dependencies between individual
regressors are modeled with separable kernels (or the sum

 thereof), which can be written as the product of two ker-
nels. The first kernel measures similarity of samples in the
input space, while the second kernel captures the similarity
between each pair of output dimensions.

[Dai et al., 2017] extend multi-output GPs by represent-
ing the output dimensions with unobserved latent variables.
Thereby they avoid problems with overfitting caused by hav-
ing to estimate all parameters of the full covariance matrix
in standard LMC, allow for the prediction of new outputs
at test time and facilitate a lower computational complexity.
They further make sure their model scales to large datasets
by utilizing the sparse Gaussian process approximation [Tit-
sias, 2009, Titsias and Lawrence, 2010] (SVGP). In the
SVGP framework, the model is augmented by an auxiliary
variable and the covariance matrix is computed on a set of
inducing inputs that represent the whole dataset. The kernel
distance between two input samples can then be factorized
into their respective kernel distances to inducing points, thus
avoiding the need to compute a full covariance matrix. For
a systematic overview and comparison of sparse approxi-
mations, we refer to [Quiñonero-Candela and Rasmussen,
2005] and [Bui et al., 2017].

3 PRELIMINARY: MATRIX
FACTORIZATION FOR
COLLABORATIVE FILTERING

In collaborative filtering, the dataset often takes the form
of a user-item matrix Y ∈ RI×J , assuming I users and J
items. Each entry yi,j describes the interaction between user
i and item j, for example in form of a rating or a purchase.
Such a matrix is typically large and sparse, first due to the
large number of users and items, and second due to the fact
that each user is usually interested in a very small subset of
items only. In order to derive new recommendations for a
user, one has to predict their potential interest in an item with
which no interaction has taken place yet, i.e. where there is
no entry in the user-item matrix. A typical solution to this
collaborative filtering task is via a matrix decomposition
approach.

During training, one fits a decomposition model that can
recover all entries in the user-item matrix to a certain extent.
As a simple illustration, the user-item matrix can be mod-
eled as Y ≈ ABT , A ∈ A = RI×r,B ∈ B = RJ×r, or
equivalently, yi,j = aT

i bj ∀(i, j) ∈ [1, I]× [1, J]. At infer-
ence time, any entry value that is not observed in the training
data, can be predicted by reading the corresponding loca-
tion on the reconstructed the user-item matrix: Ŷ = ABT .
The generalization power of the decomposition model lies
in the low-rank matrices A and B, which can be inter-
preted as latent representations of the users and items, re-
spectively. In order to achieve better modeling performance,
it is possible to apply more complex functions than the

dot product to join the latent representations. Writing the
model definition as yi,j = g(ai, bj) ∀i, j ∈ [1, I] × [1, J],
the function g can be realized in various ways. For in-
stance, SVD defines g(ai, bj) = (λ ◦ ai)

T bj , where λ
consists of the singular values and ai and bj are restricted
to be orthogonal. In case of biased matrix decomposition
[Koren, 2009], we have g(ai, bj) = aT

i bj + αi + βj ,
where αi and βj are user- and item-specific biases pa-
rameters, respectively. Multi-way neural networks [Dong
et al., 2014], if applied to the matrix case, take the form of
g(ai, bj) = u

Tσ(wT [ai, bj] + w0) + u0. Here, the latent
representations are concatenated and fed into a multi-layer
perceptron.

The GPLVM [Lawrence, 2004, 2007] solves the matrix de-
composition task by fitting J independent GP regression
models on unobserved latent variables xi with p(y·,j) =
N (y·,j | 0,Kj + σ2I), whereKj ∈ RI×I captures the co-
variances between each pair of latent representation (ai,ai′)
defined by the covariance function k(ai,ai′). In other
words, the GP-LVM can be interpreted as a multiple-output
GP regression model where only the output data are given
and the unobserved inputs are being optimized.

It is worth noting that the training target in case of stan-
dard GPLVM implementations is y·,j . If the target matrix,
and hence each column y·,j , is sparse, such dense represen-
tations are computationally inefficient. In case of (biased)
matrix decomposition and multi-way neural networks, how-
ever, one could formulate a training sample in form of a
triple (i, j, yi,j) and only iterate through the observed non-
zero target values.

4 MULTI-OUTPUT GAUSSIAN PROCESS
MODEL FOR COLLABORATIVE
FILTERING

4.1 NOTATION

We denote a GP regression on target y as

p(y|f) = N (y | f , σ2I),

where σ is the hyper parameter that defines the random noise
level. The vector f denotes the vector consisting of values
produced by the regression model from all input data xi,
which follows another multi-variate Gaussian distribution:

f = (f(x1), f(x2), ..., f(xn))
T ,

p(f) = N (f | 0,K),

where we denote the covariance matrix usingK.

4.2 MODEL DEFINITION

The GPLVM treats all output dimensions in the matrix as
independent, which is an assumption that may not always

 hold, in particular if the matrix describes user-item inter-
actions. For instance, the items in which a user takes inter-
est could very well be correlated or similar [Nickel et al.,
2015, Agrawal et al., 1994]. To capture such dependencies
between output dimensions, we propose a new coregion-
alization kernel to perform multi-output Gaussian Process
regression for unsupervised matrix decomposition in the
spirit of the GPLVM.

Our proposed separable kernel can be written as the product
of two individual kernels, where the first kernel measures
similarity of samples in the input space and the second
kernel captures the similarity between each pair of output
dimensions. More formally, this kernel takes the form

(K)j,j′ = kA(ai,ai′)k
W (j, j′)

or, equivalently,

K = kA(ai,ai′)W ,

where kA and kW are scalar kernels on A × A and
{1, . . . , J}× {1, . . . , J} respectively andWi,j = kW (i, j)
is a symmetric and positive semi-definite matrix, which
models the dependency between each pair of outputs. While
coregionalization is usually performed in the context of
supervised regression, in our application the inputs ai are
unobserved and, as for the GPLVM model, need to be opti-
mized.W being the identity matrix implies independence
between outputs and the model falls back to the standard
GPLVM. There is a variety of approaches for choosingW ,
ranging from the design of a symmetric and positive semi-
definite matrix based on suitable regularizers to the choice
of covariance functions for the different output components
[Alvarez et al., 2012].

Here, we choose to replace the coregionalization matrix
W by a kernel on latent representations of items in vector
space B, such that the covariance matrix can be written as
a Kronecker product of the covariance matrix of the latent
variables representing the itemsKB and the covariance ma-
trix of the latent variables representing the users KA. We
thereby combine representation learning with coregional-
ization in multi-output GPs for collaborative filtering via
unsupervised matrix factorization.
Note that we have briefly introduced Latent Variable Multi-
ple Output Gaussian Processes (LVMOGP) [Dai et al., 2017]
as a related method in Sec. 2. In the context of supervised
learning, LVMOGP augments multi-output GPs by latent
variables, capturing latent information on the outputs. While
the authors also replaceW by a kernel on latent represen-
tations, in their supervised scenario, inputs are observed,
whereas in our model both kernels act on latent variables.
In Tab. 1 we compare the most closely related methods to
ours, including multi-output GP regression, GPLVM and
LVMOGP, in three aspects of learning task, output and input
treatment, respectively.

Taken together, the kernel of our proposed model can be
written as

Kcoreg =KA ⊗KB

with

{
KAi,i′ = kA(ai,ai′) = kA(i, i′),

KBj,j′ = kB(bj , bj′) = kB(j, j′).

For the sake of symmetry, we choose the same covariance
function for kA and kB. As for matrix KA, each element
in KB measures the similarity between a pair of output
dimensions (or items) (j, j′). As the rightmost term of the
equations above implies, we could treat all latent variables in
matricesA andB as hyper parameters in a specific kernel
[Snelson and Ghahramani, 2006] that takes as input the
indices. From a functional perspective, our proposed kernel

kcoreg((i, j), (i′, j′)) = kA(i, i′) · kB(j, j′),

measures in fact the similarity between user-item pairs
(i, j) and (i′, j′). The measurement is carried out by eval-
uating the two kernel functions at (i, i′) and (j, j′), re-
spectively, and calculating the product of both kernel val-
ues. The training samples can be thus formulated using
only the indices and corresponding entries in the matrix:
(i, j, yi,j) ∀i, j ∈ [1, I] × [1, J]. This data format is espe-
cially advantageous in case of large number of items and
high sparsity in matrix Y since it does not require storing
the data in dense matrix format.

We finally write our model as: f ∼ N (0,Kcoreg +σ2I) ∈
RI·J ,Kcoreg ∈ R(I·J)×(I·J). The vector f has length I ·J ,
indicating that it consists of the outcome of all possible
combinations of I users and J items.

4.3 MODEL FITTING

The major challenge in fitting such a model lies in the size
of the covariance matrixKcoreg ∈ R(I·J)×(I·J), since there
are typically large numbers of users and items. Computing
the inverse of the covariance matrix, which is required for
computing the log marginal likelihood, has a complexity
of O(n3) where n is the number of training samples, in
our case n = I · J . We take sparse GP approaches to ad-
dress this challenge. A sparse GP model introduces m� n
inducing points, denoted as Zm that represent the entire
dataset. These inducing points are optimized as additional
parameters in a GP model. We apply SVGP [Titsias, 2009]
and augment the model with inducing variables u with a
Gaussian prior p(u), that contain the values of function f at
inducing points Zm. With this augmentation, a variational
lower bound of the marginal log likelihood can be derived

 Multi-output GPR GPLVM LVMOGP Ours
Unsupervised task × X × X

Dependency between outputs X × X X
Coregionalization by kernel × × X X

Unobserved input × X × X

Table 1: A comparison of our methods with mostly related approaches. Coregionalization by kernel refers to learning latent
vectors that represent output dimensions. In contrast, standard coregionalization handles dependency between outputs using
a full covariance matrix whose only constraint is being symmetric and positive semi-definite.

[Hensman et al., 2015]:

log p(y) ≥ logN (y|KnmK
−1
mmµ, σ

2I)

− 1

2σ2
tr(KnmK

−1
mmΣK−1mmKmn) (1)

− 1

2σ2
tr(Knn −Qnn)−KL(q(u)||p(u))

with q(u) = N (u|µ,Σ) being the variational posterior
distribution on the inducing variables u, and Qnn =
KnmK

−1
mmKmn. Kmm is the covariance function eval-

uated between all the inducing points and Knm is the co-
variance function between all inducing points and training
points. This formulation enjoys the advantage of being able
to factorize across data, i.e., to be updated using single sam-
ples or mini batches, and can thus scale to large training
data.

The essential motivation of applying inducing points is to
avoid calculating and inverting the full covariance matrix
K ∈ Rn×n. Instead, one only calculates the kernel between
a training sample and all inducing points as inKmn, and the
kernel between two inducing points as in Kmm, which is
defined as follows in our specific case of coregionalization:

Kmm = K(ZA,ZA)⊗K(ZB ,ZB)

∈ R(mAmB)×(mAmB).

SVGP therefore reduces the computational complexity from
O((I · J)3) to O((I · J) · (mA ·mB)

2). Our triple-based
formulation means that the set of training samples con-
sists only of observed triples; by making use of the SVGP
approximation, we only ever need to compute the kernel
between such a training sample and all inducing points
or between pairs of inducing points. This in turn means
that for matrices with sparsity S (fraction of observed user-
item interactions), the computational complexity reduces
to O(S · (I · J) · (mA ·mB)

2). In practice, we can further
reduce this computational complexity if we choose the same
number of inducing points m in A and B: this allows us to
learn coupled pairs of inducing points in both spaces (see
next subsection for implementation details). By tying the
parameters of both sets of latent representations, we can
then reduce the effective size ofKmm tom×m and further
reduce computational complexity to O(S · (I · J) ·m2).

4.4 COUPLING INDUCING POINTS

The adjacency matrix characterizing interactions between
users and items in collaborative filtering tasks is typically
highly sparse. An efficient representation of such data is
via a triple store where an observed training sample is rep-
resented as (i, j, yi,j) ∀(i, j) ∈ [1, I] × [1, J] with users
i, items j and corresponding entries in the user-item ma-
trix yi,j . In this data formulation for sparse data, input i
and output j of one training sample are inherently coupled.
We would like for this coupling to be also reflected in the
sparse approximation and in particular the choice of induc-
ing points, in order to fully take advantage of the benefits of
this data representation in terms of computational complex-
ity.
In standard formulations of SVGP for multi-output GPs,
the covariance matrix of the inducing variables Kmm, is
computed as Kmm = KA

mm ⊗ KB
mm. Here, KA

mm =
KA(ZA,ZA) and KB

mm = KB(ZB ,ZB) are computed
on independent sets of inducing points ZA and ZB with
kernel functions kA and kB that represent input space A
and output space B respectively [Dai et al., 2017]. Similarly,
the cross-covariance between training samples and inducing
pointsKnm is constructed asKnm =KA

nm ⊗KB
nm, with

KA
nm ∈ RI×mA andKB

nm ∈ RJ×mB , where I and J corre-
spond to the number of inputs (users) and outputs (items) as
before.KA

nm is the cross-covariance between latent inputs
A and ZA and KB

nm the cross-covariance between latent
outputsB and ZB . The covariance between training sam-
plesKnn is computed asKnn =KA

nn ⊗KB
nn, withKA

nn

being the covariance matrix ofA constructed with kA and
KA

nn being the covariance matrix of B constructed with
kB .
However, this formulation does not reflect the sparse triple-
based data formulation and results in a computational com-
plexity that is quartic in m (c.f. previous section). If we
decide to choose the same number of inducing inputs for
ZA and ZB , we can couple the inducing points for pairs
of inputs and outputs and reformulate the construction of
Knm,Knm andKnn, such that it reflects the coupling be-
tween input i and output j of a training sample (i, j).
More specifically, when we compute the cross-covariance

 between the q-th training sample (i, j) * and the l-th pair of
inducing points in order to buildKnm, we do so by pairing
the corresponding latent representations ai and bj and using
a product kernel to compute similarities. That is,

Knm((A,B), (ZA,ZB))q,l

=k([ai, bj], [z
A
l , z

B
l])

=kA(ai, z
A
l)kB(bj , z

B
l)

(2)

Using this paired formulation, it becomes immediately clear
that

Knm = Knm((A,B), (ZA,ZB))

becomes substantially smaller, with Kpaired
nm ∈ R(I·J)×m

compared to the standard case where the sets of in-
ducing points are treated as independent and Knm ∈
R(I·J)×(mA·mB).
We construct the covariance matrix Kmm using the same
pairing approach and compute the covariance between the
o-th and p-th inducing points as

Kmm((ZA,ZB), (ZA,ZB))o,p

=k([zAo , z
B
o], [zAp , z

B
p])

=kA(z
A
o , z

A
p)kB(z

B
o , z

B
p)

(3)

That means, using paired inducing points, Kmm can be
written as elementwise product betweenKA

mm andKB
mm:

Kmm = KA
mm �KB

mm. As before, Kmm becomes sub-
stantially smaller since it is constructed via an elementwise
product rather than via the Kronecker product.
Finally, we use the same pairing formalism when construct-
ingKnn and compute the covariance between the q-th train-
ing sample (i, j) and the l-th training sample (i′, j′) as

Knn((A,B), (A,B))k,l

=k([ai, bj], [ai′ , bj′])

=kA(ai,ai′)kB(bj , bj′)

ConstructingKnn in this manner rather than using the Kro-
necker product betweenKA

nn andKB
nn is particularly suited

for highly sparse data, where the number of training sam-
ples N is substantially lower than total number of possible
samples I · J . In this case the paired approach directly leads
to a natural construction of a small covariance matrix of
observed training samples of size N ×N †.
Taken together, this means that the paired approach re-
duces the computational complexity of of our method from
O(I · J ·m2

A ·m2
B) to O(S · (I · J) ·m2) (with sparsity S,

c.f. section 4.2).

We summarize the training algorithm of our approach as
follows. Given the number of inducing pairs m and rank r
as hyper parameters: We describe our algorithm as online

*There is always a bijection / double-indexing relation between
(i, j) and q.

†Note: the full covariance matrix is not needed during infer-
ence. Model training using SVGP merely requires the computation
of the trace of Knn

Algorithm 1: Training algorithm
input :Training N tuples (i, j, yi,j) where

i ∈ [1, I], j ∈ [1, J], and yi,j is the (i, j)-th
entry in matrix Y ;

output :A,B,ZA,ZB ,µ,S and the RBF parameters;
Initialize latent representationsA ∈ RI×r,B ∈ RJ×r,
and inducing pairs ZA ∈ Rm×r,ZB ∈ Rm×r;

while not converged do
for each training epoch do

for a training sample (i, j, yi,j) do
Calculate the covariance matrix of inducing
pairsKmm using Eq. (3);

Derive the bijective index q of (i, j);
Calculate its covariance values Knm[q, l]
with all inducing pairs, using Eq. (2).
Update the ELBO in Eq. (1) w.r.t.
ai, bj , z

A
l , z

B
l ,µ,S and the RBF kernel

parameters.
end

end
end

training with single samples for a more concise notation
as well as to emphasize the scalability of the training. In
the step of updating the ELBO, one only needs to iterate
once through all inducing pairs. In practice, one would often
like to train on batches. The complexity of this case merely
becomes the product of batch size and number of inducing
pairs. One should also note that in a standard SVGP setting,
one updates the kernel parameters and inducing points. In
our approach, however, we update additionally the input to
the GP which are the latent representations.

We have implemented our method using tensorflow/GPflow
[De G. Matthews et al., 2017] and provide an easy-to-use
python package at https://github.com/Tuyki/
mogp-decomposition with experimental results. For
all experiments, we used an RBF kernel, for both kA and
kB . Experiments were run on hardware utilising 4 CPUs
and one GeForce GTX TITAN X GPU.

4.5 EVALUATION

Due to the fact that the missing entries in CF tasks may
be not be completely random, high performance in terms
of MAE and RMSE might not always guarantee good
recommendations [Marlin et al., 2012, Cremonesi et al.,
2010]. To this end, we propose an additional metrics to
evaluate uncertainty-aware CF models, including ours and
GPLVM, by sorting the point estimates based on the pre-
dictive variance. Specifically, we denote the ground truth
values as (yi)ni=1, and the predictive distribution as (fi ∼
N (mi, s

2
i))

n
i=1. We calculateQ quantiles of all the standard

deviations (si)
n
i=1. For each quantile q ∈ { 1

Q ,
2
Q , . . . , 1}

https://github.com/Tuyki/mogp-decomposition
https://github.com/Tuyki/mogp-decomposition

 where the predictive standard deviation si is smaller than or
equal to the q-quantile, we evaluate all point estimates mi

against the corresponding ground truth values yi. Formally
let,

dq = R({(yi,mi) | ∀si ≤ q-Quantile}),

where R could be any evaluation metric defined on a set
of pairs of ground truth and point estimate. Each dq is the
evaluation of the predictive performance of the model on its
top-q · n most confident predictions. Ideally, an uncertainty-
aware prediction model is expected to have better perfor-
mances on test samples about which it demonstrates higher
confidence, i.e., lower predictive variance, and vice versa.
If we plot all dq values on y-axis against the corresponding
q values on the x-axis, we would expect a monotonously
increasing plot line. We name this evaluation approach QP-
plot, where Q stands for quantile and P for performance.

5 EXPERIMENTS

We conduct experiments on three well established datasets
for evaluating recommender systems: movielens-1m (ML-
1M), movielens-10m (ML-10M) and Jester joke recommen-
dations. The task is to predict the rating value of an arbitrary
pair of user and item, which can be later interpreted as a
score quantifying the interest of the user in the item.

The ML-1M consists of 1000209 ratings of 6040 users on
3706 items, the ML-10M consists of 10000054 ratings of
69878 users on 10677 items, and the jester dataset consists
of 1728847 ratings of 50692 users on 140 items. The ML-
1M has as ratings only natural numbers between 1 and 5,
while ML-10M has rating in the same range but the ratings
also include one value between each pair of natural numbers,
such as {1, 1.5, 2, 2.5, ..., 5}. The Jester dataset contains
arbitrary real numbers between -10 and 10. Our model,
based on a GP regression, models all three types of ratings
as real values.

We performed a hyper-parameter search especially with
regard to the size of the latent vectors and number
of inducing points. On a grid search of batch sizes
{28, 210, 212, 214, 216, 218}, a relatively large size of 216

produced the best performance. We also perform a grid
search for the optimal number of inducing points. Among
{32, 64, 128, 256, 512, 1024} inducing points, 128 outper-
forms other choices. This comparison is also illustrated as
QP-plot in supplementary materials. We also find out that
the model is robust with respect to the size of latent vector.
For all the experiments, we use the best performing size
of 8, which is a relatively small number compared to, e.g.,
SMA [Li et al., 2016], which requires a rank of up to 50.

For each dataset we report the performance in terms of
MAE and RMSE on the test set in a 5-fold cross validation
setting. Quantitative comparisons regarding the ML-1M,

RMSE MAE
CF-NADE [Zheng et al., 2016] 0.829 -
GPLVM [Lawrence and Urtasun, 2009] 0.880 0.644
Sparse FC [Muller et al., 2018] 0.824 -
GC [Berg et al., 2017] 0.832 -
CWOCF [Lu et al., 2013] 0.958 0.761
LLORMA [Lee et al., 2013] 0.865 -
Biased MF 0.863 0.678
SVD++ 0.893 0.705
Bayesian GPLVM at q = 100% 0.889 0.698
MW-GP at q = 100% 0.866 0.676
MW-GP at q = 90% 0.838 0.657
MW-GP at q = 80% 0.821 0.643

Table 2: Performance comparison on the ML-1M dataset.

RMSE MAE
CF-NADE [Zheng et al., 2016] 0.771 -
GPLVM [Lawrence and Urtasun, 2009] 0.874 0.635
Sparse FC[Muller et al., 2018] 0.769 -
GC [Berg et al., 2017] 0.777 -
CWOCF [Lu et al., 2013] 0.903 0.701
LLORMA [Lee et al., 2013] 0.822 -
SMA [Li et al., 2016] 0.768 -
Biased MF 0.797 0.612
SVD++ 0.826 0.636
MW-GP at q = 100% 0.808 0.618
MW-GP at q = 90% 0.774 0.594
MW-GP at q = 80% 0.753 0.579

Table 3: Performance comparison on the ML-10M dataset.

ML-10M and Jester datasets can be found in Tab. 2, 3 and
4, respectively. In each table, We have two groups of evalua-
tion references. First, we refer to the leading results that are
reported by other works on the same dataset, but not neces-
sarily with the same cross validation split. When applicable,
we include the reported ranks of these methods. Second,
we conduct new experiments with Biased MF, SVD++ and
Bayesian GPLVM [Titsias and Lawrence, 2010] using ex-
actly the same cross validation setting and the same size
of latent vectors. We show the average performance of our
model on a varying standard deviation quantile between
80% and 100%, and highlight (in shade) the values between
which the best reported performances fall.

We also demonstrate performances of our method using
the QP-plot in Fig. 1, 2 and 3. We visualize the average
performance of all 5 splits with a solid line and the stan-
dard deviation across the 5 splits as error-bars. On the plots
regarding the ML-1M and ML-10M datasets, we plot as
dashed horizontal line the best performance reported in liter-
ature, which cut our curve between the quantiles of 80% and
90% in both of ML-1M in terms of MAE and RMSE. In the

 RMSE MAE
[Desrosiers and Karypis, 2010] 4.480 3.541

[Goldberg et al., 2001] - 3.740
Biased MF 5.826 4.300

SVD++ 4.253 3.117
MW-GP at 100% 4.171 3.092
MW-GP at 90% 4.034 3.019
MW-GP at 80% 3.916 2.944

Table 4: Performance comparison on the Jester dataset.

case of ML-10M, the best reported RMSE lies between our
quantile 90% and 100%, the best reported MAE between
90% and 100%. In other words, for those 70% to 90% of
test samples for which our model is most confident, it also
produces equal or better point estimates than state-of-the-art
recommender systems. It is also worth noting that our model
outperforms the only uncertainty-aware model, GPLVM, in
all quantiles of variances, presumably due to the explicit
modeling of output dependency.

Our training time on the ml-1m dataset is 13.4 min (1 CPU,
1 GPU) for all 500 epochs. For the same setting, the bi-
ased MF model requires 16.1 min and SVD++ 290.8 min
(1 CPU). The uncertainty-aware Bayesian GPLVM has a
substantially longer training time of more than 10 hours (16
CPUs, wall time). We perform inference for all tuples in
the test set simultaneously. In case of ml-1m, for a test set
of size 200K, the average inference time is 0.506 seconds.
This demonstrates the computational efficiency of our so-
lution to couple the inducing points (section 4.4). We also
realize that, since the kernel evaluation is independent for
different pairs of vectors, our model can profit from the
parallelization power of GPUs.

6 CONCLUSION AND DISCUSSION

In this manuscript, we propose a novel uncertainty-aware
approach to perform collaborative filtering in the context of
recommender systems. To this end, we introduce a coregion-
alization kernel to perform multi-output Gaussian Process
regression for unsupervised matrix decomposition in the
spirit of GPLVM. In contrast to the GPLVM we do not treat
output dimensions as independent, but model a coregional-
ization matrix with a kernel on latent variables representing
the output. Our approach not only accounts for dependen-
cies between output dimensions, but also allows our model
to handle extremely sparse data in form of triple-stores in
an efficient manner.

Finally, we would like to stress that the aim of our method
is not to improve prediction quality that can be measured by
metrics such as RMSE or MAE. Instead, we are interested
in exploring the possible solutions to add uncertainty aware-
ness to collaborative filtering approaches and recommender

Figure 1: QP plots regarding the ML-1M dataset, compar-
ing our method with Bayesian GPLVM and best reported
performances. The horizontal dashed lines correspond to
reported state-of-the-art methods. RMSE: [Li et al., 2016],
MAE: [Lawrence and Urtasun, 2009].

Figure 2: QP plots regarding the ML-10M dataset, compar-
ing our method with Bayesian GPLVM and best reported
performances. The horizontal dashed lines correspond to re-
ported state-of-the-art methods. RMSE: [Zheng et al., 2016].
In terms of MAE, the Biased MF outperforms our method
only at quantile 100%. The GPLVM seems to suffer from
the data volume and fails to converge in training.

Figure 3: QP plots regarding the Jester dataset, comparing
our method with Bayesian GPLVM. We do not find reported
evaluations that outperform ours.

systems. More specifically, we enable these methods to ex-
press its uncertainty about every prediction. With the help
of our evaluation method, the QP-plot, we can show that
such uncertainty quantification are valid: for predictions that
deviate from the ground truth, the corresponding predictive
variances tend to be larger. With our experiments, we also
show that Bayesian GPLVM fails to scale to large datasets
in terms of both training and inference. Our approach in
contrast merely requires training and inference time that
is comparable to highly optimized linear models such as
SVD++.

7 ACKNOWLEDGMENT

The authors thank Markus Kaiser for his valuable insights
and discussions on variational sparse Gaussian Processes.

References

Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algo-
rithms for mining association rules. In Proc. 20th int.
conf. very large data bases, VLDB, volume 1215, pages
487–499, 1994.

Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence,
et al. Kernels for vector-valued functions: A review. Foun-
dations and Trends® in Machine Learning, 4(3):195–266,
2012.

Rianne van den Berg, Thomas N Kipf, and Max Welling.

Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

Thang D Bui, Josiah Yan, and Richard E Turner. A unifying
framework for gaussian process pseudo-point approxima-
tions using power expectation propagation. The Journal
of Machine Learning Research, 18(1):3649–3720, 2017.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Per-
formance of recommender algorithms on top-n recom-
mendation tasks. In Proceedings of the fourth ACM con-
ference on Recommender systems, pages 39–46, 2010.

Zhenwen Dai, Mauricio Alvarez, and Neil Lawrence. Effi-
cient modeling of latent information in supervised learn-
ing using gaussian processes. In Advances in Neural
Information Processing Systems, pages 5131–5139, 2017.

Alexander G De G. Matthews, Mark Van Der Wilk, Tom
Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo
León-Villagrá, Zoubin Ghahramani, and James Hensman.
Gpflow: A gaussian process library using tensorflow. The
Journal of Machine Learning Research, 18(1):1299–1304,
2017.

Christian Desrosiers and George Karypis. A novel approach
to compute similarities and its application to item recom-
mendation. In Pacific Rim International Conference on
Artificial Intelligence, pages 39–51. Springer, 2010.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun,
and Wei Zhang. Knowledge vault: A web-scale approach
to probabilistic knowledge fusion. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 601–610. ACM,
2014.

Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris
Perkins. Eigentaste: A constant time collaborative fil-
tering algorithm. information retrieval, 4(2):133–151,
2001.

Carlos A Gomez-Uribe and Neil Hunt. The netflix recom-
mender system: Algorithms, business value, and inno-
vation. ACM Transactions on Management Information
Systems (TMIS), 6(4):1–19, 2015.

James Hensman, Alexander Matthews, and Zoubin Ghahra-
mani. Scalable variational gaussian process classification.
In Artificial Intelligence and Statistics, pages 351–360.
PMLR, 2015.

Yehuda Koren. The bellkor solution to the netflix grand
prize. Netflix prize documentation, 81(2009):1–10, 2009.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix
factorization techniques for recommender systems. Com-
puter, 42(8):30–37, 2009.

 Neil D Lawrence. Gaussian process latent variable models
for visualisation of high dimensional data. In Advances
in neural information processing systems, pages 329–336,
2004.

Neil D Lawrence. Learning for larger datasets with the
gaussian process latent variable model. In Artificial Intel-
ligence and Statistics, pages 243–250, 2007.

Neil D Lawrence and Raquel Urtasun. Non-linear matrix
factorization with gaussian processes. In Proceedings
of the 26th annual international conference on machine
learning, pages 601–608. ACM, 2009.

Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram
Singer. Local low-rank matrix approximation. In Inter-
national conference on machine learning, pages 82–90,
2013.

Dongsheng Li, Chao Chen, Qin Lv, Junchi Yan, Li Shang,
and Stephen Chu. Low-rank matrix approximation with
stability. In International Conference on Machine Learn-
ing, pages 295–303, 2016.

Jing Lu, Steven Hoi, and Jialei Wang. Second order online
collaborative filtering. In Asian Conference on Machine
Learning, pages 325–340, 2013.

Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu.
An efficient non-negative matrix-factorization-based ap-
proach to collaborative filtering for recommender sys-
tems. IEEE Transactions on Industrial Informatics, 10
(2):1273–1284, 2014.

Benjamin Marlin, Richard S Zemel, Sam Roweis, and Mal-
colm Slaney. Collaborative filtering and the missing at
random assumption. arXiv preprint arXiv:1206.5267,
2012.

Lorenz Muller, Julien Martel, and Giacomo Indiveri. Ker-
nelized synaptic weight matrices. In International Con-
ference on Machine Learning, pages 3651–3660, 2018.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
A three-way model for collective learning on multi-
relational data. In ICML, volume 11, pages 809–816,
2011.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Ev-
geniy Gabrilovich. A review of relational machine learn-
ing for knowledge graphs. Proceedings of the IEEE, 104
(1):11–33, 2015.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen.
A unifying view of sparse approximate gaussian process
regression. Journal of Machine Learning Research, 6
(Dec):1939–1959, 2005.

Tobias Schnabel, Adith Swaminathan, Ashudeep Singh,
Navin Chandak, and Thorsten Joachims. Recommen-
dations as treatments: Debiasing learning and evaluation.
arXiv preprint arXiv:1602.05352, 2016.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian
processes using pseudo-inputs. In Advances in neural
information processing systems, pages 1257–1264, 2006.

Michalis Titsias. Variational learning of inducing variables
in sparse gaussian processes. In Artificial Intelligence
and Statistics, pages 567–574, 2009.

Michalis Titsias and Neil D Lawrence. Bayesian gaussian
process latent variable model. In Proceedings of the Thir-
teenth International Conference on Artificial Intelligence
and Statistics, pages 844–851, 2010.

Kai Yu, Shenghuo Zhu, John Lafferty, and Yihong Gong.
Fast nonparametric matrix factorization for large-scale
collaborative filtering. In Proceedings of the 32nd inter-
national ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 211–218, 2009.

Sheng Zhang, Weihong Wang, James Ford, and Fillia
Makedon. Learning from incomplete ratings using non-
negative matrix factorization. In Proceedings of the 2006
SIAM international conference on data mining, pages
549–553. SIAM, 2006.

Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning
Zhou. A neural autoregressive approach to collaborative
filtering. arXiv preprint arXiv:1605.09477, 2016.

	Introduction
	Related work
	Preliminary: Matrix factorization for collaborative filtering
	Multi-output Gaussian Process Model for Collaborative Filtering
	Notation
	Model Definition
	Model Fitting
	Coupling Inducing Points
	Evaluation

	Experiments
	Conclusion and Discussion
	Acknowledgment

