
 
CLAIM: Curriculum Learning Policy for Influence Maximization in Unknown

Social Networks

Dexun Li1 Meghna Lowalekar1 Pradeep Varakantham1

1School of Computing and Information Systems, Singapore Management University, Singapore

Abstract

Influence maximization is the problem of find-
ing a small subset of nodes in a network that can
maximize the diffusion of information. Recently,
it has also found application in HIV prevention,
substance abuse prevention, micro-finance adop-
tion, etc., where the goal is to identify the set of
peer leaders in a real-world physical social net-
work who can disseminate information to a large
group of people. Unlike online social networks,
real-world networks are not completely known,
and collecting information about the network is
costly as it involves surveying multiple people. In
this paper, we focus on this problem of network
discovery for influence maximization. The existing
work in this direction proposes a reinforcement
learning framework. As the environment interac-
tions in real-world settings are costly, so it is im-
portant for the reinforcement learning algorithms
to have minimum possible environment interac-
tions, i.e, to be sample efficient. In this work, we
propose CLAIM - Curriculum LeArning Policy
for Influence Maximization to improve the sample
efficiency of RL methods. We conduct experiments
on real-world datasets and show that our approach
can outperform the current best approach.

1 INTRODUCTION

Social interactions between people play an important role in
spreading information and behavioral changes. The problem
of identifying a small set of influential nodes in a social
network that can help in spreading information to a large
group is termed as influence maximization (IM) [Kempe
et al., 2003]. It was widely used in applications such as viral
marketing [Kempe et al., 2003], rumor control [Budak et al.,
2011], etc, which use the online social network. In addition

to these, IM has also found useful applications in domains
involving real world physical social networks. Some of these
applications include identifying peer leaders in homeless
youth network to spread awareness about HIV [Wilder et al.,
2018b, Yadav et al., 2016], identifying student leaders in
school network to disseminate information on substance
abuse [Valente and Pumpuang, 2007], identifying users who
can increase participation in micro-finance [Banerjee et al.,
2013], etc. In the case of real world social networks, the net-
work information is not readily available and it is generally
gathered by individually surveying different people who are
part of the network. As conducting such surveys is a time
intensive process requiring substantial efforts from a dedi-
cated team of social work researchers, it is not practically
possible to have access to a complete network structure.
Therefore, the influence maximization problem in the real
world is coupled with the uncertain problem of discovering
network using a limited survey budget (i.e., the number of
people who can be queried).

Most of the existing work [Wilder et al., 2018b,a, Yadav
et al., 2016] which addresses real-world influence maxi-
mization problems perform network discovery by surveying
nodes while exploiting a specific network property such as
community structure. CHANGE algorithm [Wilder et al.,
2018b] is based on the principle of friendship paradox and
performs network discovery by surveying a random node
and one of its neighbour. Each node reveals the information
about its neighbors upon querying. The subgraph obtained
after querying a limited set of nodes is used to pick a set of
influential nodes using an influence maximization algorithm.
A recent work by Kamarthi et al. [2019] provides a rein-
forcement learning based approach to automatically train an
agent for network discovery. They developed an extension
to DQN referred to as Geometric-DQN to learn policies
for network discovery by extracting relevant graph proper-
ties, which achieves better performance than the existing
approaches. As any other reinforcement learning approach,
the work by Kamarthi et al. [2019] needs to perform multi-
ple interactions with the environment to perform exploration.
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 As in the real world settings, the environment interactions
are costly, the approach can be improved by reducing the
environment interactions, i.e., by increasing the sample ef-
ficiency. This approach employs a myopic heuristic (new
nodes discovered) to guide exploration and we employ goal
directed learning to provide a forward looking (non-myopic)
heuristic.

In this work, we propose to model the network discovery
problem as a goal-directed reinforcement learning problem.
We take the advantage of the Hindsight Experience Re-
play [Andrychowicz et al., 2017] framework which suggests
learning from failed trajectories of agent by replaying each
episode with a different goal (e.g. the state visited by agent
at the end of its failed trajectory) than the one agent was try-
ing to achieve. This helps in increasing sample efficiency as
agent can get multiple experiences for learning in a single en-
vironment interaction. To further improve the performance,
we use the curriculum guided selection scheme proposed
by Fang et al. [2019] to select the set of episodes for experi-
ence replay. While there have been some other works which
focus on improving the sample-efficiency [Sukhbaatar et al.,
2017, Burda et al., 2018, Colas et al., 2019], most of them
are designed for domain specific applications and unlike
our curriculum guided selection scheme which adaptively
controls the exploration-exploitation trade-off by gradually
changing the preference on goal-proximity and diversity-
based curiosity, they only perform curiosity-driven learning.

Contributions: In summary, following are the main contri-
butions of the paper along different dimensions:

• Problem: We convert the whole process of network dis-
covery and influence maximization into a goal directed
learning problem. Unlike standard goal directed learning
problems where goal state is known, in this problem, the
goal state is not given. We provide a novel heuristic to
generate goals for our problem setting.

• Algorithm: We propose a new approach CLAIM -
Curriculum LeArning Policy for Influence Maximization
in unknown social networks which by using Curricu-
lum guided hindsight experience replay and goal directed
Geometric-DQN architecture can learn sample efficient
policies for discovering network structure.

• Experiments: We perform experiments in social net-
works from three different domains and show that by
using our approach, the total number of influenced nodes
can be improved by upto 7.51% over existing approach.

2 PROBLEM DESCRIPTION

The problem considered in this work involves discovering a
subgraph of the unknown network such that the set of peer
leaders chosen from the discovered subgraph maximizes
the number of people influenced by peer leaders. We now

Notation Description
G∗ = (V ∗, E∗) Entire Unknown Graph
S Set of nodes known initially
Gt = (Vt, Et) Subgraph of G∗ discovered after t queries
NG∗(u) Neighbors of vertex u in graph G∗

E(X,Y ) All direct edges that connect a node in
set X and a node in set Y

O(G) Set of nodes from graph G selected by
influence maximization algorithm O

IG∗(A) Expected Number of nodes influenced in
graphG∗ on choosing A as the set of
nodes to activate

Table 1: Notations

describe both the components of the problem, i.e., network
discovery and influence maximization in detail. The nota-
tions used in the problem description are defined in Table
1.

• Network Discovery Problem: The network discovery
problem can be described as a sequential decision mak-
ing problem where at each step, the agent queries a
node from the discovered subgraph. The queried node
reveals its neighbors, expanding the discovered sub-
graph. The process goes on for a fixed number of steps,
determined by the budget constraint. Formally, initially
we are given a set of nodes S and the agent can ob-
serve all the neighbors of nodes in set S. Therefore,
V0 = S∪NG∗(S). The agent has a budget of T queries
to gather additional information. For (t+ 1)th query,
the agent can choose a node ut from Gt and observe
Gt+1.

Gt+1 = (Vt ∪NG∗(ut), E(Gt) ∪ E(NG∗(ut), {ut})).

At the end of network discovery process, i.e., after T queries,
we get the final discovered subgraph GT . This graph is
provided as an input to an IM algorithm.

• Influence Maximization (IM) : IM is the problem of
choosing a set of influential nodes in a social network
who can propagate information to maximum nodes. In
this paper, the information propagation over the net-
work is modeled using Independent Cascade Model
(ICM ) [Kempe et al., 2003], which is the most com-
monly used model in the literature. In the ICM, at the
start of the process, only the nodes in the set of chosen
initial nodes are active. The process unfolds over a
series of discrete time steps, where at every step, each
newly activated node attempts to activate each of its
inactive neighbors and succeeds with some probability
p. The process ends when there are no newly activated
nodes at the final step. After discovering the subgraph
GT using network discovery process, we can use any
standard influence maximization algorithm to find out
the best set of nodes to activate based on the available
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Figure 1: Network discovery and influence maximization. Grey:
Set of Queried Nodes; Orange: Set of unqueried nodes (In the
initial subgraph G0, grey nodes will represent the set S and orange
nodes will represent the set NG∗(S)), Yellow: node picked by
agent to query (ut); Red: nodes selected by influence maximization
algorithm in the final discovered subgraph (O(GT )); Blue: other
nodes in the final discovered subgraph GT

information. Lowalekar et al. [2016] showed the ro-
bustness of the well-known greedy approach [Kempe
et al., 2003] on medium scale social network instances,
which is also served as the oracle in our paper.

Overall, given a set of initial nodes S and its observed
connections NG∗(S), our task is to find sequence of queries
(u0, u1, . . . , uT−1) such that GT maximizes IG∗(O(GT )).
Figure 1 shows the visual representation of the problem.

3 BACKGROUND

In this section, we describe the relevant research, the MDP
formulation and the Geometric-DQN architecture used by
Kamarthi et al. [2019] to solve the network discovery and
influence maximization problem.

3.1 MDP FORMULATION

The social network discovery and influence maximization
problem can be formally modelled as an MDP.

• State: The current discovered graph Gt is the state.

• Actions: The nodes yet to be queried in network Gt
constitute the action space. So, set of possible actions
is Vt \ {S ∪i≤t ui} ∀t > 0 and NG∗(S) when t = 0.

• Rewards: Reward is only obtained at the end of
episode, i.e„ after T steps. It is the number of nodes
influenced in the entire graph G∗ using GT , i.e.,
IG∗(O(GT )). The episode reward is denoted by RT ,
where T is the length of the episode (budget on the
number of queries available to discover the network).

Training: To train the agent in the MDP environment, DQN
algorithm is used but the original DQN architecture which
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Figure 2: Geometric-DQN Architecture. Figure taken from Ka-
marthi et al. [2019]. FC1/FC2 - fully connected layers.

takes only the state representation as an input and outputs
the action values can not be used as the action set is not
constant and depends on the current graph. Therefore, both
state and action are provided as an input to DQN and it pre-
dicts the state action value. The DQN model can be trained
using a single or multiple graphs. If we train simultaneously
on multiple graphs, then the MDP problem turn out to be
Partially observable MDP, as the next state is determined by
both current state and current action as well as the graph we
are using. The range of reward values also depends on the
size and structure of the graph, therefore, the reward value
is normalized when multiple graphs are used for training.

RT =
IG∗(O(GT ))

OPT (G∗)
(1)

3.2 GEOMETRIC-DQN

As described in previous section, the state is the current
discovered graph Gt and actions are the unqueried nodes
in the current discovered graph. So, a good vector repre-
sentation of the current discovered graph is required. It is
also important to represent nodes such that it encodes the
structural information of the node in the context of the cur-
rent discovered graph. Figure 2 shows the Geometric-DQN
architecture which takes the state and action representation
as input and outputs the Q(s, a) values. The details about
state and action representation are provided below.

• State representation: The state is the current graph.
and the Geometric-DQN architecture uses Graph Con-
volutional Networks to generate graph embeddings. The
graph Gt is represented with the adjacency matrix At ∈
R|Vt|×|Vt| and a node feature matrix F (k−1)

t ∈ R|Vt|×d

in layer k − 1 where d is the number of features. The
node features in the input layer of graph convolution net-
work, i.e., F 0

t are generated by using random-walk based
Deepwalk embeddings1 [Perozzi et al., 2014].

1Deepwalk learns node representations that are similar to other
nodes that lie within a fixed proximity on multiple random walks.



 Now, a Graph Convolutional layer derives node features
using a transformation function F k =M(A,F k−1;W k),
where W k represent the weights of the kth layer. Using
the formulation in Ying et al. [2019], the transformation
function is given by

F
(k)
t = ReLU(D−

1
2 ÃD−

1
2F

(k−1)
t W (k))

where Ã means adjacency matrix At with added self-
connections, i.e., Ã = At + In (In is the identity matrix).
D =

∑
j Ãij . To better represent the global representa-

tion of graph, differential pooling is used which learns
hierarchical representations of the graph in an end-to-end
differentiable manner by iteratively coarsening the graph,
using graph convolutional layer as a building block. The
output of graph convolutional network is provided as an
input to a pooling layer.

• Actions representation: DeepWalk node embeddings
are also utilized for representing actions. We use φ to
denote the deepwalk embeddings.

Therefore, if Gt is the current graph (state) and ut is the
current node to be queried (action), we represent state as
St = (F 0

t , At) and action as φ(ut) which are input to the
network as shown in the Figure 2.

4 OUR APPROACH - CLAIM

In this section, we present our approach CLAIM -
Curriculum LeArning Policy for Influence Maximization in
unknown social networks. We first explain how the problem
can be translated into a Goal directed learning problem. The
advantage of translating the problem into goal directed learn-
ing problem is that it allows us to increase sample efficiency
by using the Curriculum guided Hindsight experience replay
(CHER) [Fang et al., 2019]. CHER involves replaying each
episode with pseudo goals, so the agent can get multiple ex-
periences in a single environment interaction which results
in increasing the sample efficiency.

To use goal directed learning in our setting, we first present
our novel heuristic to generate goals and the modifications to
the MDP formulation for goal directed learning. After that,
we present our algorithm to generate curriculum learning
policy using Hindsight experience replay.

4.1 GOAL DIRECTED REINFORCEMENT
LEARNING

In the Goal Directed or Goal Conditioned Reinforcement
Learning [Andrychowicz et al., 2017, Nair et al., 2018], an
agent interacts within an environment to learn an optimal
policy for reaching a certain goal state or a goal defined by
a function on the state space in an initially unknown or only
partially known state space. If the agent reaches the goal,

then the reinforcement learning method is terminated, and
it solves the goal-directed exploration problem.

In these settings, the reward that agent gets from the envi-
ronment is also dependent on the goal that agent is trying to
achieve. A goal-conditioned Q-function Q(s, a, g) [Schaul
et al., 2015] learns the expected return for the goal g starting
from state s and taking action a. Given a state s, action
a, next state s′ , goal g and corresponding reward r, one
can train an approximate Q-function parameterized by θ by
minimizing the following Bellman error:

1

2
||Qθ(s, a, g)− (r + γ ·max

a′
Qθ′(s

′, a′, g)||2

This loss can be optimized using any standard off-policy
reinforcement learning method [Nair et al., 2018].

Generally, in these goal-directed reinforcement learning
problems, a set of goal states or goals defined by a function
on the state space is given and the agent needs to reach
one of the goal states (goals). But in our setting, we do not
have an explicit goal state given. To convert the network
discovery and influence maximization problem to a goal
directed learning problem, we introduce the notion of goals
for our problem. We define goal as the expected long term
reward, i.e., the expected value of the number of nodes
which can be influenced in the network and any state which
can achieve this goal value becomes our goal state. As we
have limited query budget to discover the network, the goal
value will be highly dependent on the initial sub-graph. If we
use the same value of goal for each start state, for some start
states this common goal value will turn out to be a very loose
upper bound (or very loose lower bound). Experimentally,
we found that if the goal value is too far from the actual
value which can be achieved, it negatively affects the speed
of learning. So, we design a heuristic to compute a different
goal for each start state.

4.1.1 Goal Generation Heuristic

As we need to generate goal at the start of each episode (i.e.,
before the agent starts interacting with the environment), we
need to compute the goal value without making any queries
to the environment. We assume that based on the domain
knowledge, agent can get an estimate about the number
of nodes (|Ṽ ∗|) and edges (|Ẽ∗| in the network and also
an estimate about average number of nodes which can be
influenced in the network (irrespective of the start state)
(Ĩ∗). We now describe how we use these estimates to design
our heuristic to compute the goal value for each start state.

Figure 3 represents the steps for our heuristic. As the net-
work is unknown to the algorithm, we assume a network
structure and compute the diffusion probability based on the
assumed network structure and estimates about the number
of nodes, edges and average influence. By using the com-
puted diffusion probability, given estimates and assumed
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Figure 3: Process to generate the goal for each start state

network structure, we generate a goal value for a given
initial subgraph.

We assume that the network is undirected and uniformly
distributed, i.e, each node is connected to 2∗|Ẽ∗|

|Ṽ ∗| nodes. We

also assume a local tree structure as shown in Figure 3 2 to
approximate the actual expected influence within the social
network [Chen et al., 2010, Wang et al., 2012]. The root of
the tree can be any of the |S| nodes (initially given nodes)
and each node will be part of only one of such trees. The
influence propagation probability is assumed to be p′ and
is considered same for all edges. We now show how the
value of p′ can be computed based on the network structure
assumption and available information.

1. Computing p’: We find a value of p′ such that the
expected influence in our tree-structured network is
similar to the estimate on the average value of influence
Ĩ∗. To compute the expected influence or expected
number of nodes activated in the network, we need
to know the number of layers in the tree structure.
Therefore, we first compute the number of layers in our
assumed tree structure. Let K1 = |S| ∗ 2 ∗ |E

∗|
|V ∗| , which

is the number of nodes at first layer. For subsequent
layers, each node will be connected to 2 ∗ |Ẽ

∗|
|Ṽ ∗| − 1

nodes at the layer below it (one edge will be to the node
at the above layer). We use r to denote the quantity
2∗ |Ẽ

∗|
|Ṽ ∗| −1 . As the total number of nodes in the graph

is |Ṽ ∗|, sum of the number of nodes at all layers should
be equal to |Ṽ |∗. Let L denotes the number of layers.
Then,

|Ṽ |∗ = |S|+K1 +K1 ∗ r +K1 ∗ r2 + ..+K1 ∗ rL−1

(2)

=⇒ (|Ṽ |∗ − |S|)
K1

=
rL − 1

r − 1
(3)

Solving for L gives L = logr(1 + |Ṽ |∗−|S|)∗(r−1)
K1

).
Now, we compute the expected number of nodes ac-
tivated (influenced) in our assumed network with the

2These simplified assumptions work well to approximate the
influence propagation. We also observe in our experiments that our
heuristic outputs a value which is closer to actual value.

propagation probability p′. Let J denotes the expected
number of nodes influenced in the network. Then,

J = |S|+K1 ∗ p′ +K1 ∗ r ∗ p′2 +K1 ∗ r2 ∗ p′3 (4)

+ ..+K1 ∗ rL−1 ∗ p′L

=⇒ (J − |S|)
K1

=
p′ ∗ ((p′ ∗ r)L − 1)

p′ ∗ r − 1
(5)

If our assumed network is similar to actual network,
the value of J should be close to Ĩ∗, i.e., the average
number of nodes influenced in the network. Therefore,
to find the value of p′, we perform a search in the
probability space and use the value of p′ which makes
J closest to ˜|I|

∗
.

2. Computing goal value g for a given initial sub-
graph: Now, to compute the goal value for a given
initial subgraph, we use the p′ value computed above.
The subgraph is known, i.e., the neighbors of nodes
in set S (NG∗(S)) are known. Therefore, the num-
ber of nodes at first layer is equal to NG∗(S), i.e.,
K1 = |NG∗(S)|. For the next layer onwards, we as-
sume a similar tree structure as before with each node
connected to 2 ∗ |Ẽ||Ṽ | − 1 node at the layer below it.
Therefore, to compute the goal value, we substitute
K1 as |NG∗(S)| in equations 3 and 5 to compute the
number of layers and influence value. We use the value
of p′ computed above and solve for J . The J value
obtained is the influence value we can achieve for the
given subgraph based on the assumptions and available
information. We use the value of J as our goal g for
the subgraph.

4.1.2 Modifications to the MDP formulation:

The state and action remain the same as before but due to
the introduction of goals, the reward function is now param-
eterized by the goal. Let Rt,g denote the reward obtained
at timestep t when the goal is g. As we only get episode
reward, therefore 3,

RT−1,g =
IG∗(O(GT ))− g

g
and Rt,g = 0,∀t 6= T − 1 (6)

4.2 ALGORITHM

In this section, we describe the algorithm used to train the
reinforcement learning agent. We use the DQN algorithm
and use Curriculum Guided Hindsight Experience Replay
for improving the sample efficiency. Algorithm 1 describes
the detailed steps. Figure 4 provides a visual representation.

We train using multiple training graphs. In each episode, we
sample a training graph and then sample initial set of nodes

3Normalizing the reward using the goal stabilizes the learning.
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Algorithm 1: Train Network
Input: Train graphs G = {G1, G2, ..., Gk}, number of

episodes N . Query budget T
1 Initialize DQN Qθ and target DQN Qθ′ with θ = θ′

and the Replay Buffer B;
2 for episode = 1 to N do
3 G = sample(G), S = sample(G);
4 Initialize the subgraph

G0 = (S ∪NG∗(S), E(S,NG∗(S))) and
corresponding desired goal g;

5 F 0
0 = DeepWalk(G0) and S0 = (F 0

0 , A0) ;
6 Get the possible action set X = NG(S);
7 for t = 0 to T − 1 do
8 With probability ε select a random node ut

from X and with probability 1-ε select
ut ← maxu∈X Qθ(St, φ(u), g) ;

9 Query node ut and observe new graph Gt+1;
10 Update the state F 0

t+1 = DeepWalk(Gt+1)
and St+1 = (F 0

t+1, At+1);
11 Update the possible action set X which is the

set of nodes not yet queried in Gt+1;
12 for t = 0 to T − 1 do
13 Store the transition (St, φ(ut), Rt, g, St+1, g)

in B ;
14 Sample the additional goals G for replay ;
15 for g′ ∈ G do
16 Add the transition

(St, φ(ut), Rt,g′ , St+1, g
′) to replay buffer

B;
17 for t = 0 to T − 1 do
18 Sample a minibatch A from the replay buffer

B(according to the proximity and diversity
scores) ;

19 Update the proximity-diversity trade-off
parameter λ← γ × λ ;

20 Update Qθ using the minibatch A;
21 Update target network Qθ′ with parameters of Qθ

at regular intervals;

S. We generate the input state by computing the deepwalk
embeddings at each timestep and use ε−greedy policy to
select the action, i.e., the node to be queried. In step 13, we
store the transitions according to standard experience replay
where we add the goal as well in the experience buffer.

Steps 14-16 are the first set of crucial steps to improve the
sample efficiency, where as per the Hindsight Experience
Replay technique proposed by Andrychowicz et al. [2017],
we sample pseudo goals and in addition to storing the sample
with the actual goal for the episode, we also store each
sample by modifying the desired goal (which the agent
could not achieve in the failed trajectory) with a pseudo goal
g′. The reward with the pseudo goal g′ is recomputed as per
the Equation 6.

While there are multiple possible strategies to generate the
set of pseudo goals [Andrychowicz et al., 2017], the most
common strategy to generate the pseudo goals is to use the
goal achieved at the end of episode. Therefore, in this work,
we use g′ as IG∗(O(GT )).

Step 18 is the second crucial step towards improving the
sample efficiency where for sampling experiences from the
replay buffer, we use a curriculum guided selection process
which relies on the goal-proximity and diversity based cu-
riosity [Fang et al., 2019]. Instead of sampling experiences
uniformly, we select a subset of experiences based on the
trade-off between goal-proximity and diversity based cu-
riosity. This plays an important role in guiding the learning
process. A large proximity value enforces the training to
proceed towards the desired goals, while a large diversity
value ensures exploration of different states and regions in
the environment. To sample a subset A of size k for replay
from the experience buffer B, the following optimization
needs to be solved:

max
A⊆B,|A|≤k

F (A) = max
A⊆B,|A|≤k

(Fprox(A) + λFdiv(A))

(7)

where B is the uniformly sampled subset of size mk from
the bufferB. Letm = 3 as Fang et al. [2019] does. Fprox(A)
measures the proximity of the achieved goals g′ in A to its



 desired goal g. The second term Fdiv(A) denotes the di-
versity of states and regions of the environment in A. And
the weight λ is used to balance the trade-off between the
proximity and the diversity. The trade-off between the two
values is balanced such that it enforces a human-like learn-
ing strategy, where there is more curiosity in exploration
in the earlier stages and later the weight is shifted to the
goal-proximity.

In our work, we define the proximity as the similarity be-
tween goal values and diversity based on the distance be-
tween visited states. This is because even though goal values
(influence achieved) can be different, the states visited can
still be very similar to each other. Formally, to define prox-
imity, we use the difference between achieved goal g′i and
the desired goal gi as distance and subtract it from a large
constant to get the similarity, i.e.,

Fprox(A) =
∑
i∈A

(c− |(g′i − gi)|) (8)

where c is a large number to guarantee (c− |(g′i − gi)|) ≥
0 for all possible gi, and gi is the goal corresponding to
experience i in set A. For defining diversity, we need to
compute similarity between states, and the Geometric DQN
architecture allows us to easily compute this value. Diversity
is defined as follows

Fdiv(A) =
∑
j∈B

max
i∈A
{0, sim(sembi , sembj )} (9)

where we use sembi to denote the embedding vector of the
state (representation of the graph in the embedding space)
corresponding to the experience i. The embedding vector of
the state is the output of the graph convolution and pooling
layer (input to FC1) in Figure 2. sim(sembi , sembj ) denotes
the similarity score between the vector representations and
is computed by taking the dot product of the vectors.

This definition of diversity is inspired by the facility location
function [Cornuejols et al., 1977, Lin et al., 2009] which
was also used by Fang et al. [2019]. Intuitively, this diversity
term is measuring how well the selected experiences in set
A can represent the experiences from B. A large diversity
score Fdiv(A) indicates that every achieved state in B can
find a sufficiently similar state in A. A diverse subset is
more informative and thus helps in improving the learning.

It has been shown that F (A) defined in equation 7 is a
monotone non-decreasing submodular function 4 Therefore,
even though exactly solving equation 7 is NP-hard, due to
the submodularity property, greedy algorithm can provide
a solution with an approximation factor 1− 1

e [Nemhauser
et al., 1978]. The greedy algorithm picks top k experiences
from the buffered experiences B. It will start by taking A as

4It is a weighted sum of a non-negative modular function
(Fprox(A)) and a submodular function (Fdiv(A)). Please refer to
the paper by Fang et al. [2019] for details.

an empty set and at each step, it will add the experience i
which maximizes the marginal gain. We denote the marginal
gain for experience i by F (i|A) and it is given by

F (i|A) = F (i ∪A)− F (A) (10)

Therefore, by using equations 7-9, we get

F (i|A) = (c− (|g′i − gi|)) + λ
∑
j∈B

max{0, (sim(sembi , sembj )

−max
l∈A

(sim(sembl , sembj )))}

At the end of each episode, the trade-off coefficient λ is mul-
tiplied by a discount rate γ, which produces the continuous
shifting of weights from diversity to proximity score. Then
effect of Fdiv(A) will go to zero when λ→ 0.

5 EXPERIMENTS

The goal of the experiment section is to evaluate the perfor-
mance of our approach CLAIM in comparison to following
state-of-the-art approaches:

• Random - At each step, it randomly queries a node from
available unqueried nodes.

• CHANGE Algorithm by Wilder et al. [2018b]
• Geometric-DQN (Baseline) Algorithm by Kamarthi

et al. [2019]

Category Train networks Test networks
Retweet copen, occupy israel, damascus,

obama, assad
Animal plj, rob bhp, kcs
FSW zone 1 zone 2, zone 3

Table 2: Train and test networks

Dataset: The first network is the Retweet Network from
twitter [Rossi and Ahmed, 2015]. The second network is
Animal Interaction networks which are a set of contact
networks of field voles (Microtus agrestis) inferred from
mark–recapture data collected over 7 years and from four
sites [Davis et al., 2015]. The third network is a real-world
physical network between Female Sex Workers (FSW) in
a large Asian city divided into multiple zones. This is a
confidential dataset physically collected by a non-profit by
surveying different female sex workers recently. The goal
in FSW networks is to discover the network and select a
subset of FSW from the discovered network to be enrolled
in the HIV prevention programs. The enrolled FSWs should
be such that they can pass on the information (influence)
maximum FSWs in the complete network. For each family
of network, we divide them into train and test data as shown
in Table 2.

Experimental Settings: Our experimental settings are sim-
ilar to the settings used in Kamarthi et al. [2019]. There are



 
Table 3: Comparison of influence score of our proposed approach and existing approaches for each test network. For each
network, a paired t-test is performed and ∗ indicates statistical significance of better performance at α = 0.05 level, ∗∗ at
α = 0.01 level, and ∗ ∗ ∗ at α = 0.001 level.

Network category Retweet networks Animals networks FSW networks
Test networks israel damascus∗∗ obama∗∗ assad∗ bhp∗ ∗ ∗ kcs∗∗ zone 2∗ zone 3

OPT value 113.9 195.8 154.7 134.2 111.9 113.4 20.98 16.40
Random value 31.17 84.71 40.81 69.44 36.80 54.39 13.26 12.31

CHANGE value 32.42 92.41 48.61 69.77 35.87 54.52 12.60 10.51
Geometric DQN 37.33 105.2 52.01 75.12 40.12 60.81 13.65 12.35

CLAIM approach 38.55 113.1 54.67 77.49 42.25 64.58 13.94 12.48
Improve percent 3.27% 7.51% 5.11% 3.15% 5.31% 6.20% 2.12% 1.05%
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Figure 5: Comparison of performance of our approach and baseline approach in dense and sparse network environment.

5 nodes in the set S. All nodes in S and their neighbors are
known. We have further budget of T = 5 queries to discover
the network. After getting the final subgraph GT , we pick
10 nodes to activate using greedy influence maximization
algorithm. We use p = 0.1 as the diffusion probability for
all the edges.

5.1 RESULTS

To demonstrate sample efficiency, we measure the perfor-
mance of our approach against past approaches by the aver-
age number of nodes influenced over 100 runs under a fixed
number of queries. Here are the key observations:

• Average influence value: Table 3 shows the compar-
ison of number of nodes influenced by different al-
gorithms. Each algorithm selects the set of nodes to
activate from the discovered graph. As shown in the ta-
ble, our approach consistently outperforms all existing
approaches across different networks. CLAIM learns
a better policy in the same number of episodes and
hence more sample efficient. We would like to high-
light here that even a small consistent improvement in
these settings is very important as it can ensure more
life safety (as an example by educating people about
HIV prevention).

• Effect of density of the initial subgraph: The num-
ber of nodes which can be influenced in the graph is
highly dependent on the position of initial subgraph in
the whole social network. Therefore, we also test the
performance of CLAIM against the baseline approach
on the dense and sparse initial subgraphs (we identify
the initial subgraph as dense or sparse based on the ra-

tio of |S∪NG∗ (S)|
|S| ). We compare the average influence

values as shown in Figure 5. CLAIM outperforms the
baseline in most of the cases, except the sparse case in
the damascus network. The reason for this may be that
the damascus network is an extremely sparse network,
and it has some specific structure property that leads
this result.

• Ablation Study: We also present the detailed results
for our ablation study over all datasets in Table 4. We
observe the effect of adding each additional component
in CLAIM one by one. First, we add only goal as a
feature to the baseline model. Next, we add the Hind-
sight Experience Replay and finally we add the curricu-
lum guided selection of experiences for replay. These
results indicate that a single component can not guar-
antee a better result for all networks, and we need all
three components to improve the performance across
multiple datasets.

• Stability check: We check the stability of CLAIM by
comparing the performance of models trained using
different random seeds. We train three models for both
baseline and CLAIM. Table 5 shows the mean and devi-
ation of influence value for different networks. CLAIM
not only achieves high mean it also provides a low
deviation reflecting the stability of approach.

• Property insight: We also explore the properties of
the selected nodes to further investigate why CLAIM
performs better. We look at degree centrality measures,
closeness centrality measures, and betweenness cen-
trality measures of the nodes queried in the underlying
graph. In particular, we conduct experiment using as-
sad, a retweet network with sparsely interconnected



 Network category Retweet Networks Animals networks FSW networks
Test networks israel damascus obama assad bhp kcs zone 2 zone 3

Baseline (Geometric DQN) 37.33 105.2 52.01 75.12 40.12 60.81 13.65 12.35
Goal-directed Geometric DQN 36.24 110.5 51.61 73.68 41.59 62.80 13.79 12.32
Hindsight Experience Replay 37.79 109.4 53.51 76.32 42.00 64.64 13.81 12.48

Our proposed approach (CLAIM) 38.55 113.1 54.67 77.49 42.25 64.58 13.94 12.48

Table 4: Ablation study for each test network

Networks\Method Geometric DQN CLAIM
israel 37.11± 0.42 38.32± 0.32

damascus 104.2± 5.22 112.8± 4.01
obama 52.15± 1.05 54.78± 0.78
assad 74.53± 1.71 77.45± 1.02
bhp 40.24± 1.25 42.37± 0.81
kcs 59.67± 1.91 63.21± 1.43

zone 2 13.62± 0.01 13.94± 0.00
zone 3 12.23± 0.01 12.45± 0.00

Table 5: Stability of our approach compared to the baseline
on different sets of 100 runs
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Figure 6: Top Graph - Average degree, closeness and betweenness
centrality of nodes queried in the full graph by CLAIM and base-
line. Bottom Graph - Variation of these properties across timesteps.

star-graph. As we can see in Figure 6, compared to
the baseline approach, on an average, CLAIM can rec-
ognize nodes with higher degree, closeness and be-
tweenness centrality. As a result, CLAIM is able to
discover a bigger network. The higher degree central-
ity, higher closeness centrality and higher betweenness
also show that CLAIM can explore nodes which plays
an important role in influence maximization problem.
Besides, these values are large at the beginning which
means that CLAIM tends to explore a bigger graph
first, and then leverage the available information with
the learned graph to find complex higher-order patterns
in the graphs that enable it to find key nodes during
the intermediate timesteps, and finally utilise all the
information to expand the discovered graph at the end.

6 DISCUSSION

We provide a justification for the choices made in the paper.

• Network structure assumption for goal generation:
As we have no prior information about the networks
except the initial nodes, we need to make some as-
sumption to compute the goal value. We make the
assumption of network being uniformly distributed and
use a tree structure to approximate the information
propagation as most networks observed for these prob-
lems have similar structure or can be converted in these
forms with minimal loss of information.

• Goodness of heuristic used for goal generation: Ex-
perimentally, we observe that the goal value computed
by our heuristic is closer to the actual value. For ex-
ample, for the training network copen, the achieved
influence value by the model after training is at most
within 20% of goal value computed using heuristic. In
addition, most of the achieved influence value is much
closer and is smaller than the computed goal. In the
future, we will investigate different ways to generate a
goal with proven upper bound.

7 CONCLUSION

In this work, we proposed a sample efficient reinforcemernt
learning approach for network discovery and influence max-
imization problem. Through detailed experiments, we show
that our approach outperforms existing approaches on real
world datasets. In future, we would like to extend this work
to consider multiple queries at each timestep.
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