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Abstract

We propose two sum-product laws for imprecise
Markov chains, and use these laws to derive two
algorithms to efficiently compute lower and upper
expectations for imprecise Markov chains under
complete independence and epistemic irrelevance.
These algorithms work for inferences that have
a corresponding sum-product decomposition, and
we argue that many well-known inferences fit their
scope. We illustrate our results on a simple epi-
demiological example.

1 INTRODUCTION

Imprecise Markov chains are a generalisation of Markov
chains that allows them to deal with numerical parameters
that are only partially specified, as well as possible viola-
tions of structural assumptions like Markovianity [Hermans
and Škulj, 2014]. While different interpretations are pos-
sible, we will view an imprecise Markov chain as a set of
stochastic processes. Depending on what kind of processes
are included in this set, one obtains a different type of im-
precise Markov chain; we will consider two of them.

The first type is basically a set of (traditional) Markov chains.
These are now known as imprecise Markov chains under
complete independence,1 and were studied by e.g. Škulj
[2009]. The second type that we consider are imprecise
Markov chains under epistemic irrelevance, as introduced
by De Cooman and Hermans [2008]. Unlike the first
type, these sets of stochastic processes also contain non-
Markovian ones. The set as a whole does satisfy a Markov
property though, and this is why this second type of model
is called an imprecise Markov chain as well.

1Most authors refer to it as an imprecise Markov chain under
strong independence [Hermans and Škulj, 2014], but it should be
clear from [Cozman, 2012] that this is a misnomer.

The merits of both these models lie in their ability to model
the same kind of problems as (traditional) Markov chains,
but under much more general assumptions; in cases where
the dynamics under study are not completely known, they
can still provide meaningful, non-trivial bounds on infer-
ences of interest. In particular, this approach goes beyond
what is feasible using more classical sensitivity analysis
methods; not only can they capture the effect of perturbing
the numerical parameters that specify the model dynamics,
but they can also explicitly incorporate uncertainty about,
and evaluate the effect of, assumptions of homogeneity and
Markovianity. Specifically, the possibility of relaxing the
assumption of Markovianity becomes apparent by consider-
ing the distinction between imprecise Markov chains under
complete independence and epistemic irrelevance.

Perhaps surprisingly, it was the second of these two types
that led to the development of many efficient inference al-
gorithms; see e.g. the work of T’Joens et al. [2019] for a
recent efficient algorithm that encompasses most previous
algorithms as a special case, and that can be used to solve
a wide class of practically relevant inference problems. For
imprecise Markov chains under complete independence,
however, almost no algorithms are available. We find this
unfortunate, because that model is arguably more natural to
conceptualise from a practitioner’s point of view.

This brings us to the contributions of this work: we derive
two efficient algorithms to compute (different types of) in-
ferences for sets of stochastic processes, and we provide
sufficient conditions for the applicability of these algorithms
in terms of what we call sum-product laws. Crucially, we
show that under some relatively mild conditions on their
model parameters, imprecise Markov chains under com-
plete independence and imprecise Markov chains under
epistemic irrelevance both satisfy these sum-product laws,
which implies that our algorithms can be applied to either of
them. We illustrate the practical relevance of our algorithms
by sketching how they cover, as special cases, many well-
known inference problems, and apply them to a toy example
in epidemiology to demonstrate their performance.
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 2 IMPRECISE MARKOV CHAINS

An imprecise Markov chain is a Markov chain whose local
(transition) probabilities are partially specified, and whose
Markov property may not hold exactly. Since we will form-
ally define these as specific sets of stochastic processes, we
start with a brief introduction to stochastic process, and the
special case of (traditional) Markov chains.

2.1 STOCHASTIC PROCESSES

A stochastic process is a representation of the uncertain
behaviour of some dynamical system of interest, as it moves
through some state space X . Throughout this work, we will
assume that X is a fixed, non-empty, and finite set, whose
elements we refer to as states. To parametrise a stochastic
process, we will use a probability tree p•. This is simply
a collection of probability mass functions on X that, for
every sequence of initial states x1:n := (x1, . . . ,xn) ∈X n,
specifies a probability mass function px1:n on X . We denote
the set of all such probability trees by P.

A stochastic process, then, is essentially just a conditional
probability distribution P over a space of events that rep-
resents an infinite sequence X1,X2, . . . ,Xn, . . . of random
states. In particular, if a stochastic process is parametrised
by a probability tree p•, then for any xn+1 ∈X , px1:n(xn+1)
provides the probability that the state of the system is xn+1
at time n+1 given that its previous states were x1:n:

P(Xn+1 = xn+1|X1:n = x1:n) = px1:n(xn+1). (1)

For n = 0, the empty sequence x1:0 = () will also be de-
noted by �. In that particular case, for every x1 ∈X , the
probability that the process starts in the state x1 is given by

P(X1 = x1) := P(X1 = x1|X1:0 = x1:0) = p�(x1).

Other probabilities are implied by the laws of probability.
For every x1:n ∈X n and z1:m ∈X m, we have that

P(X1:n = z1:n|X1:m = x1:m)

:=


∏

n−1
i=m pz1:i(zi+1) if n > m and z1:m = x1:m

1 if n≤ m and z1:n = x1:n

0 otherwise

and, for every A⊆X n, it then follows that

P(X1:n ∈ A|X1:m = x1:m) = ∑
z1:n∈A

P(X1:n = z1:n|X1:m = x1:m).

More involved probabilities—that depend on the state at
more than a finite number of time points—can be obtained
by considering the sigma-additive extension of these prob-
abilities, but this will not be needed here.

What we will mainly be interested in are expectations. In
particular, expectations of real-valued functions on X n. We

call such functions gambles and use G (X n) to denote the
set of all of them. For any f ∈ G (X n) and any x1:m ∈X m,
the conditional expectation of f (X1:n) is given by

E( f (X1:n)|X1:m = x1:m)

= ∑
z1:n∈X n

f (z1:n)P(X1:n = z1:n|X1:m = x1:m).

Conditional probabilities correspond to a special case of
expectations. For any A⊆X n, we have that

P(X1:n ∈ A|X1:m = x1:m) = E(IA(X1:n)|X1:m = x1:m), (2)

where the gamble IA is the indicator of A, defined by
IA(z1:n) := 1 if z1:n ∈ A and IA(z1:n) := 0 otherwise.

2.2 MARKOV CHAINS

A stochastic process is called a Markov chain if it satisfies
the Markov property. That is, if P(Xn+1 = xn+1|X1:n = x1:n)
only depends on n and xn—and hence not on x1:n−1. In
other words: given the current state Xn of the system, the
uncertainty model for the next state Xn+1 does not depend on
the previous states X1:n−1. What is particularly convenient
about Markov chains is that we do not need to specify a
complete probability tree to parametrise it. Instead, as we
will see, we can use transition matrices.

A transition matrix T is a |X |× |X | matrix whose rows
are probability mass functions. We will denote the set of all
such transition matrices by

T := {T ∈ RX ×X : T (x, ·) ∈ ΣX for all x ∈X },

where ΣX is the set of all probability mass functions on X ,
and T (x, ·) is the function on X whose value in y ∈X is
given by T (x,y). As usual, we can also identify a matrix T
with a linear operator from G (X ) to G (X ), defined for all
f ∈ G (X ) by T f (x) := ∑y∈X T (x,y) f (y).

To parametrise a Markov chain, the only thing we need
to specify is an initial probability mass function p� ∈ ΣX

and, for all n ∈ N,2 a transition matrix Tn ∈ T. The initial
model p� serves the same function as it does in general
stochastic processes. The transition matrices provide trans-
ition probabilities. In particular, for every n∈N, Tn provides
the probabilities for the state transitions from time n to n+1:

px1:n := Tn(xn, ·) for all x1:n ∈X n.

In this way, together with the initial model p�, the transition
matrices (Tn)n∈N specify a complete probability tree p•, and
hence a stochastic process. That this stochastic process is a
Markov chain, and that any Markov chain can be specified
in this way, follows from the fact that—due to Equation (1)—
the Markov property is equivalent to the requirement that
px1:n only depends on n and xn.
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Figure 1: A Network of 8 People and Their Connections

Example 1. Throughout this work, we illustrate our meth-
ods using a simple running toy example. To this end, we
consider the evolution of a disease as it spreads within a
small group of 8 people, depicted in Figure 1; every node
is an individual and an edge between people indicates that
they are regularly in contact with one another. The state of
the system keeps track, for every person, whether they are
sick or healthy; hence this system has |X |= 28 states.

This system can be modelled using a Markov chain, which
we will assume is homogeneous. This means that there is a
single transition matrix T such that the transition matrices
(Tn)n∈N that parametrise the model satisfy Tn = T for all
n ∈ N. The matrix T is obtained as follows. For any given
current state of the system—so any configuration of who is
sick and who is healthy—and any sick person k, the probab-
ility that they become healthy after one time step is pH = 0.2
and, for any of their neighbours in Figure 1, the probabil-
ity that they are infected by person k is pI = 0.5. All these
events are furthermore independent. For example, if state x
corresponds to only person 1 and 3 being sick, and state y
corresponds to only person 2 being sick, then

T (x,y) = p2
H(1− pI)

2(1− (1− pI)
2)= 0.0075.

Moreover, for the initial model p�, we consider the probab-
ility mass function that assigns all mass to the state where
person 1 is sick and the others are healthy. �

2.3 A RANGE OF IMPRECISE MARKOV CHAINS

Imprecise Markov chains come in different types, two of
which we will focus on here. Both of them are sets of
stochastic processes, but since stochastic processes are in
one-to-one correspondence with probability trees, we can—
and will—equivalently regard them as sets of probability
trees. For the two types that we will consider, the starting
point is a non-empty set M� of probability mass functions
and, for all n ∈N, a non-empty set Tn of transition matrices.
Throughout this work, we will take these sets to be fixed.

The first type of imprecise Markov chain that we consider,
and arguably the most simple and intuitive one, consists of
all Markov chains whose initial model p� belongs to M�

and whose transition matrix Tn, for all n ∈ N, belongs to
Tn. We denote the set of all such Markov chains—or more

2We take N to be the set of natural numbers without zero.

formally, the corresponding set of probability trees—by

PM :=
{

p• ∈ P : p� ∈M� and, for all n ∈ N,

(∃Tn ∈Tn)(∀x1:n ∈X n) px1:n = Tn(xn, ·)
}
.

We will refer to this type of imprecise Markov chain as an
imprecise Markov chain under complete independence.

The second type of imprecise Markov chain that we consider
is similar, but a bit more involved. The difference is that the
transition matrix Tn can now depend on the states x1:n−1 at
previous time points, leading us to denote it by Tn,x1:n−1 . In
particular, we consider the set of probability trees

PEI :=
{

p• ∈ P : p� ∈M� and, for all n ∈ N,

(∀x1:n−1 ∈X n−1)(∃Tn,x1:n−1 ∈Tn)

(∀xn ∈X ) px1:n = Tn,x1:n−1(xn, ·)
}
.

This type of imprecise Markov chain is known as an impre-
cise Markov chain under epistemic irrelevance [De Cooman
and Hermans, 2008, Hermans and Škulj, 2014].

An important observation here is that the elements of PEI

are not required to satisfy the Markov property. Some of
them will, and those are exactly the elements of PM, but
PEI will typically also contain many stochastic processes
that are not Markov chains. That this set of processes is
nevertheless called an imprecise Markov chain has sev-
eral reasons. The first is that it is a generalisation of a
Markov chain. In particular, if M� = {p�} and, for all
n ∈ N, Tn = {Tn}, then PM and PEI coincide and consist
of a single stochastic process, which is the unique Markov
chain that is parameterised by p� and (Tn)n∈N. Second,
while the probability trees p• in PEI may not satisfy the
Markov property, meaning that px1:n may depend on x1:n−1,
the constraints that are imposed on px1:n do satisfy a Markov
property, in the sense that Tn does not depend on x1:n−1. In
this particular sense, PEI—and PM—satisfies an impre-
cise Markov property.

Example 2. Consider again the disease transition model
from Example 1, and the associated (homogeneous) Markov
chain with transition matrix T and initial model p�. One
simple way to capture parameter uncertainty about this
model, of the form described above, is to consider sets
of transition matrices (Tn)n∈N that are defined as neigh-
bourhoods of T . This enables us to study the sensitivity of
traditional inferences to changes in this matrix. So, for the
remainder of this running example, for all n ∈ N, we let

Tn := T := {(1− ε)T + εT ′ : T ′ ∈ T}, (3)

with ε = 0.01. For the initial model we will simply consider
the singleton set M� := {p�}, meaning that we do not intro-
duce any additional uncertainty there. The choice between
the associated imprecise Markov chains PEI and PM now
depends on whether we want to carry out the remaining
analysis under Markovian assumptions or not. �



 2.4 LOWER AND UPPER EXPECTATIONS

With any non-empty set of processes P ⊆ P—and hence
also with PM and PEI—we can associate a lower and
upper expectation operator E and E. For any f ∈ G (X n)
and any x1:m ∈X m, the conditional lower expectation of
f (X1:n) with respect to P is given by

E( f (X1:n)|X1:m = x1:m) := inf
p∈P

E( f (X1:n)|X1:m = x1:m),

and similarly for E( f (X1:n)|X1:m = x1:m), with sup instead of
inf. It suffices to focus on either one of them though because
they are related by the following conjugacy property:

E( f (X1:n)|X1:m = x1:m) =−E(− f (X1:n)|X1:m = x1:m).

We will therefore, without loss of generality, focus on lower
expectations. Lower and upper probabilities can be defined
analogously, as infima and suprema of probabilities. These
too do not need to be dealt with seperately though, because
they correspond to special cases of lower and upper expect-
ations: for any A ⊆X n and x1:m ∈X m, it follows from
Equation (2) that

P(X1:n ∈ A|X1:m = x1:m) = E(IA(X1:n)|X1:m = x1:m), (4)

and similarly for P(X1:n ∈ A|X1:m = x1:m).

For the particular cases where P = PM or P = PEI, we
will provide the corresponding lower and upper expecta-
tions and probabilities with the same superscript. For ex-
ample, EM will denote the lower expectation of an imprecise
Markov chain under complete independence, whereas PEI

will denote the upper probability of an imprecise Markov
chain under epistemic irrelevance.

The main goal of this paper is to demonstrate that there is a
large class of functions for which the lower expections EM

and EEI—and hence also the corresponding upper expecta-
tions and lower and upper probabilities—can be efficiently
computed. Furthermore, since the same algorithm will ap-
ply to both types of lower expectations, we also find that
for that class of inferences, it does not matter whether we
adopt complete independence or epistemic irrelevance—or
equivalently, whether we assume Markovianity.

3 SUM-PRODUCT LAWS

The basic idea behind our algorithms is to recursively de-
compose the inference problems at hand into much smaller
optimisation problems. In particular, we will reduce the
problem to that of evaluating the following local operators.
On the one hand, the lower expectation E� with respect to
the set M� of initial probability mass functions, defined by

E�( f ) := inf
p�∈M�

∑
x∈X

p�(x) f (x) for all f ∈ G (X ).

On the other hand, for any n ∈ N, the so-called lower
transition operator T n : G (X )→ G (X ), which maps any
gamble f ∈ G (X ) to a new gamble T n f defined by

T n f (x) := inf
T∈Tn

∑
y∈X

T (x,y) f (y) for all x ∈X . (5)

It is easily seen that evaluating any of these local operators
for a given f ∈ G (X ) amounts to solving a constrained
linear optimisation problem; for E�( f ) we need to solve a
linear optimisation problem over the set M�, and for any
T n f , n ∈ N, we require |X | linear optimisations over Tn—
one for each x ∈X , to obtain T n f (x). The complexity of
solving these optimisation problems depends on the spe-
cification of M� and (Tn)n∈N; for example, if these sets
are described using a finite number of linear (in)equality
constraints, then it is well-known that the corresponding op-
timisation problems can be rewritten to linear programming
problems that can then be solved using any of the avail-
able methods from the literature. However, specifics will be
problem dependent, with some specifications allowing for
straightforward and very efficient evaluation methods.

Example 3. Consider again the parameters M� and
(Tn)n∈N from Example 2, and fix any f ∈ G (X ). Clearly,
evaluating E�( f ) is trivial since M� = {p�}, so it follows
that E�( f ) = ∑x∈X p�(x) f (x). Moreover, for any n ∈N, it
easily follows from Equation (3) that

T n f = (1− ε)T f + ε min
x∈X

f (x) .

Hence, evaluating T n f has the same complexity as evaluat-
ing T f in this case. �

To reduce our inferences to the evaluation of these simple
operators, we will impose two conditions on a set of pro-
cesses P . The first one simply asks that

E�( f ) = E( f (X1)) for all f ∈ G (X ). (6)

Whenever this is the case, we say that P is compatible with
M�. This is clearly true for both PM and PEI. The second
condition, which lies at the heart of our algorithms, is that
P should satisfy what we call a sum-product law. Our first
algorithm is based on the following simple version.

Definition 1. A set of stochastic processes P ⊆ P satisfies
the sum-product law for (Tn)n∈N if for all n∈N, f ∈ G (X )
and h,g ∈ G (X n) with h≥ 0,

E
(
g(X1:n)+h(X1:n) f (Xn+1)

)
= E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
.

Crucially, PM and PEI both satisfy this law whenever
(Tn)n∈N complies with the following fairly mild condition.

Proposition 1. The imprecise Markov chains PM and PEI

both satisfy the sum-product law for (Tn)n∈N if for all n∈N,
f ∈ G (X ) and ε > 0,

(∃Tn ∈Tn)(∀x ∈X ) Tn f (x)≤ T n f (x)+ ε.



 Proof. Fix any n∈N and let P :=PM or P :=PEI—the
proof works for both cases. Observe that for any p• ∈P ,

E
(
h(X1:n) f (Xn+1)

)
= ∑

z1:n+1∈X n+1

n

∏
i=0

pz1:i(zi+1)h(z1:n) f (zn+1)

= ∑
z1:n∈X n

n−1

∏
i=0

pz1:i(zi+1)h(z1:n) ∑
zn+1∈X

f (zn+1)pz1:n(zn+1).

Furthermore, for all z1:n ∈X n, since the definition of P
implies that pz1:n = T (zn, ·) for some T ∈Tn, we know that

∑
zn+1∈X

f (zn+1)pz1:n(zn+1) = ∑
zn+1∈X

f (zn+1)T (zn,zn+1)

≥ T n f (zn),

where the inequality follows from Equation (5). Since pz1:i
and h are non-negative, it therefore follows that

E
(
h(X1:n) f (Xn+1)

)
≥ ∑

z1:n∈X n

n−1

∏
i=0

pz1:i(zi+1)h(z1:n)T n f (zn)

= E
(
h(X1:n)T n f (Xn)

)
,

The linearity of E therefore implies that

E
(
g(X1:n)+h(X1:n) f (Xn+1)

)
≥ E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
.

Since this is true for every p• ∈P , we find that

E
(
g(X1:n)+h(X1:n) f (Xn+1)

)
≥ E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
.

We now establish the converse inequality. Fix any ε > 0. It
then follows from the definition of E that there is a probab-
ility tree p• ∈P such that

E
(
g(X1:n)+h(X1:n)T n f (Xn)

)
≤ E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
+ ε. (7)

Furthermore, by assumption, there is some Tn ∈ Tn such
that, for all x ∈X , Tn f (x)≤ T n f (x)+ε . Consider now the
probability tree p∗• defined by

p∗z1:m
:=

{
Tn(zn, ·) if m = n
pz1:m if m 6= n

for all z1:m ∈X m. (8)

Note that p∗• ∈P because p• ∈P and Tn ∈Tn. Let E∗ be
the expectation operator that corresponds to p∗. Then

E∗
(
h(X1:n) f (Xn+1)

)
= ∑

z1:n∈X n

n−1

∏
i=0

p∗z1:i
(zi+1)h(z1:n) ∑

zn+1∈X
f (zn+1)p∗z1:n

(zn+1)

= ∑
z1:n∈X n

n−1

∏
i=0

pz1:i(zi+1)h(z1:n)Tn f (zn)

≤ ∑
z1:n∈X n

n−1

∏
i=0

pz1:i(zi+1)h(z1:n)
(
T n f (zn)+ ε

)
= E

(
h(X1:n)T n f (Xn)

)
+ εE

(
h(X1:n)

)
and, using a similar but simpler derivation, also that
E∗
(
g(X1:n)

)
= E

(
g(X1:n)

)
. Since E∗ and E are both linear

operators, and since E
(
h(X1:n)

)
≤maxh, it follows that

E∗
(
g(X1:n)+h(X1:n) f (Xn+1)

)
≤ E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
+ ε maxh

≤ E
(
g(X1:n)+h(X1:n)T n f (Xn)

)
+ ε + ε maxh,

using Equation (7) for the second inequality. Furthermore,
since p∗• ∈P , we also have that E∗ ≥ E. Thus, we find that

E
(
g(X1:n)+h(X1:n) f (Xn+1)

)
≤ E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
+ ε + ε maxh.

Since this is true for any ε > 0, we obtain the converse
inequality that we were after.

What makes this condition nontrivial is the order of the quan-
tifiers: for any f ∈ G (X ), we require that there is a single
Tn such that Tn f (x)≈ T n f (x) for all x∈X . One way to sat-
isfy this is to enforce it with equality. A second case occurs
if for all n ∈ N, the set Tn of transition matrices has separ-
ately specified rows [Hermans and Škulj, 2014, Def. 11.6].
In essence, a set T of transition matrices has separately
specified rows if the rows of the transition matrices T in
T can be selected independently; more formally, this prop-
erty requires that for any selection (Tx)x∈X in T , there is a
T ∈T such that T (x, ·) = Tx(x, ·) for all x ∈X .

Example 4. By Equation (3), the sets Tn, n ∈ N, of our
running example all have separately specified rows. �

Our second algorithm uses the following stronger form of
the sum-product law, where we replace f (Xn+1)—a func-
tion of the ‘next’ state—by f (Xn,Xn+1)—a function of the
‘current’ and ‘next’ state.

Definition 2. A set of stochastic processes P ⊆ P satisfies
the second-order sum-product law for (Tn)n∈N if for all
n ∈ N, f ∈ G (X 2) and h,g ∈ G (X n) with h≥ 0,

E
(
g(X1:n)+h(X1:n) f (Xn,Xn+1)

)
= E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
,

where, for all x ∈X , we let T n f (x) := [T n( f (x, ·))](x).

Both PM and PEI again satisfy this law. But the condition
that we need to impose is now a bit stronger.

Proposition 2. The imprecise Markov chains PM and PEI

both satisfy the second order sum-product law for (Tn)n∈N
if for any n ∈ N, any ( fx)x∈X such that fx ∈ G (X ) for
all x ∈X , and any ε > 0,

(∃Tn ∈Tn)(∀x ∈X ) Tn fx(x)≤ T n fx(x)+ ε.



 Proof. Since the proof is extremely similar to that of Pro-
position 1, we only explain the steps that are different. For
the first part of the proof, which consists in proving that

E
(
g(X1:n)+h(X1:n) f (Xn,Xn+1)

)
≥ E

(
g(X1:n)+h(X1:n)T n f (Xn)

)
,

the only difference is that f (zn+1) is replaced by f (zn,zn+1)
and that T n f (zn) should be interpreted as in Definition 2.
The rest of the argument is completely analogous. For the
second part of the proof, which establishes the converse
inequality, the first difference is that Tn ∈Tn now satisfies
the stronger property that, for all x ∈X ,

[Tn( f (x, ·))](x)≤ [T n( f (x, ·))](x)+ ε = T n f (x)+ ε.

The second difference is that the subsequent derivation
changes accordingly. It now goes as follows:

E∗
(
h(X1:n) f (Xn,Xn+1)

)
= ∑

z1:n∈X n

n−1

∏
i=0

p∗z1:i
(zi+1)h(z1:n)

∑
zn+1∈X

f (zn,zn+1)p∗z1:n
(zn+1)

= ∑
z1:n∈X n

n−1

∏
i=0

pz1:i(zi+1)h(z1:n)[Tn(( f (zn, ·))](zn)

≤ ∑
z1:n∈X n

n−1

∏
i=0

pz1:i(zi+1)h(z1:n)
(
T n f (zn)+ ε

)
= E

(
h(X1:n)T n f (Xn)

)
+ εE

(
h(X1:n)

)
.

A simple way to enforce this condition is to require it with
equality, without the ε . It is also relatively straightforward
to show that (Tn)n∈N satisfies the condition in Proposition 2
whenever Tn has separately specified rows for all n ∈ N.

4 RECURSIVE ALGORITHMS

With the required conditions out of the way, we now arrive
at the two main results of this contribution. Both of them are
simple and straightforward backwards recursive schemes to
compute lower—and, by conjugacy, upper—expectations
for sets of stochastic processes P ⊆ P that satisfy a sum-
product law for (Tn)n∈N and are compatible with M�. As
we have seen in the previous section, these conditions are
satisfied by PM and PEI, under fairly mild conditions. The
essential property that makes the recursion possible is the
sum-product law. The reason why we are able to exploit that
property is because we restrict attention to variables f (X1:n)
that have a ‘sum-product’ decomposition. In the following
result, and also in Theorem 2, we denote the set of non-
negative gambles on X by G≥0(X ).

Theorem 1. Consider a set of stochastic processes P ⊆
P that satisfies the sum-product law for (Tn)n∈N and is

compatible with M�. Consider g1, . . . ,gn in G (X ) and
h1, . . . ,hn−1 in G≥0(X ), and define f ∈ G (X n) by

f (x1:n) :=
n

∑
k=1

gk(xk)
k−1

∏
`=1

h`(x`) for all x1:n ∈X n.

Then E( f (X1:n)) = E�(π1), where πk ∈ G (X ) is recurs-
ively defined by the initial condition πn := gn and, for all
k ∈ {1, . . . ,n−1}, by πk := gk +hkT kπk+1.

Proof. For all m ∈ {0, . . . ,n−1}, let

h̃m(X1:m) :=
m

∏
`=1

h`(X`)

and

g̃m(X1:m) :=
m

∑
k=1

gk(Xk)
k−1

∏
`=1

h`(X`).

Then h̃0 = 1 and g̃0 = 0. Since the compatibility with M�

implies that E�(π1) = E(π1(X1)), it suffices to prove that
for all m ∈ {1, . . . ,n}, and for m = 1 in particular,

E( f (X1:n)) = E
(
g̃m−1(X1:m−1)+ h̃m−1(X1:m−1)πm(Xm)

)
.

We provide a proof by induction. That this equation holds
for m = n is straightforward. Indeed, we see that

E( f (X1:n)) = E
(
g̃n−1(X1:n−1)+ h̃n−1(X1:n−1)gn(Xn)

)
= E

(
g̃n−1(X1:n−1)+ h̃n−1(X1:n−1)πn(Xn)

)
.

For the inductive step, we assume that it holds for m = i+1,
with i ∈ {1, . . . ,n−1}, and prove that it then also holds for
m = i. Observe that

E( f (X1:n)) = E
(
g̃i(X1:i)+ h̃i(X1:i)π i+1(Xi+1)

)
= E

(
g̃i(X1:i)+ h̃i(X1:i)T iπ i+1(Xi)

)
= E

(
g̃i−1(X1:i−1)+ h̃i−1(X1:i−1)gi(Xi)

+ h̃i−1(X1:i−1)hi(Xi)T iπ i+1(Xi)
)

= E
(
g̃i−1(X1:i−1)

+ h̃i−1(X1:i−1)
[
gi(Xi)+hi(Xi)T iπ i+1(Xi)

])
= E

(
g̃i−1(X1:i−1)+ h̃i−1(X1:i−1)π i(Xi)

)
,

where the first equality follows from the induction hypo-
thesis and the second follows from the sum-product law.
Hence, the statement holds for m = i as well.

Theorem 1 is related to—and, in fact, inspired by—a res-
ult of T’Joens et al. [2019, Thm. 2], but there are two key
differences. The first is that T’Joens et al. [2019, § 3] limit
themselves to ‘homogeneous’ imprecise Markov chains un-
der epistemic irrelevance—that is, to PEI with Tn =T1 for
all n ∈ N—whereas our results do not require homogeneity
and also work for complete independence—that is, for PM.
The second is that they assume that each Tn has separately



 specified rows, whereas our condition is weaker. That said,
we do not get this more general setting for free: we need
to require that the gambles h1, . . . , hn−1 are non-negative,
while T’Joens et al. [2019, Thm. 2] do not. This extra non-
negativity condition is often satisfied in practice though, as
we will see in Section 5.1 further on.

Our second main result is similar to the first one, but we now
rely on the second-order sum-product law. More precisely,
we show that we can also use a—slightly more involved—
backwards recursive method to compute the lower expect-
ation of inferences f (X1:n) that have a ‘second-order sum-
product’ decomposition; for an example of such an infer-
ence, we refer to Section 5.2 further on.

Theorem 2. Consider a set of stochastic processes P ⊆ P
that satisfies the second-order sum-product law for (Tn)n∈N
and is compatible with M�. Consider g2, . . . ,gn in G (X 2)
and h1, . . . ,hn−1 in G≥0(X ), and define f ∈ G (X n) by

f (x1:n) :=
n

∑
k=2

gk(xk−1,xk)
k−1

∏
`=1

h`(x`) for all x1:n ∈X n.

Then E( f (X1:n)) = E�(π1), where πk ∈ G (X ) is recurs-
ively defined by the initial condition πn := 0 and, for all
k ∈ {1, . . . ,n−1} and xk ∈X , by

πk(x) := hk(x)
[
T k
(
gk+1(x, ·)+πk+1

)]
(x).

Proof. For all m ∈ {0, . . . ,n−1}, let

h̃m(X1:m) :=
m

∏
`=1

h`(X`)

and

g̃m(X1:m) :=
m

∑
k=2

gk(Xk−1,Xk)
k−1

∏
`=1

h`(X`).

Then h̃0 = 1 and g̃0 = g̃1 = 0. Since the compatibility with
M� implies that E�(π1) = E(π1(X1)), it suffices to prove
that for all m ∈ {1, . . . ,n}, and for m = 1 in particular,

E( f (X1:n)) = E
(
g̃m(X1:m)+ h̃m−1(X1:m−1)πm(Xm)

)
. (9)

We provide a proof by induction. That this equation holds
for m = n is straightforward. Indeed, we see that

E( f (X1:n)) = E
(
g̃n(X1:n)+0

)
= E

(
g̃n(X1:n)+ h̃n−1(X1:n−1)πn(Xn)

)
For the inductive step, we assume that Equation (9) holds
for m = i+1, with i ∈ {1, . . . ,n−1}, and will prove that it
then also holds for m = i. Let f̃ ∈ G (X 2) be defined by

f̃ (x,y) := gi+1(x,y)+π i+1(y) for all x,y ∈X .

We use here the notational convention of Definition 2, so

T i f̃ (x) =
[
T i
(

f̃ (x, ·)
)]
(x) for all x ∈X .

Thus, for all x ∈X , we find that

hi(x)T i f̃ (x) = hi(x)
[
T i
(
gi+1(x, ·)+π i+1

)]
(x) = π i(x),

so, hi(Xi)T i f̃ (Xi) = π i(Xi). It therefore follows that

E( f (X1:n)) = E
(
g̃i+1(X1:i+1)+ h̃i(X1:i)π i+1(Xi+1)

)
= E

(
g̃i(X1:i)+ h̃i(X1:i)gi+1(Xi,Xi+1)

+ h̃i(X1:i)π i+1(Xi+1)
)

= E
(
g̃i(X1:i)+ h̃i(X1:i) f̃ (Xi,Xi+1)

)
= E

(
g̃i(X1:i)+ h̃i(X1:i)T i f̃ (Xi)

)
= E

(
g̃i(X1:i)+ h̃i−1(X1:i−1)hi(Xi)T i f̃ (Xi)

)
= E

(
g̃i(X1:i)+ h̃i−1(X1:i−1)π i(Xi)

)
,

where the first equality is the induction hypothesis and the
fourth equality follows from the second-order sum-product
law. Thus, Equation (9) holds for m = i, as required.

Example 5. Consider the simple disease transition model
from Example 1, with the parameters M� and (Tn)n∈N from
Example 2. As was noted in Example 4, the sets Tn, n ∈ N,
have separately specified rows, so the associated imprecise
Markov chains PM and PEI satisfy both sum-product laws,
which means that we can use the algorithms in Theorems 1
and 2 to compute lower expectations for them. �

Let us briefly consider the computational complexity of
the methods presented above. For the algorithm in The-
orem 1, we see that the main effort lies in computing the
n−1 functions πk := gk+hkT kπk+1, with k∈{1, . . . ,n−1}.
For any such k, this requires us to evaluate πk(x) := gk(x)+
hk(x)T kπk+1(x) for all x ∈X , the complexity of which is
dominated by the computation of T kπk+1(x). As discussed
in Section 3, the latter has a complexity that is problem de-
pendent, say O(c), where for simplicity we will assume that
this complexity is independent of x and k. Repeating this for
all x ∈X to obtain the entire vector πk, we get a complex-
ity of O(c|X |). Crucially, this complexity is independent
of n, so the total complexity to obtain π1 by backwards
recursion is simply O(nc|X |). The final step then requires
evaluating E�(π1), which as discussed in Section 3, has a
problem dependent complexity, say O(c�). The total com-
plexity of the algorithm in Theorem 1 therefore comes out to
O(c�+nc|X |), with the coefficients c� and c being determ-
ined by the specification of M� and (Tk)k∈N, respectively.
The analysis of the algorithm in Theorem 2 proceeds similar
to the above, and yields the exact same complexity. Notably,
these complexities scale only linearly with the number of
time points on which E( f (X1:n)) depends.

Example 6. It follows from the analysis in Example 3 that
for our simple disease transition model, the corresponding
coefficients are c� = c = |X |. Hence, the total complexity
of the algorithms from Theorem 1 and 2, when applied to
inferences with this model, comes out to O

(
n|X |2

)
. �



 Finally, an interesting feature of the algorithms in Theor-
ems 1 and 2 is that they do not depend on the specific set
of stochastic processes P . Indeed, observe that the final
result is completely determined by E� and (T n)n∈N. This
implies that whenever (Tn)n∈N satisfies the condition in
Proposition 1 (or 2), the lower—and, by conjugacy, upper—
expectations with respect to PM and PEI coincide for all
inferences that have a ‘sum-product’ (or ‘second-order sum-
product’) decomposition. As we are about to demonstrate,
this class of inferences is surprisingly large.

5 SPECIAL CASES

Many practically relevant inferences are of the form f (X1:n),
with f as defined in Theorems 1 or 2. The following list
provides various examples; it is by no means exhaustive,
but does contain many common inferences. For any of these
inferences, our theorems can be used to compute their lower
and upper expectation. For the lower expectations, this is im-
mediate. For the upper expectations, this follows from two
observations: first, for any f of the required sum-product
form, − f is also of this form (simply replace gk by −gk);
second, by conjugacy, E( f ) =−E(− f ).

5.1 USING THE SUM-PRODUCT LAW

Let us start with inferences that are of the form as defined in
Theorem 1. Recall from Section 4 that Theorem 1 is similar
to [T’Joens et al., 2019, Theorem 2]. This is relevant because
T’Joens et al. [2019, § 5] list five classes of inferences
that fall in the scope of their recursive scheme. These five
classes—or, in some cases, generalisations of them—also
fall in the scope of Theorem 1.

Inferences that depend on a single time point The most
basic example are inferences of the form f (Xn), with f ∈
G (X ). In Theorem 1, this corresponds to letting gn := f
and, for all k ∈ {1, . . . ,n−1}, gk := 0 and hk := 1.

Example 7. Consider the simple disease transition model
from Example 1, with the parameters M� and (Tn)n∈N
from Example 2. As we know from Example 5, we can use
our algorithms to compute inferences for the associated
imprecise Markov chains—as noted at the end of Section 4,
the distinction between PM and PEI does not matter here.
We will compute the lower and upper probability that person
k is sick after n time steps. These are the lower and upper
expectation of IA(Xn), where A⊆X is the set of all states
in which person k is sick. Since this inference depends on
one time point, we know from the above that we can compute
it with Theorem 1. The results are depicted in Figure 2, for
different values of k; the dashed lines depict the probability
interval and the solid line corresponds to the precise Markov
chain with transition matrix T from Example 1. �
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Figure 2: Probability of A Person Being Sick at Time n.

Pure sums A second, slightly more involved example are
inferences of the form ∑

n
k=1 fk(Xk), with fk ∈ G (X ) for

all k ∈ {1, . . . ,n}. This corresponds to letting gk := fk for
all k ∈ {1, . . . ,n} and hk := 1 for all k ∈ {1, . . . ,n− 1} in
Theorem 1. One important special case is the occupancy
time ∑

n
k=1 IA(Xk) of the system in the set A ⊆X over the

finite horizon {1, . . . ,n}. A second important special case is
the temporal average 1

n ∑
n
k=1 f (Xk) = ∑

n
k=1

1
n f (Xk) of f (Xk)

over the finite horizon {1, . . . ,n}. In the limit for n going
to +∞, T’Joens and De Bock [2021] discuss this inference
in great depth for homogeneous imprecise Markov chains.

Pure products We can also deal with pure products in-
stead of sums. Such inferences are of the form ∏

n
k=1 fk(Xk),

with fn ∈G (X ) and fk ∈G≥0(X ) for all k∈{1, . . . ,n−1}.
To deal with these, we invoke Theorem 1 with gn := fn and,
for all k ∈ {1, . . . ,n−1}, gk := 0 and hk := fk.

Time-bounded until In the setting of model checking
[Baier and Katoen, 2008], ‘time-bounded until’ events play
an important role. Consider a time bound n ∈ N, a set G⊆
X of goal states and a set S⊆X of safe states. Katoen et al.
[2012, § 2.2] define the corresponding ‘time-bounded until’
event as the event that the system visits a goal state in G at
some time point k in the finite time horizon {1, . . . ,n} while
only visiting safe states in S at the time points before k; that
is, they consider the event {SU ≤nG} := {X1:n ∈ A} with

A :=
{

x1:n ∈X n :
(
∃k ∈ {1, . . . ,n}

)
xk ∈ G,

(∀` ∈ {1, . . . ,k−1}) x` ∈ S
}
.

Note that IA(X1:n) = ∑
n
k=1 IG(Xk)∏

k−1
`=1 IS∩Gc(X`), so, due

to Equation (4), we can compute the lower and upper prob-
ability of these ‘time-bounded until’ events with Theorem 1.
When the set of safe states is S = X , these are more
commonly known as (time-bounded) lower and upper hit-
ting probabilities; for homogenous imprecise Markov chais,



 Krak et al. [2019] discuss the behaviour of these inferences
in the limit for large n.

Example 8. As a second example of using our disease
model, we compute the probability that person 6 becomes
sick within the first n = 40 time steps, without person 4
getting sick before him. This is a ‘time-bounded until’ event,
where G collects the states where person 6 is sick and S the
states where person 4 is not sick. So here as well, we can use
Theorem 1 to compute the bounds that we are after. We find
that—up to four significant digits—the lower probability is
0.1374 and the upper one is 0.2553; for the precise Markov
chain that corresponds to T , the probability is 0.1464. �

Hitting times Consider again a set G⊆X of goal states.
Then for all n ∈ N, we let τn

G be the gamble on X n that is
defined for all x1:n ∈X n by

τ
n
G(x1:n) := min

(
{k ∈ {1, . . . ,n} : xk ∈ G}∪{n+1}

)
.

Since τn
G(X1:n) = 1+ IGc(X1)+∑

n
k=2 IGc(Xk)∏

k−1
`=1 IGc(X`),

it follows that we can use Theorem 1 to recursively com-
pute E(τn

G(X1:n)) and E(τn
G(X1:n)). Krak et al. [2019] again

discuss the limit for large n.

5.2 USING THE SECOND-ORDER
SUM-PRODUCT LAW

Inferences that have a decomposition as in Theorem 2 but
not as in Theorem 1 are perhaps a bit more difficult to
conjure. We will treat one—yet important—example: the
expected number of transitions of the system. To be as gen-
eral as possible, we consider a subset A of X 2, and we think
of every couple (x,y) ∈ A as a ‘transition’ that interests us;
note that here, we do not exclude the case (x,x). Then for
all n ∈ N, we let η

≤n
A (X1:n) denote the number of ‘interest-

ing transitions’ over the finite horizon {1, . . . ,n}; that is,
η
≤n
A is the gamble on X n defined for all x1:n ∈X n by

η
≤n
A (x1:n) :=|{k ∈ {2, . . . ,n} : (xk−1,xk) ∈ A}|.

It is quite easy to see that η
≤n
A (X1:n) = ∑

n
k=2 IA(Xk−1,Xk),

which makes clear that we can use Theorem 2 to determine
the lower (and conjugate upper) expectation of η

≤n
A (X1:n).

An important example of a set A⊆X 2 of ‘interesting trans-
itions’ is A = {(x,y) ∈X 2 : x 6= y}. In that case, η

≤n
A (X1:n)

corresponds to the number of transitions over {1, . . . ,n}.
Alternatively, if A = S×G, with G⊆X a set of goal states
and S⊆X a set of safe states, then η

≤n
A (X1:n) corresponds

to the number of transitions from a safe state in S to a goal
state in G over {1, . . . ,n}.

Example 9. As a final example that uses our simple disease
transition model, in order to illustrate the algorithm from
Theorem 2, we consider the expected number of times that
person 3 becomes sick in the first 60 time steps. This is

a specific case of the expected number of transitions, as
discussed above, with n = 60 and A the set of all couples
(x,y) where person 3 is healthy in state x and sick in state
y. We find that—up to four significant digits—the lower
expected number of times is 5.455 and the upper is 8.093;
for the precise Markov chain that corresponds to T , the
expected number of times is 7.212. �

6 CONCLUSION

The main conclusion of this contribution is that there is a
diverse range of practically relevant inferences that can be
efficiently computed for imprecise Markov chains, and that
for those inferences, it does not matter whether we adopt
complete independence or epistemic irrelevance. To obtain
tight bounds, mild conditions had to be imposed on the
sets of transition matrices (Tn)n∈N. Note however that we
can drop these conditions at the cost of the tightness of our
bounds. This can be seen by noticing that, for every n ∈ N,

T ′
n := {T ∈ T : T f ≥ T n f for all f ∈ G (X )}

is a superset of Tn whose lower transition operator is also
equal to T n, but which always satisfies the conditions in
Propositions 1 and 2. Our algorithms therefore yield tight
bounds for the imprecise Markov chains corresponding to
(T ′

n )n∈N, and hence also—possibly non-tight—bounds for
the ones corresponding to (Tn)n∈N.

We see several future lines of research. First, to drop the
restriction that the multipliers h` should be non-negative.
Second, to study the limit behaviour for large n for the new
types of inferences that we can now deal with. Third, to
consider more special cases, besides the ones we discussed
in Section 5. Fourth, to explore the implications of our res-
ults for Markov decision processes [Feinberg and Shwartz,
2012], by using the close relationship between Markov de-
cision processes and imprecise Markov chains [Troffaes
and Skulj, 2013]. And fifth, to test our methods on more
examples, and to apply them to real-life problems.
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