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Abstract

Deep Gaussian Processes (DGPs) are multi-layer,
flexible extensions of Gaussian Processes but their
training remains challenging. Sparse approxima-
tions simplify the training but often require opti-
mization over a large number of inducing inputs
and their locations across layers. In this paper,
we simplify the training by setting the locations
to a fixed subset of data and sampling the induc-
ing inputs from a variational distribution. This re-
duces the trainable parameters and computation
cost without significant performance degradations,
as demonstrated by our empirical results on re-
gression problems. Our modifications simplify and
stabilize DGP training while making it amenable to
sampling schemes for setting the inducing inputs.

1 INTRODUCTION

Deep Gaussian Processes (DGPs) aim to extend the
functional-learning capabilities of Gaussian Processes (GPs)
to improve their flexibility. A DGP consists of multiple
layers of GPs stacked one over the other [Damianou and
Lawrence, 2013, Damianou, 2015] which enables us to
model complex functions, such as non-stationary and dis-
continuous functions. DGPs are motivated by the deep archi-
tectures used in deep learning but they promise to overcome
the limitations of deep learning, e.g., they can deal with
smaller datasets, improve uncertainty estimates, and per-
form model selection.

Unfortunately, obtaining good performance with DGP on
large problems remains a challenge, mainly due the ineffi-
cient training procedures currently used. Unlike deep learn-
ing, the training procedures for DGPs are computationally
expensive, slow to run, and rarely beat the performance of
deep learning. Posterior inference is even more challeng-
ing than GPs and involve multiple large matrix inversions

of size O(N3) where N is the number of data examples.
Existing methods mitigate such difficulties by using sparse
variational inference (VI) [Titsias, 2009] which augment
the model with auxiliary variables called inducing inputs.
An example is shown in Fig. 1(a) (top row) where inducing
input Z̄

l and corresponding functions Ul are introduced in
every layer l. These auxiliary quantities are different from
the functions and inputs defined over input X in the training
data (denoted by Fl and Zl respectively). During inference,
all the auxiliary quantities need to be estimated along with
the variational distribution parameters and GP kernel hyper-
parameters to obtain a posterior approximation. Due to this,
the number of trainable parameters is often very large.

Various strategies for training have been proposed in the past.
The approach of Damianou and Lawrence [2013] (Fig. 1(a))
assumes a mean-field variational approximation over Zl and
Ul, and estimates their variational parameters (denoted by
λl
Z and λl

U respectively), as well as the inducing inputs
Z̄

l. All these trainable parameters are shown with square
gray boxes in the figure. The doubly stochastic variational
inference (DSVI) approach of Salimbeni and Deisenroth
[2017], shown in Fig. 1(b), reduces the number of trainable
parameters by integrating Zl out. The approach still needs to
estimate the variational parameters λl

U and inducing inputs
Z̄

l. Our goal in this paper is to further reduce the number of
trainable parameters.

Our key idea to reduce the number of parameters is to use
a fixed subset of data as inducing inputs, i.e., a subset S ⊂
{1, 2, . . . , N} of size M with M � N . Instead of using
auxiliary inputs Z̄

l and functions Ul, we use the inputs
Zl

S and functions Fl
S defined over the subset S; see the

top row in Fig. 1(c). We introduce variational distributions
over Fl

S with parameters denoted by λl
S while keeping the

relationship between the rest of the quantities as defined
by the DGP model (see the bottom row in Fig. 1(c)). The
trainable parameters are λl

S ,∀l, the size of which is strictly
lower than the methods in Fig. 1(a) and 1(b) (assuming the
number of inducing inputs M to be the same).
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(a) Damianou and Lawrence [2013] (b) Salimbeni and Deisenroth [2017] (c) Our Subset-of-Data Method

Figure 1: Top row shows the (augmented) DGP model for input X ∈ RN×H and output y ∈ RN for three methods, and
bottom row shows the corresponding approximate posterior. Trainable parameters are shown with square-gray boxes in
the bottom row, and we can see that our subset-of-data method requires the lowest number of parameters. Methods shown
in the top row of (a) and (b) both use an augmented DGP model with inducing inputs Z̄

l ∈ RM×Dl

and function values
Ul ∈ RM×Dl

. As a consequence, they require estimation of variational parameters λl
U for the variational distribution q(Ul)

and inducing inputs Z̄
l, as shown in the bottom row. The method in (a) additionally requires variational parameters for Zl.

Our method shown in (c) replaces Ul by the functions Fl
S ∈ RM×Dl

defined over a subset S of M data examples (see the
top row; S̄ denotes the set of training examples other than those in S). As shown in the bottom row, we only need to learn
the parameters λl

S of q(Fl
S), since the rest of the quantities follow the same relationship as the DGP model. This leads to a

reduction in the number of trainable parameters. Additionally, the inputs Zl are not learned but sampled given Fl.

Our approach exploits the labels yS associated with the
inducing input XS to form the variational posterior and
consequently simplifying the computation of the evidence
lower-bound. The resulting bound naturally combines the
predictive likelihood and marginal likelihood together lead-
ing to a simple yet effective solution (see (7) in Section 3).
The idea of choosing inducing inputs from training set sim-
plifies the inference due to the associated labels, ultimately
leading to a reduction in the number of variational parame-
ters. The empirical results suggest that our method reduces
the cost of DGP inference without a significant degradation
in the performance. An additional advantage of our method
is that the inducing inputs Zl

S are not trained but sampled
using the variational distribution over Fl

S .

In our experiments, we fix the subset S by clustering the data
before training, but our methods is amenable to sampling
approaches, such as leverage score [Alaoui and Mahoney,
2015] and determinantal point process [Kathuria et al.,
2016], where the subsets can be sampled during training.
We expect our approach to further improve when augmented
with such sampling approaches. Throughout the paper, we
focus primarily on improving the methods of Damianou
and Lawrence [2013] and Salimbeni and Deisenroth [2017],
but our approach could potentially be useful for many other
variants, e.g., methods using amortized inference [Dai et al.,
2016], nested inference [Hensman and Lawrence, 2014],
approximate Expectation Propagation [Bui et al., 2016], ran-
dom Fourier features expansion [Cutajar et al., 2017] and
implicit posterior variational inference [Yu et al., 2019]. We
only address regression problems, but extension to classi-

fication and multi-output DGPs can be obtained by using
standard non-conjugate inference procedures.

2 DEEP GAUSSIAN PROCESSES

In this section we provide a background on deep Gaus-
sian process models and their training methods. We con-
sider the regression problem with N training data points,
X = {xn}Nn=1 and the corresponding labels y = {yn}Nn=1,
where xn ∈ RH and yn ∈ R. We assume that there exists a
regression function f : RH → R which maps the training
data to outputs, and our goal is to learn the function.

Deep Gaussian Processes (DGPs) provide a rich and flexible
prior to model functions by stacking several GP priors. The
DGP model described in Damianou and Lawrence [2013],
Damianou [2015] (shown in Fig. 2) models the regression
function by as a composition of several layers of functions,
y = fL ◦ (fL−1 . . . ◦ (f1(X)))(assuming L layers). The
lth layer consists of Dl functions f l = {f ld}D

l

d=1 mapping
representations in layer l − 1 to obtain Dl dimensional
representation for layer l. In each layer independent GP
priors are placed over the functions f ld conditioned on the
output of the previous layer,

f ld(·) ∼ GP(µl
d(·), kl(·, ·)), (1)

where µl
d : RDl−1 → R is the mean function and kl :

RDl−1 ×RDl−1 → R is the covariance function. The func-
tions f1

d (·) in the first layer act on the inputs xn to produce



 

Figure 2: Deep Gaussian Process Model models a scalar out-
put y given an input vector x with nested layers of function
f l, generated using GPs, and their noise versions zl.

the mapping F 1
n,d := f1

d (xn). The first-layer representa-
tions Z1

n are obtained by adding noise to these mappings,
Z1
n,d = F 1

n,d + ε1, where ε1 ∼ N (0, σ2
1). These are then

fed as inputs to the next layer and the process is repeated.
We use Zl,Fl ∈ RN×Dl

to denote the matrices obtained
with entries Zl

n,d and F l
n,d respectively.

The joint distribution of y and Fl,Zl over all layers is

p(y,FL,ZL−1, . . . ,F2,Z1,F1|X) (2)

=

N∏
n=1

p(yn|FL
n )︸ ︷︷ ︸

Likelihood

[
L−1∏
l=1

p(Fl+1|Zl)p(Zl|Fl)

]
p(F1|X)︸ ︷︷ ︸

Deep GP Prior

Here, the likelihood over the observation p(yn|FL
n ) =

N (yn;FL
n , σ

2
L), and the factors associated with interme-

diate layers can be factorized as

p(Zl|Fl) =

N∏
n=1

Dl∏
d=1

N (Zl
n,d;F l

n,d, σ
2
l ) (3)

The prior over the functions at some layer l and dimension
d is considered to be a zero mean GP with kernel kl(·, ·), i.e.
f l(·) = GP (0, kl(·, ·)). Consequently, the function values
over the data points are distributed as a zero mean Gaussian.

p(F l
:,d|Z

l−1) = N (0,Kl
Zl−1,Zl−1)

Here, Kl
Zl−1,Zl−1 is an N ×N co-variance matrix obtained

by evaluating the kernel kl(·, ·) on the l − 1 layer latent
representations of all the data points. The priors and likeli-
hood are conditioned on kernel hyper-parameters and noise
variance(σl). Squared exponential kernel is most widely
used kernel in this setting which have length scales and
variance as hyperparameters. Hyper-parameter learning re-
quires optimisation of marginal likelihood which is in-
tractable in Deep GPs. This is because latent representation
appear nonlinearly in the full likelihood due to the form of
p(Fl+1|Zl) terms. Due to underlying intractability, approxi-
mate Bayesian methods are used to compute an approximate
inference for Deep GPs.

Training Deep GPs require approximate inference methods
which largely relies on sparse variational-inference methods
[Damianou and Lawrence, 2013, Salimbeni and Deisenroth,
2017]. These methods compute a tractable lower bound
for marginal likelihood using sparse GPs [Titsias, 2009,
Hensman et al., 2013]. These approaches simultaneously
addresses intractability and scalability issues in Deep GPs
by introducing inducing points with inducing input Z̄

l and
output Ul for each layer l, all of which are learnt from the
variational lower bound (top figure in Fig. 1(a)). The poste-
rior inference is simplified by estimating Z̄

l and introducing
a Gaussian approximation q(Ul) with variational parame-
ters λl

U . Given these two quantities the cost of posterior
inference reduces drastically. The corresponding approx-
imate posterior introduced in Damianou and Lawrence
[2013] is shown at the bottom figure in Fig. 1(a) where an
additional variational distribution over Zl is used.

Even though the inference is simplified with the method of
Damianou and Lawrence [2013], the number of variational
parameters is still quite large. Salimbeni and Deisenroth
[2017] reduce the number by marginalizing Zl thereby not
requiring the additional distribution over it. During infer-
ence, Zl is obtained by using a forward sampling from
the DGP model. The approach Salimbeni and Deisenroth
[2017] reduces the cost of inference by reducing the number
of trainable parameters.

3 SUBSET-OF-DATA VARIATIONAL
INFERENCE (SOD-VI)

Our goal in this paper is to reduce the number of trainable
parameters. We view the inducing inputs Ul as inputs with-
out any real inputs x or labels y. Our key idea then is to
replace them by latent functions Fl

S defined over a subset
S of the training data. This reduces the number of trainable
parameters, because the input locations Z̄

l are replaced by
Zl

S which can be sampled from the DGP model, instead of
being learned. We first describe this for a single-layer GP.

3.1 SUBSET-OF-DATA VI FOR GP

We first consider deriving the subset-of-data VI for a simple
one layer GP model with F representing function values at
data points X. We write the joint likelihood over observa-
tions (outputs) and latent function values as

p(y,F) =

[
N∏

n=1

p(yn|Fn)

]
p(F)

= p(yS |FS)p(yS̄ |FS̄)p(FS̄ |FS)p(FS) (4)

where S ⊂ {1, 2, . . . , N} is a subset of data examples, FS

denotes the latent function values over the inputs indexed
by S and yS are the corresponding observations. S̄ is the
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Figure 3: Titsias [2009]’s approach uses unknown input
locations Z to define inducing inputs U. In contrast, we use
known locations XS from the training data. Since the labels
yS for these locations are available, the posterior over FS is
also known and fixed (see (6) for an expression). Our lower
bound however has the same form as the one traditionally
used in sparse variational GP methods (see (7)).

complement of subset S (indexes of data examples not in
S), and FS̄ and yS̄ denote the corresponding latent function
values and observations, respectively. The subset S can
be chosen randomly, by clustering the training data and
choosing data points closest to the centroids, or by sampling
approaches such as leverage score and determinantal point
processes. Throughout, we use the clustering approach.

Our goal is to obtain a posterior over F = {FS̄ ,FS}, while
using FS as the inducing points and the corresponding XS

as the inducing inputs. To build a variational approximation,
we first rewrite the posterior over F as follows,

p(F|y) ∝ p(yS̄ |FS̄)p(FS̄ |FS)
p(yS |FS)p(FS)

p(yS)︸ ︷︷ ︸
=p(FS |yS)

(5)

where we have explicitly grouped the terms corresponding
to the posterior p(FS |yS). We define a variational distri-
bution which has the same structure but use a variational
approximation q(FS) instead of the prior p(FS),

p(F|y) ≈ 1

Ẑ
p(FS̄ |FS)

p(yS |FS)q(FS)

p(yS)︸ ︷︷ ︸
=q̂(FS)

, (6)

where Ẑ is the normalizing constant. The distribution q̂(FS)
is an approximation to the posterior p(FS |yS), obtained
via q(FS). The corresponding posterior over FS̄ can be
obtained by marginalizing over FS , which we denote by
q(FS̄) =

∫
p(FS̄ |FS)q̂(FS)dFS .

The above approach is different from the standard varia-
tional approach of Titsias [2009] where the inducing inputs
do not have any labels associated with them, and we are
forced to use p(F|y) ≈ p(FS̄ |FS)q̂(FS)/Ẑ with an arbi-
trary free-form Gaussian q̂(FS). In our case, due to the

associated label, q̂(FS) = p(FS |yS) which is obtained by
choosing q(FS) = p(FS). Our approach results in a sim-
pler variational posterior than the approach of Titsias [2009].
See Fig. 3 for an illustration.

We will now show that, for the defined q̂(FS) and q(FS̄),
the variational lower bound can be derived as

Ep(FS̄ |FS)q̂(FS)

[
log

(
p(y|F)p(FS̄ |FS)p(FS)

p(FS̄ |FS)q̂(FS)

)]
= Eq(FS̄)[log(p(yS̄ |FS̄)] + Eq̂(FS)[log(p(yS |FS)]

−KL(q̂(FS)‖p(FS)). (7)

This is similar to the lower bounds used in Titsias [2009]
and Hensman et al. [2013] but with FS as the inducing
points and the distribution set to q̂(FS). In our case, the
distribution exploits the structure shown in (6) by using
the labels, but for Titsias [2009] this can be an arbitrary
Gaussian. The advantage with our approach is that we do
not need to estimate the inducing inputs since they are fixed
at the inputs XS . Note that in general our approach will give
different results than [Titsias, 2009] due to the choice of
the inducing inputs as well as the variational approximation.
We will show in the next section that our approach is useful
in reducing number of trainable parameters for Deep GPs.

The variational lower bound (7) takes an interesting form
where the first term is the negative log-predictive probability
(NLPP) [Shevade and Sundararajan, 2009] on a validation
set S̄, and the rest of the terms only depend on S. Therefore,
we can see the lower bound maximization as maximizing
the fit over the data both in S and S̄, which is a better
approach than the classical NLPP based approaches con-
sidering S̄ alone. The variational parameters λS associated
with q(FS) (for instance, mean and Covariance parameters
associated with a variational Gaussian approximation) and
hyper-parameters such as kernel parameters are learnt by
maximizing the variational lower bound.

3.2 SUBSET-OF-DATA VI FOR DGP

We will now extend the subset-of-data approach to DGPs.
Fig. 1(c) (top row) shows the graphical model of the DGP
model, where we have split the variables into two sets corre-
sponding to examples in S and S̄. Comparing to the other
methods in Fig. 1, in our approach the subset S can be seen
as playing the role of the inducing points. Consequently, the
joint distribution also can be written in a conditional form
where the term over S are conditioned on the terms over S̄
as shown below:

Likelihood: p(yS |F
L
S)p(yS̄ |F

L
S̄) (8)

DGP Prior:

[
1∏

l=L−1

p(Fl+1
S̄
|Fl+1

S ,Zl)p(Fl+1
S |Z

l
S)p(Zl|Fl)

]
× p(F1

S̄ |F
1
S ,X)p(F1

S |XS) (9)



 Similarly to the single-layer GP case, we can simply replace
the priors p(Fl+1

S |Z
l
S) by q(Fl+1

S ) and keep the rest of the
structure same as the original model, to get the following
variational approximation:

q̄(F1:L,Z1:L−1) ∝

p(yS |F
L
S)

(
1∏

l=L−1

p(Fl+1
S̄
|Fl+1

S ,Zl)q(Fl+1
S )p(Zl|Fl)

)
× p(F1

S̄ |F
1
S , X)q(F1

S). (10)

where where q(Fl
S) represents the variational distribution

over Fl
S , which is typically a Gaussian with mean and Co-

variance as variational parameters, λl
S = {µl

S ,Σ
l
S}. The

marginals and conditions derived from the above distribu-
tions will be denoted by q(·) to simplify the notation, e.g.,
q(Zl

S) will be the marginals of Zl
S obtained according to

the graphical model shown in Fig. 1(c) (bottom row).

There are two main points to note. First, in the graph struc-
ture of the posterior approximation shown in Fig. 1(c) (bot-
tom row), we see that the directed arrow from Zl to Fl is
removed. Second, the inducing inputs Zl

S can be obtained
directly from the samples Fl

S of the variational distribution.
Unlike previous approaches, we do not need to learn them.
This is the main reason behind the reduction in the number
of trainable parameters with our approach.

Given the posterior approximation, the variational lower
bound is directly obtained by using (8), (9) and (10),

L = Eq̄(F1:L,Z1:L−1) log

p(y,F1:L,Z1:L−1|X)

q̄
(
F1:L,Z1:L−1

)


= Eq(FL
S̄

)[log(p(yS̄ |F
L
S̄))] + Eq̂(FL

S )[log(p(yS |F
L
S))]

−
D1∑
d=1

KL(q(F1
S,d)‖p(F1

S,d|XS))

−
L−1∑
l=2

Dl∑
d=1

Eq(Zl−1
S )

[
KL(q(Fl

S,d)‖p(Fl
S,d|Z

l−1
S ))

]
− Eq(ZL−1

S )[KL(q̂(FL
S)‖p(FL

S |Z
L−1
S ))]. (11)

The form of the lower bound is slightly more complicated
than (7), but the last three lines here are simply an expansion
of the KL term splitting over the layers and dimensions.
Another minor difference is that expectation with respect to
q(Zl

S) needs to be taken in the third line. We also note that
the derivation can be easily extended to the multi-output
case, where the first two terms and the last term in (11) will
have an additional summation over the multiple outputs.

We now derive quantities required to compute the lower
bound. We assume a Gaussian variational approximation
q(FL

S) = N (FL
S ;µL

S ,Σ
L
S) for the last layer and q(Fl−1

S,d ) :=

N (Fl−1
S,d ;µl−1

S,d ,Σ
l−1
S,d ) for the layer l − 1, using which we

derive q̂(FL
S), required in the second and last term in (11),

q̂(FL
S) =

p(yS |F
L
S)q(FL

S)

Z
= N (µ̂L

S , Σ̂
L
S) (12)

where Σ̂L
S = ((ΣL

S)−1 + (σ2I)−1)−1

µ̂L
S = Σ̂L

S((σ2I)−1yS + (ΣL
S)−1µL

S)

as well as q(Zl−1
S ) required in the last two terms in (11),

q(Zl−1
S ) =

Dl−1∏
d=1

∫
p(Zl−1

S,d |F
l−1
S,d )q(Fl−1

S,d )dFl−1
S,d (13)

=

Dl−1∏
d=1

N (Zl−1
S,d |µ

l−1
S,d , σ

2III + Σl−1
S,d ). (14)

We also need the marginal distribution q(FL
S̄) to compute

the expectation in the first term in (11). This can be obtained
by integrating out all the latent variables except FL

S̄ in the
variational posterior approximation (10). The latent function
values in the intermediate layers Fl can be integrated out
and consequently the marginal can be written as 1

∫
q(FL

S̄ |Z
L−1,yS)

(
L−1∏
l=2

q(Zl|Zl−1)

)
q(Z1|X)dZ1:L−1.

(15)

where the first term is a Gaussian: q(FL
S̄ |Z

L−1,yS) =∫
q̂(FL

S)p(FL
S̄ |F

L
S ,Z

L−1)dFL
S . The conditional probabil-

ity q(Zl|Zl−1) are obtained by integrating out Fl and
also follows a Gaussian distribution. However, the latent
variable Zl depend non-linearly on Zl−1 through the ker-
nel and hence the marginal can not be computed analyti-
cally. We use Monte-Carlo sampling to obtain the samples
from the marginal and recursively draw the i’th sample
Ẑ

l

(i) ∼ q(Zl|Zl−1
(i) ) for l = 1, 2, . . . , L − 1 with Ẑ

0
= X

and use in q(FL
S̄ |Z

L−1,yS) to obtain FL
S̄ samples.

q(FL
S̄) =

1

T

T∑
i=1

q(FL
S̄ |Ẑ

L−1

(i) ,yS) (16)

In order to facilitate gradient computation, we use the re-
parameterization trick to obtain the samples.

The variational parameters λS = {µl
S ,Σ

l
S}Ll=1 and kernel

hyper-parameters are learnt by maximizing the variational
lower bound (11). Computation of proposed lower bound
has complexity of O(NM2DL), where M is the subset
size, N is number of data points, L is number of layers and
D = max{D1, D2, . . . , DL}

Prediction can be performed in a similar fashion as the com-
putation of q(FL

S̄), where instead of the data points not in

1A detailed derivation of the lower bound and q(FL
S̄) is pro-

vided in the supplementary material.



 the subset (XS̄), test data points are used and we sample the
final layer function values associated with the test samples
using (15). Predictive distribution of FL

∗ for test data points
X∗ is computed using samples of ZL−1

∗ and ZL−1
S which

are in turn obtained through the reparameterization trick.

q(FL
∗ ) =

1

T

T∑
i=1

q(FL
∗ |{Ẑ∗,(i), ẐS,(i)}L−1,yS) (17)

4 EXPERIMENTS

We conduct experiments to evaluate the performance of the
proposed inference technique for deep Gaussian processes
on various regression datasets 2. The proposed inference
technique is compared against baselines and the existing
state-of-the-art inference techniques for DGPs, to demon-
strate its effectiveness.

Architecture The DGP architecture is chosen to the same
as that of [Salimbeni and Deisenroth, 2017]. Input layer of
the DGP has D nodes, where D is dimension of input data
point. In case of regression task, final layer or output layer
has number of nodes set to one. Number of nodes are same
accross all hidden or latent layers, with each latent or hidden
layer has min(30,D) number of nodes.

Subset Selection We use the subset of training data points
as the inducing inputs. We choose the subset as the collec-
tion of data points closest to the centroids obtained after
K-means clustering, where K is set as the subset size (M ).
Subset size of 50 and 100 is used for small and medium size
datasets respectively.

Model and Variational Parameters For variational distri-
bution q(Fl

S), all variational mean vectors are initialised
with random vectors and variational covariance matrix are
initialised with identity matrix(scaled by 10−5 except the
final layer). The hyper-parameters associated with the model
are the kernel parameters and noise variance in each layer.
For all the reported results for our model, both kernel vari-
ance and lengthscale parameters are initialised with the
value of 0.5, and noise variance is initialised to 0.01 in the
final layer and 10−5 in the intermediate layers.

Evalauation Metrics Negative log predictive probability
(NLPP) or negative log likelihood and root mean square
error (RMSE) on test data is used to report performance
on regression datasets. NLPP score consider the confidence
in the predictions (lower is better) and are more significant
in evaluating performance of probabilistic models. While,
RMSE computes the error between point predictions (mean
values) and the actual observed outputs (lower is better)
ignoring the variance around predictions.

2Code available at https://github.com/brain-iith/SOD_DGP

Training and Preprocessing Inputs and outputs in training
set are scaled to zero mean unit standard deviation and the
same scaling is applied in the test data set for evaluation. We
consider multiple random splits of training and test data with
10% of the data as test data. We report the average RMSE
and NLPP scores averaged over 5 runs. Training (lower
bound maximization) is done for 20,000 iterations with
batch size of 2000, using Adam optimizer initialised with
learning rate of 0.01. For sampling the latent representations,
we use 10 samples during training and 50 samples during
prediction.

Baselines The DGP with the proposed subset of data (SoD)
inference technique (SoD-DGP) is compared against a sin-
gle layer sparse variational GP (SVGP) [Titsias, 2009], and
state-of-the-art DGP approaches such as doubly stochas-
tic variational inference based DGP (DSVI-DGP) [Salim-
beni and Deisenroth, 2017] and stochastic gradient Hamil-
tonian Monte Carlo (SGHMC) based DGP (SGHMC-
DGP) [Havasi et al., 2018]. All the previous approaches
consider inducing inputs in each layer as learnable param-
eters while doing approximate inference for DGPs. The
proposed approach use a subset of dataset as inducing in-
puts and in each layer the inducing inputs are obtained by
sampling from the conditional distribution q(Zl|Zl−1). We
also consider a baseline, SoD*-DGP to check the sensitivity
of the subset selection strategy towards the SoD-DGP per-
formance. SoD*-DGP uses the same SoD-DGP variational
lower bound to learn the parameters but subset selection is
done by randomly choosing the subset of data points instead
of K-Means clustering based selection. Similarly, we con-
sider a baseline DSVI*-DGP, where inference is done using
DSVI but inducing inputs are not treated as learnable param-
eters but are fixed to the initial values. Here, inducing inputs
for first layer is initialized based on centroids of K-means
clustering, and then a PCA mapping is done as discussed in
Salimbeni and Deisenroth [2017] to initialize intermediate
layer inducing inputs. Unlike DSVI*-DGP, inducing input
samples in SoD-DGP changes after every iteration as the
conditional distribution q(Zl|Zl−1) evolves. The advantage
of the proposed approach is visible from the experimental
results. Model hyperparameters for the baseline methods
are initialised and tuned with the values reported for these
approaches [Salimbeni and Deisenroth, 2017, Havasi et al.,
2018].

Regression Results We consider 7 standard small to large
sized UCI regression benchmark datasets: Boston, Concrete,
Energy, Winered, Protein, Naval and Year to evaluate the
performance of the models. Table 1 and Fig. 4 provide the
NLPP and RMSE results (mean and standard deviation)
respectively for DSVI-DGP, DSVI*-DGP, SGHMC-DGP
and the proposed approach SoD-DGP 3. We consider DGP
models with different number of hidden layers DGP1 (1 hid-

3Exact values vary slightly from the prior work because the
training and test splits used are different.



 
Table 1: Negative log predictive probability (NLPP) score for various DGP inference techniques on UCI regression datasets.
For each dataset, N represents number of training samples and D represent the input dimension. Mean NLPP scores are
reported averaged over 5 runs with variance inside the brackets. Best performing model (lowest NLPP score) for each dataset
is highlighted in the respective column. SoD-DGPx indicates our method. SGHMC-DGPx is the approach of Havasi et al.
[2018]. DSVI is the approach of Salimbeni and Deisenroth [2017]. SoD* is same as SoD but with randomly selected subset
of data points. DSVI* is same as DSVI but the inducing inputs fixed and not trained. SVGP is the approach of Titsias [2009].

Model Boston Concrete Energy Winered Protein Naval Year
N=506
D=13

N=1030
D=8

N=768
D=8

N=1599
D=22

N=45730
D=9

N=11934
D=26

N=515344
D=90

SoD-DGP1 2.520(0.051) 3.285(0.049) 1.927(0.213) 0.956(0.062) 2.996(0.003) -8.15(0.19) 3.695(0.071)

SoD-DGP2 2.395(0.142) 3.058(0.087) 0.737(0.089) 0.938(0.074) 2.83(0.005) -7.05(0.12) 3.595(0.003)

SoD-DGP3 2.366(0.114) 3.060(0.081) 0.654(0.148) 1.023(0.092) 2.753(0.006) -7.26(0.25) 3.587(0.002)

SoD-DGP4 2.430(0.185) 3.058(0.086) 0.568(0.106) 0.957(0.076) 3.028(0.245) -6.99(0.29) 3.582(0.005)

SoD*-DGP2 2.606(0.022) 3.223(0.042) 1.227(0.167) 0.979(0.062) 2.867(0.011) -5.96(0.79) 3.639(0.087)

SoD*-DGP3 3.55(0.071) 3.284(0.015) 1.323(0.076) 1.213(0.054) 2.807(0.008) -6.84(0.23) 3.72(0.107)

SoD*-DGP4 3.55(0.071) 3.635(0.088) 1.799(0.159) 1.213(0.054) 2.788(0.009) -6.41(0.45) 3.696(0.108)

SGHMC-DGP2 3.217(0.442) 3.484(0.292) 3.270(5.602) 2.696(1.828) 2.789(0.034) -5.49(0.82) 3.408(0.010)

SGHMC-DGP3 5.026(0.861) 3.384(0.224) 1.636(2.342) 3.133(1.575) 2.782(0.062) -5.43(0.83) 3.397(0.002)

SGHMC-DGP4 7.736(2.440) 3.856(0.574) 2.097(3.663) 2.639(2.162) 2.743(0.025) -5.51(0.75) 3.388(0.003)

DSVI-DGP2 2.43(0.062) 3.105(0.05) 0.761(0.119) 0.951(0.058) 2.815(0.010) -6.97(0.06) 3.587(0.004)

DSVI-DGP3 2.427(0.059) 3.114(0.053) 0.742(0.134) 0.951(0.057) 2.755(0.004) -6.69(0.37) 3.577(0.004)

DSVI-DGP4 2.429(0.052) 3.127(0.066) 0.732(0.131) 0.951(0.057) 2.733(0.013) -5.07(1.88) 3.575(0.004)

DSVI*-DGP2 2.534(0.066) 3.185(0.026) 1.261(0.053) 0.969(0.061) 2.871(0.006) -6.30(0.25) 3.597(0.006)

DSVI*-DGP3 2.535(0.064) 3.190(0.025) 1.270(0.061) 0.970(0.061) 2.835(0.012) -5.32(1.33) 3.583(0.005)

DSVI*-DGP4 2.537(0.063) 3.192(0.030) 1.296(0.036) 0.969(0.06) 2.983(0.201) -2.80(0.02) 3.581(0.005)

SVGP 2.455(0.054) 3.156(0.023) 1.282(0.056) 0.953(0.059) 2.911(0.009) -7.42(0.18) 3.600(0.005)

den layer), DGP2 (2 hidden layers), DGP3 (3 hidden layers)
and DGP4 (4 hidden layers). With respect to NLPP score,
we can observe from Table 1 that the SoD-DGP approach
performs better than other DGP inference approaches in all
the datasets except Protein where DSVI-DGP gives the best
performance. In this case also, SoD-DGP performance is
very close. We find that the DSVI-DGP models perform
better than DSVI*-DGP models, which does not optimize

and learn the inducing inputs but fixes it to initial values.
We can also observe that SoD-DGP results are in general
better than SoD*-DGP, which considers random subset of
data points. We find this to be more observable in deeper
DGP models, while SoD*-DGP2 can provide results closer
to SoD-DGP models. Thus, SoD-DGP models can be sensi-
tive to the subset used and their performance can be further
improved using a better subset selection strategy than the



 

Figure 4: RMSE scores (mean along horizontal bars representing the standard deviation) for various DGP inference
techniques on the UCI Regression datasets. Lower values (to the left) provide better results.

presently used naive K-Means clustering subset selection.
The SVGP model gives a competitive performance on rel-
atively ‘easy’ regression datasets as reported also in Sal-
imbeni and Deisenroth [2017]. In the easy ‘Naval’ dataset,
all the methods show very low NLPP values 4 and SVGP
gives best performance while SoD-DGP gives second best
result. The NLPP results also suggest that SoD-DGP pro-
vides better confidence in its predictions and might have
better uncertainty modelling capabilities.

Fig. 4 provides RMSE results for various inference tech-
niques for DGP models with lower values towards left side
giving better results. We can observe that SoD-DGP models
performs better or close to DSVI-DGP models and gives
best performance for most of the data sets. In 2 datasets,
Energy and Winered, SGHMC-DGP gives better perfor-
mance. Similar to NLPP results, SoD-DGP and DSVI-DGP
performs better than DSVI*-DGP. Thus, the proposed SoD-
DGP model provides a computational advantage in terms
of reducing the number of parameters while improving or
maintaining the generalization performance.

5 CONCLUSION

We have proposed a new inference technique for deep Gaus-
sian processes which could overcome some limitations of
the existing inference techniques for DGPs. Existing infer-
ence technique require estimating large number of inducing
inputs which grows with the number of layers. We propose
an inference technique where inducing inputs are set to a
fixed subset in training data for the first layer and the in-
ducing inputs for subsequent layers are sampled from the
conditional variational posterior. This approach reduces the
number of parameters to be estimated while maintaining

4For Naval, NLPP is negative and RMSE is close to zero as it
is a simpler problem.

the generalization performance of the DGP model. This is
evident from the experimental results on UCI regression
datasets, where we found that SoD-DGP gives better log-
likelihood values than other DGP inference techniques. The
proposed approach is also amenable to sampling techniques
like leverage scoring and determinantal point processes
which could further improve the performance through bet-
ter choice of subsets. As a future work, we will extend the
proposed approach for classification problems.

Acknowledgement: MEK would like to thank a number
of people who, over the years, spent time in checking the
validity of (7), including Wu Lin, Heiko Strathman, Didrik
Nielsen, Si Kai Lee, Anand Subramanian, Paul Cheng, and
Arno Solin. AJ and PKS thank the funding and travel support
from Science and Engineering Research Board (SERB),
India and Japan International Co-operation Agency (JICA),
Japan.

References

Ahmed Alaoui and Michael W Mahoney. Fast randomized
kernel ridge regression with statistical guarantees. In Ad-
vances in Neural Information Processing Systems, pages
775–783, 2015.

Thang Bui, Daniel Hernández-Lobato, Jose Hernandez-
Lobato, Yingzhen Li, and Richard Turner. Deep Gaussian
processes for regression using approximate expectation
propagation. In International Conference on Machine
Learning, pages 1472–1481, 2016.

Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, and Mau-
rizio Filippone. Random feature expansions for deep
Gaussian processes. In International Conference on Ma-
chine Learning, volume 70, pages 884–893, 2017.

Zhenwen Dai, Andreas Damianou, Javier González, and



 Neil Lawrence. Variational auto-encoded deep Gaussian
processes. International Conference on Learning Repre-
sentations (ICLR), 2016.

Andreas Damianou. Deep Gaussian processes and varia-
tional propagation of uncertainty. PhD Thesis, University
of Sheffield, 2015.

Andreas Damianou and Neil Lawrence. Deep Gaussian
processes. In International Conference on Artificial Intel-
ligence and Statistics, pages 207–215, 2013.

Marton Havasi, José Miguel Hernández-Lobato, and
Juan José Murillo-Fuentes. Inference in deep Gaussian
processes using stochastic gradient Hamiltonian monte
carlo. In Advances in Neural Information Processing
Systems, pages 7517–7527, 2018.

James Hensman and Neil D Lawrence. Nested variational
compression in deep Gaussian processes. arXiv preprint
arXiv:1412.1370, 2014.

James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaus-
sian processes for big data. In Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence (UAI2013), 2013.

Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli.
Batched Gaussian process bandit optimization via de-
terminantal point processes. In Advances in Neural Infor-
mation Processing Systems, pages 4206–4214, 2016.

Hugh Salimbeni and Marc Deisenroth. Doubly stochastic
variational inference for deep Gaussian processes. In
Advances in Neural Information Processing Systems 30,
pages 4588–4599. 2017.

S. Shevade and S. Sundararajan. Validation-based sparse
Gaussian process classifier design. Neural Computation,
21(7):2082–2103, July 2009.

Michalis Titsias. Variational learning of inducing variables
in sparse Gaussian processes. In International Conference
on Artificial Intelligence and Statistics, pages 567–574,
2009.

Haibin Yu, Yizhou Chen, Bryan Kian Hsiang Low, Patrick
Jaillet, and Zhongxiang Dai. Implicit posterior variational
inference for deep Gaussian processes. In Advances in
Neural Information Processing Systems, pages 14475–
14486, 2019.


	INTRODUCTION
	DEEP GAUSSIAN PROCESSES 
	SUBSET-OF-DATA Variational Inference (SOD-VI)
	Subset-of-Data VI for GP
	Subset-of-Data VI for DGP

	Experiments
	Conclusion

