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Abstract

Estimation of probability density function from
samples is one of the central problems in statistics
and machine learning. Modern neural network-
based models can learn high dimensional distri-
butions but have problems with hyperparameter
selection and are often prone to instabilities dur-
ing training and inference. We propose a new ef-
ficient tensor train-based model for density esti-
mation (TTDE). Such density parametrization al-
lows exact sampling, calculation of cumulative
and marginal density functions, and partition func-
tion. It also has very intuitive hyperparameters.
We develop an efficient non-adversarial training
procedure for TTDE based on the Riemannian op-
timization. Experimental results demonstrate the
competitive performance of the proposed method
in density estimation and sampling tasks, while
TTDE significantly outperforms competitors in
training speed.

1 INTRODUCTION

In this paper, we consider a problem of nonparametric den-
sity estimation, which is one of the central problems in
statistics and machine learning. Recent progress in the de-
velopment of artificial neural networks has given rise to
many new methods of solving this problem, including vari-
ational autoencoders (VAE, Kingma and Welling [2014]),
generative adversarial networks (GAN, Goodfellow et al.
[2014]), autoregressive neural networks [van den Oord
et al., 2016], invertible flows [Dinh et al., 2017] among
some others. These methods allow us to overcome the curse
of dimensionality and make it possible to estimate the den-
sity of such high-dimensional and nontrivial data as images
and sound. However, all these new approaches lack the sim-
plicity and interpretability of the classical kernel density

estimation method [Scott et al., 1977]. On the other hand,
kernel density estimation usually performs poorly even in
moderate dimensions [Wang and Scott, 2019].

This paper aims to build a new method of nonparametric
density estimation: tensor-train density estimation (TTDE).
The idea is to construct a tensor-train approximation to the
coefficients’ matrix for the expansion of the density func-
tion in some basis. We will show that an approximation
in this parametric form has several important features that
other models do not have (at least not simultaneously): ex-
act sampling, ability to calculate cumulative density func-
tion and exact calculation of partition function. Moreover,
we propose an efficient training procedure based on Rie-
mannian optimization, which is easy to implement and
avoids the problems of instability typical for the methods
based on adversarial training.

Contributions of this work. Although extremely pow-
erful and effective, modern neural network-based models
have their drawbacks. Some of them do not have tractable
log-likelihood at all (like GANs) or have only surrogates
for it (lower bound for VAEs, unnormalized log-density for
energy-based models). Other methods can not sample from
the trained distribution or require the whole additional sam-
pling procedure like MCMC and thus can generate only
approximate samples (energy-based models, BNAF [Cao
et al., 2019]). Many powerful models require “middle-men”
during the training process (discriminator for adversarial
models, MCMC sampling for energy-based models), which
significantly complicates the development and analysis of
such models. These properties for different methods are
summarized in Table 1.

Neural network-based methods are famous for their strong
dependence on the choice of hyperparameters, architec-
ture and optimization method. We believe that there is a
gap between simple, intuitive models for low-dimensional
data and powerful, capable of solving most difficult tasks,
yet very fragile and hard to theoretically analyze neural
network-based methods. In this work, we try to fill this gap.
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Table 1: Comparison of the capabilities of different density estimation models. *FFJORD does not use true log-likelihood
in the training process and instead uses its unbiased estimate.

Method Exact Sampling Tractable LL No middle-man Training Computation of CDF

FFJORD 3 3* 3* 7
Normalizing Flows 3 3 3 7

GANs 3 7 7 7
VAEs 3 7 3 7

Autoregressive 3 3 3 7
Energy-based 7 7 7 7

TTDE (ours) 3 3 3 3

The main contributions of our work are as follows.

• We propose a new generative tensor-based approach
tensor-train density estimation (TTDE) that allows
fast sampling and efficient computation of functionals
of probability density function.

• We show that TTDE can be trained using Riemannian
optimization targeting a variety of different function-
als, including those that are intractable for previously
existing models (namely, direct L2 loss between target
probability p(x) and approximation qθ(x)).

• We illustrate the competitive performance of our ap-
proach on a series of examples.

2 WHY TENSOR-TRAIN IS GOOD FOR
DENSITY APPROXIMATION?

2.1 PROBLEM STATEMENT

Suppose we are given i.i.d. samples
x(1), . . . ,x(N), x(i) ∈ Rd, i = 1, . . . , N from an
unknown probability distribution with a density p(x). We
want to find an approximation to this density. It is typically
done by using some family of functions:

p(x) ≈ qθ(x), (1)

where qθ ∈ Q = {qθ}θ∈Θ,Θ ⊂ RD.

To perform approximation (1), some measure of discrep-
ancy between probability densities p and qθ should be com-
puted (given only samples from p) and then optimized with
respect to θ.

In this paper, we propose to use densities represented in the
low-rank tensor-train format asQ. This approach has been
shown to be successful in [Dolgov et al., 2020] which tar-
geted the problem of the computationally efficient approx-
imation to the given density. This problem is very differ-
ent from the problem of density estimation from samples
which we consider in our work. We aim to fill this gap by

developing a systematic approach for sample-based train-
ing of such models.

The general approach in non-parametric statistics is firstly
to choose some basis functions Φ(x) = {fk(x)}Kk=1 (e.g
B-splines or Fourier series) and then search for the approx-
imation in the linear space induced by this basis:

qθ(x) =
〈
αθ,Φ(x)

〉
=

K∑
k=1

αθ,kfk(x),

where usually the coefficients vector αθ simply coincides
with the parameter vector θ, i.e. αθ ≡ θ.

One of the standard ways to build a multidimensional basis
is to take a Cartesian product of several one-dimensional
bases, i.e., setting fi1,··· ,id(x) = fi1(x1) · · · fid(xd) for d-
dimensional input x and some functions f1, . . . , fd : R →
R. In this case, the coefficients vector αθ becomes struc-
tured as a d-dimensional tensor αθ ∈ RKd

whose size
grows exponentially with the dimension. In this work, we
propose to consider only a low-rank subspace of the linear
span, i.e., functions qθ(x), weight tensor αθ of which can
be represented in low-rank tensor-train format. Such a rep-
resentation allows achieving linear in the dimension com-
putational and storage costs for operations such as calcula-
tion of a function at a point, differentiation and integration.

2.2 PROPOSED REPRESENTATION OF THE
DENSITY

Tensor-product basis. Consider a basis set of 1-
dimensional functions B = {fi}mi=1, fi : R → R. The con-
struction of the d-dimensional basis set can be done on top
of B as follows:

B(d) =
{
fi1,...,id

}m,...,m

i1=1,...,id=1
,

where

fi1,...,id(x) = fi1(x1) · · · fid(xd) : Rd → R.



 We are going to approximate the target distribution via the
linear function expansion in this basis:

qθ(x) ∈ Q = span B(d), (2)

qθ(x) =

m,...,m∑
i1=1,...,id=1

αi1,...,id
θ fi1,...,id(x)

=

m,...,m∑
i1=1,...,id=1

αi1,...,id
θ fi1(x1) · · · fid(xd)

=

m,...,m∑
i1=1,...,id=1

αi1,...,id
θ Φi1,...,id(x) = ⟨αθ,Φ(x)⟩,

where the tensor Φ(x) is a rank-1 feature map defined by

Φ(x) = f(x1)⊗ · · · ⊗ f(xd),

f(x) =
(
f1(x), . . . , fm(x)

)
.

Such a feature map was previously used for the classifica-
tion problems with tensor-based models in [Cohen et al.,
2016, Khrulkov et al., 2018, Stoudenmire and Schwab,
2016].

Tensor-train format. In the form above, αθ is a very
large tensor of size md. To be able to store and interact with
this tensor in high dimensions, we will work with the ten-
sors αθ, which can be represented in the tensor-train (TT)
format:

αi1...id
θ = G1[·, i1, ·]G2[·, i2, ·] · · ·Gd[·, id, ·]. (3)

Here Gi are the so-called cores of the tensor-train de-
composition, which are 3-dimensional tensors of size
[ri−1 ×m× ri] (with condition r0 = rd = 1). Here
Gi[·, a, ·] represents a matrix which is the a-th slice of
the core Gi along the second axis. The vector r =
(r1, . . . , rd−1) is called the vector of TT-ranks. Further in
the text, unless otherwise stated, we will use a single nat-
ural number r to refer to the TT-decomposition with rank
r = (r, . . . , r).

Computation in the TT-format. When all the coeffi-
cients are known, the inner product of two tensors in the
TT-format can be computed efficiently. This procedure is
summarized in Algorithm 1. It requires O(dmr21r2) opera-
tions to compute, where r1 is the maximum of two ranks of
given tensors, r2 is the minimum of two ranks, d is the num-
ber of dimensions of the tensors, and m is the maximum
size of the dimensions. For example, the evaluation of the
function qθ at a point x according to (2) is an inner-product
of the weight tensor with a rank-1 tensor and thus requires
only O(dmr2) time. In a similar way, we can marginalize

Algorithm 1: Multiplication of two tensors represented
in tensor-train format. On each step, we store the con-
traction of the two prefixes of the lists of cores. Each
such contraction can be updated from the previous
step in O

(
max(r21, r

2
2)min(r1, r2)

)
time, which gives

O
(
dmax(r21, r

2
2)min(r1, r2)

)
complexity of the full

product.
Result: Inner product of tensors T1 and T2 represented

in TT-format with cores {G(1)
i }di=1 and

{G(2)
i }di=1 and ranks r1 and r2, respectively

Initialize res with [1× 1] identity matrix ;
for p← 1 to d do

res← einsum(′ix, inj, xny →
jy′, res,G

(1)
p , G

(2)
p ) ;

end
return res;

out some dimensions and therefore compute marginal den-
sities of qθ:

qθ(x1, · · · , xk−1) =
〈
αθ,Φ(x1, · · · , xk−1)⊗

∫
Φ(xk, · · · , xd)

〉
,

where

Φ(x1, · · · , xk−1) = f(x1)⊗ · · · ⊗ f(xk−1),∫
Φ(xk, · · · , xd) =

(∫
f(xk)dxk

)
⊗ · · · ⊗

(∫
f(xd)dxd

)
or even calculate cumulative density function along some
dimension k:

qθ(x1, · · · , xk−1, xk < A) =〈
αθ,Φ(x1, · · · , xk−1)⊗

∫ A

−∞
f(xk)dxk ⊗

∫
Φ(xk+1, · · · , xd)

〉
.

Squared TTDE. The main drawback of proposed model
is that it’s not guaranteed to be always non-negative. If the
expressivity of the model is sufficient, we expect the result-
ing approximation to be sufficiently similar to the real dis-
tribution, and hence the negative regions can be neglected.
However, it is too optimistic to expect such behavior for
complex high-dimensional distributions. If we want to ap-
ply the model to medium dimensions, we have to overcome
this problem. One solution is to require that all the ker-
nels in the tensor train (3) are non-negative. Then, if all
basis functions are also always non-negative (which can
be assumed by construction), then the resulting function
qθ will be non-negative everywhere. Notice, that this ap-
proach will require additional changes to the optimization
process. We propose another modification of our model –



 squared TTDE. Instead of approximation (3) we suggest to
use squared version of it:

qθ(x) =
〈
αθ,Φ(x)

〉2

,

which automatically implies non-negativity. In this form,
some operations will become more computationally ex-
pensive (e.g., calculating marginals), but still manageable,
while the model can be trained using the classical method
of likelihood maximization. Experiments with the squared
TTDE are presented in Section 5.4 and summarized in Ta-
ble 3.

2.3 SAMPLING

Direct application of the trained density model is sampling
from that model. GANs, for example, can not do anything
but sampling (and require one forward pass through the net-
work to do it). Models based on normalizing flows can both
infer density and sample (and in general require one for-
ward pass as well). Energy-based models can not generate
exact samples from their learned densities and moreover, re-
quire an additional iterative procedure to get approximate
samples (like Markov Chain Monte Carlo sampling).

Probability density function represented in the tensor-train
format allows fast, exact sampling in the autoregressive
fashion: as we can calculate marginals of qθ(x), we can
take sample seeds u ∼ U([0; 1]d) and then sample coor-
dinates of x one by one such that qθ(ξ1 < x1) = u1,
qθ(ξ2 < x2 | ξ1 = x1) = u2 and so on. On a step k to
sample xk, we assume that we already know all xi, i < k
and thus should find such a number A, that

qθ(ξk < A | {ξi = xi}i<k) =
qθ(ξk < A, {ξi = xi}i<k)

qθ({ξi = xi}i<k)
= uk,

which is a simple 1-dimensional search on a monotonically
increasing function (up to an approximation error) and thus
can be performed with any appropriate algorithm (e.g. bi-
nary search).

TT-format allows an efficient implementation of the de-
scribed algorithm. Notice that the cumulative density func-
tion value can be computed in a cycle over dimensions,
where each iteration k of which can be decomposed in four
steps:

1. Contraction of Φ(x1, · · · , xk−1) with cores
G1, · · · , Gk−1. Let us call it Qleft

k , which is a
vector of size rk−1.

2. Contraction of
∫
Φ(xk+1, · · · , xd)dxk+1 · · · dxd with

cores Gk+1, · · · , Gd. Lets call it Qright
k , which is a

vector of size rk.

Algorithm 2: Algorithm to retrieve an exact sample x
from the density qθ(x) represented in TT-format.
Result: Sample x ∼ qθ
Sample u ∼ U([0; 1]d) ;
Precompute Qright

k for all k ;
Initialize Qleft

1 with 1 ;
for k ← 1 to d do

Precompute vector Qinner
k ;

Find such xk, that(
Qinner

k ,
∫ xk

−inf
f(xk)dxk

)
= uk ;

Update Qleft
k ;

return x

3. Multiplication of core Gk with Qleft
k and Qright

k along
it’s left and right dimensions, which results in a vec-
tor Qinner

k of size m, which is the size of the 1-
dimensional basis.

4. Dot product of Qinner
k with the vector∫ xk

−inf
f(xk)dxk.

In the considered algorithm, Qright
k can be precomputed

beforehand. Qleft
k depends only on xi for i < k, and

consequently, Qleft
k+1 can be derived from Qleft

k by one
matrix-vector product. Thus, steps 1, 2 and 3 require only
O(dmr2) operations in total. That means that one cal-
culation of the cumulative density function during the 1-
dimensional search boils down to a cheap calculation of∫ xk

−inf
f(xk)dxk and one vector-vector product of size

m. In total, this algorithm requires O(dmr2 + dmL) op-
erations, where L is a number of iterations that a 1-
dimensional search would do (for binary search L would
be proportional to the log of the desired result precision).
The resulting sampling procedure is summarized in Algo-
rithm 2.

3 LEARNING VIA RIEMANNIAN
OPTIMIZATION

Loss function. In practice, we do not know the true prob-
ability function p and have access only to the dataset X =
{xi}ni=1 of i.i.d. samples xi from density p. Thus, we need
to optimize some loss function in order to get an approxima-
tion qθ of p. In the previous section we showed that we can
explicitly calculate the partition function for the proposed
tensor train-based model. Similarly, it is possible to calcu-
late L2 norm of the function represented in the tensor-train
format in just a O

(
d(r3m + r2m2)

)
time. That allows us

to use an interesting loss, unusual in the density estimation
context, computed by the direct calculation of L2 distance



 between target distribution p and approximation qθ:

L(p, qθ) =

∫ (
p(x)− qθ(x)

)2
dx (4)

=

∫
qθ(x)

2dx− 2Ex∼p(x) qθ(x) + const.

As only samples are available from density p, the expecta-
tion in (4) can be approximate with the Monte-Carlo esti-
mate based on the samples from the dataset. If the expres-
sive power of qθ is large enough, then minimum will be
achieved near p and thus will produce a good approxima-
tion to the true density function.

Computation of loss function and its derivatives. The
second term in (4) is just an evaluation of the function at a
given point. It was discussed in details in Section 2.2 and
can be calculated inO(bdr2m) time, where b is a batch size
used in the stochastic optimization method. The first term
in (4) is a quadratic function w.r.t. tensor αθ and thus can
be expressed in form ⟨αθ, Dαθ⟩with an appropriate choice
of the linear operator D:∫ 〈

αθ,Φ(x)
〉2
dx =

∫ 〈
αθ,

(
Φ(x)⊗ Φ(x)

)
αθ

〉
dx

=

〈
αθ,

(∫
Φ(x)⊗ Φ(x)dx

)
αθ

〉
,

where[∫
Φ(x)⊗ Φ(x)dx

]
i1,j1,...,id,jd

=

∫
Φ(x)i1,...,id ⊗ Φ(x)j1,...,jddx

=

∫
fi1(x1)fj1(x1)dx1 · · ·

∫
fid(xd)fjd(xd)dxd

= Di1,j1 · · ·Did,jd

and

Di,j =

∫
fi(x)fj(x)dx.

Thus, tensor
[∫

Φ(x)⊗Φ(x)dx
]

is rank-1 tensor being an
outer product of d matrices Di,j . Thus, an application of
it to the tensor αθ boils down to the multiplication of each
core of αθ along the middle axis with the matrix D fol-
lowed by the inner product of two rank-r tensors. It results
in total complexity O

(
dmr2(m + r)

)
. Let us note that an

additional multiplication by (m+ r) does not significantly
increase the computational cost of the optimization process
as this term does not depend on the batch size b.

Riemannian optimization and optimal step. In princi-
ple, the standard stochastic gradient descent methods or
their variations can be used to train the proposed model.
However, the representation of the model in tensor-train for-
mat and the fact, that the given loss function (4) is quadratic
with respect to the tensor α allow for usage of more pro-
ductive optimization methods. In this work, we suggest us-
ing Riemannian optimization, which is a promising tool for
learning tensor-based models [Rakhuba et al., 2019, Stein-
lechner, 2016].

Riemannian optimization is a procedure to minimize some
function g defined on X over some smooth manifoldM⊂
X :

min
X∈M

g(X).

The usual Riemannian optimization workflow consists of
several steps:

1. Construction of tangential plane Tx(M) to manifold
M at point x. For tensor-train format, it has an ef-
ficiently computable expression, see [Rakhuba et al.,
2019].

2. Projection PTX(M)∇g(X) of the true gradient
∇g(X) onto the tangent plane TX(M), which can be
done efficiently using automatic differentiation.

3. Gradient step in the tangent plane: Xnext = X +
αPTX(M)∇g(X), where α is a learning rate.

4. Retraction of a point Xnext back onto M, which
again can be efficiently approximated for tensor-train
format.

By the construction, the tangent plane Tx(M) is a linear
space, and due to the fact that our loss function (4) is a
quadratic function, we can find optimal α on each step as a
minimal point of a parabola. Note that it is not true for the
classical gradient descent in the space of TT-cores, as there
will be a complex high degree polynomial dependence.

More details on how to construct TX(M), how to represent
it in the tensor-train format of doubled rank 2r and how to
project the true gradient onto tangent space can be found in
Supplementary Material A.3 and in [Rakhuba et al., 2019].

Initialization. It is important to have good initialization
for the gradient optimization methods in general as well
as for the proposed Riemannian optimization approach.
Rather efficient but straightforward initialization can be per-
formed under the assumption of coordinate independence.
Consider the case where

p(x) =

d∏
i=1

pi(xi)



 for some set of one-dimensional probability density func-
tions {pi}di=1. We can solve approximation problems

pi(xi) ≈
〈
αi, f(xi)

〉
, i = 1, . . . , d (5)

independently in such a case and then consider αθ =
α1 ⊗ · · · ⊗ αd as a rank-1 tensor-train initialization. Each
approximation (5) can be computed as the solution of a sim-
ple linear regression problem for the loss (4).

4 RELATED WORK

One of the most famous non-parametric density estimation
algorithms is the histogram approach [Scott, 1979], which
works only in very low dimensional settings (1-2 dimen-
sions). Another famous method is the celebrated kernel den-
sity estimation approach [Scott et al., 1977] that is again
known to perform poorly in high dimensions. An impor-
tant quality of these classical methods for approximating
the distribution of low-dimensional data is their simplic-
ity and intuitive behavior. However, many modern methods
discussed below greatly improve the quality of density esti-
mation which comes at the cost of much more sophisticated
estimation procedures.

The recent development of artificial neural networks gave
birth to several new families of non-parametric density esti-
mation. Generative-adversarial networks (GANs, Goodfel-
low et al. [2014]) are methods of building the neural net-
work capable of generating synthetic data close to the ob-
served data. Although astonishing performance in real-life
problems and the ability to learn and generalize extremely
high-dimensional and complex data (images, videos and
sound), this methods do not produce tractable (or even in-
tractable) density functions and thus the applicability of
these methods in statistical context is limited. Another sim-
ilar approach is variational autoencoder (VAE, Kingma and
Welling [2014]). Unlike GANs, VAEs minimize the varia-
tional lower bound of the likelihood and thus can be used to
approximate the unnormalized density functions, although
the partition function is still intractable.

There is also a great variety of methods, based on neu-
ral networks, that directly learn the density function:
energy-based models [LeCun et al., 2006], autoregressive
density estimators Ryder et al. [2018] and normalizing
flows Kobyzev et al. [2020], among some others. Energy-
based models learn the unnormalized density functions by
maximizing the log-likelihood of the data and approximate
the partition function by MCMC sampling. Thus, only ap-
proximate sampling from these models is available (via
MCMC). Autoregressive models factor the probability dis-
tribution p(x) =

∏d
k=1 p(xk | xs<k), parameterizing each

factor with a neural network. Methods based on normaliz-
ing flows build smooth bijection of the target space with
the latent space of the same size: z = fθ(x) ⇒ p(x) =

p(z)
∣∣∣∂f∂x ∣∣∣. By setting the simple distribution of the latent

variables (usually standard Gaussian) and assuming that
the log-determinant of the function fθ can be efficiently
calculated (guaranteed by choosing the appropriate neural
network structure), the likelihood of the observed data can
be directly maximized. This method was successfully ap-
plied to such complex tasks as face and speech genera-
tion [Kingma and Dhariwal, 2018, Kim et al., 2020]. The
recent development of NF models allows the use of more
and more complex and less constrained models (see, for ex-
ample, FFJORD [Grathwohl et al., 2019]), but at the same
time, some of them lose the ability to sample from the
trained model (BNAF [Cao et al., 2019]).

Another family of models that offers tractable query class
is Probabilistic Circuits [Choi et al.] – acyclic directional
computational graphs that represent complex distributions
as mixtures (sum nodes in the graph) and factorizations
(product nodes in the graph) with simple tractable distribu-
tions, usually one-dimensional, in the leaves of this graphs
(input nodes). To some extent, TTDE can be seen as a Prob-
abilistic Circuit with basis functions being input nodes, and
the graph structure implicitly defined in agreed with tensor-
train format (3), which would give us, although predefined,
exponentially large model structure. Also, TTDE admits
negative weights, which potentially beneficially affects ex-
pressiveness [Dennis, 2016].

5 EXPERIMENTS

We evaluate the performance of the presented TTDE
method on several model and real-world datasets. All the
code to reproduce the results of experiments can be found
via https://github.com/stat-ml/TTDE. In all
the experiments basis function set consists of B-splines
of degree 2 with knots uniformly distributed over the sup-
port of the considered distributions. The support is known
precisely for the simulated examples as we know exactly
the target distribution, and corresponding lower and upper
bounds are extracted from all given samples for the un-
known distributions of the real-world datasets.

5.1 TOY EXAMPLES

We start the presentation of our results with the several clas-
sical 2-dimensional examples, which are presented on the
Figure 1. We clearly observe that TTDE doesn’t have any
problems with complex shape of the distribution, its multi-
modality or discontinuity. Moreover, the visual comparison
shows clear superiority of TTDE over state-of-the-art nor-
malizing flow approach FFJORD [Grathwohl et al., 2019].

https://github.com/stat-ml/TTDE


 

Figure 1: Comparison of TTDE and FFJORD models on
2-dimensional toy distributions.

Random init. Rank-1 init.
Adam 5 11
Riemannian 12 32

Table 2: Experiment with mixture of 7 Gaussians in 3D
with additional dimensions containing only noise. We re-
port the maximum dimensionality for which approximation
of the density converges to the true one for different initial-
ization settings and optimization methods used.

5.2 MODEL DATASETS AND
HYPERPARAMETER SELECTION

An important feature of our model is great interpretability
of the model hyperparameters: basis size and tensor-train
rank. The basis size corresponds to the resolution of the ap-
proximation. It acts similarly to the number of bins in the
very large multidimensional histogram. Rank of the tensor-
train decomposition corresponds to the expressive power
of the model, i.e. how complex distributions can be built
for the given basis size. The dependence of the trained den-
sity on both hyperparameters is shown on Figure 2 for the
celebrated two moons dataset. We clearly observe the be-
havior discussed above. Interestingly, if the rank of tensor-
train decomposition is not large enough, the method tries
to somehow cope with it, adding symmetric artifacts to the
distribution.

We additionally explore TTDE properties dependence on
the rank of the model for the 8-dimensional mixture of 128
Gaussians located in the random corners of 8-dimensional
unit cube. We present the dependence of the cross-entropy
on the rank of the tensor-train decomposition on Figure 3.
We observe an expected behavior: the higher is the rank, the
higher is the cross entropy with the true distribution. Impor-
tantly, already the approximation of the rank 16 is enough
to almost perfectly match this very complex distribution.

5.3 IMPORTANCE OF INITIALIZATION.

To show the importance of the proper initialization and op-
timization method, we tested our method on the mixture
of seven identical n-dimensional Gaussian mixtures with
identity covariance matrix and located in the 7 corners (all
except one) of the 3-dimensional cube in the first 3 dimen-
sions of the space (see the illustration in Supplementary
Material). This is rather simple distribution having rank 2.
We trained four different models: with rank-1 initialization
(see Section 3) or with random initialization, and with pro-
posed Riemannian optimizer (see Section 3) or with the
standard Adam optimizer. We set the rank of the approxi-
mation equal to 4 (slightly larger, than the true rank of the
target distribution).

For each combination of initialization and optimization
method we report the largest dimensionality of the data for
which the corresponding method successfully converges to
correct solution. The resulting numbers are shown in Ta-
ble 2. We see that for random initialization Riemannian op-
timization allows to achieve correct results in much higher
dimension than Adam (12 vs 5). The usage of the proposed
1d-initialization procedure allows to significantly boost the
results for both optimizers. The clear winner is properly
initialized model with Riemannian optimization which is
capable to learn 32− dimensional distribution. Thus if we
want to apply this algorithm in high dimensional settings,
the proposed initialization and the right choice of optimiza-
tion technique are vital.

5.4 REAL-WORLD DATA

Methods and data. To show the applicability of our
method to the real-world tasks, we compare computational
performance and quality of approximation of TTDE and
squared-TTDE with several methods from the Normaliz-
ing Flows family as they have similar capabilities (see Ta-
ble 1), namely Glow [Kingma and Dhariwal, 2018], Real-
NVP [Dinh et al., 2017], MAF [Papamakarios et al., 2017a]
and FFJORD [Grathwohl et al., 2019]. We perform com-
parison on five tabular datasets from UCI dataset collection
preprocessed as in Papamakarios et al. [2017b].

Quality measure. Due to the fact that the function rep-
resented in the tensor-train format does not have to be
a valid probability density function i.e. potentially there
could be areas of small negative values due to approxima-
tion error, direct comparison in terms of model likelihood
is not available. On the other hand, comparison in terms
of the loss (4) is not a good choice as well. Firstly, it is
problematic to calculate it for the normalizing flow mod-
els in 6-dimensional space. Secondly, it is not fair to com-
pare the model that directly optimizes this loss (our model)
with the models, that are trained using completely differ-



 

Figure 2: Approximations of “two moons” distribution by TTDE for different basis function set sizes and TT-ranks.

Table 3: Average log-likelihood for several neural-network-based models on tabular UCI datasets. Gaussian fitted to the
training data is reported as a baseline.
*On Hepmass and Miniboone datasets, which has the lowest number of training examples (300k and 30k respectively), we
observe heavy overfitting. Lack of regularizations for the new model leads to poor results. Thus, it is an important direction
for further development of the TTDE.

POWER GAS HEPMASS MINIBOONE BSDS300

Dataset dimensionality 6 8 21 43 64

Gaussians -7.74 -3.58 -27.93 -37.24 96.67
MADE -3.08 3.56 -20.98 -15.59 148.85

Real NVP 0.17 8.33 -18.71 -13.84 153.28
Glow 0.17 8.15 -18.92 -11.35 155.07

FFJORD 0.46 8.59 -14.92 -10.43 157.40

Squared TTDE (ours) 0.46 8.93 −21.34∗ −28.77∗ 143.30

ent discrepancy measures. Because of that, we decided to
compare models based on the quality of generated samples.
Namely, we decided to measure the sliced total variation
between the samples from the validation set and the sam-
ples acquired from the model.

Total variation is a classical measure of discrepancy be-
tween two distributions

TV (p ∥ q) =
∫ ∣∣p(x)− q(x)

∣∣dx.
In spite of the simplicity of its formulation, the computation
of the integral above in high dimension is hard and poten-
tially non-accurate. That’s why we introduce the sliced ver-
sion of the total variation by employing a simple idea how
to apply it to the multidimensional case when the true dis-
tribution p(x) is not available. Instead of integrating over
the whole space, we can average total variations for many

random 1-dimensional projections:

STV (p ∥ q) = EP

∫ ∣∣P [p](x)− P [q](x)
∣∣dx,

where P is a random projector on one dimensional space.
In our experiments we firstly generate samples from all
testing models. Then several times we generate projection
of validation set and all generated sets on a random 1-
dimensional plane. Then we calculate 1-dimensional ap-
proximations of distributions using kernel density estima-
tion (which almost exactly replicates true underlying dis-
tribution due to massive amounts of generated points) and
then we calculated TV of this 1-dimensional functions.
This procedure is summarized in Algorithm 3.

Results. We show in our experiments that the proposed
model significantly outperforms (by an order of magnitude)
all presented neural-network based models in terms of the



 

Figure 3: Dependence of the approximation quality of the
mixture of 128 Gaussians in 8 dimensional space on the
rank of the TT decomposition.

Algorithm 3: Calculation of sliced total variation be-
tween two distributions based on samples from them.
Result: Sliced total variation for two sample sets

X(1) = {x(1)
i ∈ Rd}Ni=1 and

X(2) = {x(2)
i ∈ Rd}Ni=1

Choose random 1− dimensional hyperplane l ;
Project X(1) and X(2) onto l ;
Build approximations p1 and p2 from projected
samples;

Approximate STV =
∫
R |p1(y)− p2(y)|dy using any

1-dimensional numerical integration method ;
return STV ;

convergence rate to the optimal value, see Figure 4. The
same applies to the speed of sampling, see Figure 5, where
for the batch size of 220 we outperform two most powerful
baseline models: FFJORD and MAF (speedup of 2.8 and
2.5 times respectively) and slightly outperform GLOW and
Real NVP (1.4 and 1.2 times speedup respectively).

In table 3 we report log-likelihoods achieved with our
squared-TTDE model trained with NLL loss and com-
pare them with several normalizing flow models. Our
model manages to outperform presented competitors on
two low-dimensional datasets (POWER and GAS). On
the 64-dimensional BSDS300 dataset, our model performs
worse than powerful network-based models, although by
not much, while still providing tractable query class. On
Hepmass and Miniboone datasets, which have the lowest
number of training examples (300k and 30k respectively),
we observe heavy overfitting. We think that development of
regularization techniques for the TTDE will allow to obtain
better results. All the details of experiments are specified in
Supplementary Materials A.1.

Figure 4: Dependence of the sliced total variation w.r.t.
the training time for models trained on 6-dimensional UCI
POWER dataset.

Figure 5: Dependence of the sampling time w.r.t. the num-
ber of samples to be generated for 6-dimensional space for
models trained on UCI POWER dataset. Our model outper-
forms its competitors and shows 2.6, 2.5, 1.4 and 1.2 times
speedups compared to FFJORD, MAF, GLOW and Real
NVP respectively.

6 CONCLUSION

This work shows that approximation based on the tensor-
train decomposition is a promising method of density esti-
mation. It offers such a set of different features and possi-
bilities (tractable partition function, exact sampling, exact
marginals, and cumulative densities), which were not pre-
viously accessible all at the same time for other methods.
This method’s ability to work in medium dimensionality is
very promising and paves the way to accurate density esti-
mation in high dimensions.
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