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Abstract

Causal graphs (CGs) are compact representations
of the knowledge of the data generating processes
behind the data distributions. When a CG is avail-
able, e.g., from the domain knowledge, we can
infer the conditional independence (CI) relations
that should hold in the data distribution. However,
it is not straightforward how to incorporate this
knowledge into predictive modeling. In this work,
we propose a model-agnostic data augmentation
method that allows us to exploit the prior knowl-
edge of the CI encoded in a CG for supervised
machine learning. We theoretically justify the pro-
posed method by providing an excess risk bound
indicating that the proposed method suppresses
overfitting by reducing the apparent complexity of
the predictor hypothesis class. Using real-world
data with CGs provided by domain experts, we
experimentally show that the proposed method is
effective in improving the prediction accuracy, es-
pecially in the small-data regime.

1 INTRODUCTION

Causal graphs (CGs; Pearl, 2009) are compact representa-
tions of the knowledge of data generating processes. Such
a CG is sometimes provided by domain experts in some
problem instances, e.g., in biology (Sachs et al., 2005) or
sociology (Shimizu et al., 2011). Otherwise, it may also be
learned from data using the statistical causal discovery meth-
ods developed over the last decades (Spirtes et al., 2000;
Pearl, 2009; Chickering, 2002; Shimizu et al., 2006; Peters
et al., 2014; Peters et al., 2017). Once a CG is obtained, it
can be used to infer the conditional independence (CI) rela-
tions that the data distribution should satisfy (Pearl, 2009).

The CI relations encoded in the CG could be strong prior
knowledge for predictive tasks in machine learning, e.g.,

X1 ← Y → X2

Figure 1: Visualization of the basic idea of the paper for the
trivariate case X1 ← Y → X2. In this case, the CI X1⊥⊥X2 | Y
holds. One way to use this knowledge via data augmentation
is to group the data according to Y and then to shuffle X1
and X2 within each group. Our method extends this idea to
more general graphs.

regression or classification, especially in the small-data
regime where data alone may be insufficient to witness the
CI relations (Spirtes et al., 2000, Section 5.2.2). However, it
is not trivial how the CI relations should be directly incorpo-
rated into general supervised learning methods. In previous
research, methods that leverage the causality for feature se-
lection have been proposed (see, e.g., Yu et al. (2020) for a
review). However, most of them are based on the notion of
the Markov blanket or the Markov boundary (Tsamardinos
et al., 2003). As a result, they only take into account par-
tial information of all that is encoded in a CG, since a CG
often entails more constraints on the data distribution than
the specifications of Markov blankets or a Markov bound-
ary (Richardson, 2003). Another approach to exploiting the
prior knowledge of a CG is to build a Bayesian network
(BN) model according to the CG structure (e.g., Lucas et al.,
2004). However, constructing the predictors by employing
BNs as the framework entails a specific modeling choice,
e.g., it constructs a generative model as opposed to a dis-
criminative model (Shalev-Shwartz et al., 2014, Chapter 24),
precluding the choice of some flexible and effective models
such as tree-based predictors (Friedman, 2001) and neural
networks (Goodfellow et al., 2016) that may be preferred in
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 the application area of one’s interest.

In this work, we propose a model-agnostic method to incor-
porate the CI relations implied by CGs directly into super-
vised learning via data augmentation. To illustrate our idea,
let us consider the following trivariate case.

Illustrative example: trivariate case (Fig. 1). Suppose
we want to predict a binary variable Y from (X1, X2). If the
joint distribution follows the CG X1 ← Y → X2, the CI
X1⊥⊥X2 | Y holds (Pearl, 2009). If we know this relation, a
natural idea is to stratify the sample by Y and then to take
all combinations of X1 and X2 within each stratum.

In this trivariate example, it is straightforward to derive such
a plausible data augmentation procedure to incorporate the
CI relations since the relation X1⊥⊥X2 | Y involves all three
variables. On the other hand, deriving such a procedure for
general graphs is not straightforward as they may encode a
multitude of CI relations each of which may involve only a
subset of all variables.

Our contributions. (i) We propose a method to augment
data based on the prior knowledge expressed as CGs, assum-
ing that an estimated CG is available. (ii) We theoretically
justify the proposed method via an excess risk bound based
on the Rademacher complexity (Bartlett et al., 2002). The
bound indicates that the proposed method suppresses over-
fitting at the cost of introducing additional complexity and
bias into the problem. (iii) We empirically show that the pro-
posed method yields consistent performance improvements
especially in the small-data regime, through experiments
using real-world data with CGs obtained from the domain
knowledge.

2 PROBLEM SETUP

In this section, we describe the problem setup, the goal, and
the main assumption exploited in our proposed method.

Basic notation. For the standard notation, namely R, R≥0,
R>0, Z, N, and 1[·], see Table 1 in Appendix that also pro-
vides a summary of notation. For N,M ∈ N with N ≤ M,
define [N : M] := {N,N + 1, . . . ,M} and [N] := [1 : N]. For
an N-dimensional vector x = (x1, . . . , xN) and S ⊂ [N], we
let xS = (xs1 , . . . , xs|S | ) denote its sub-vector with indices in
S = {s1, . . . , s|S |} with s1 < · · · < s|S |. By abuse of notation,
we write x j := x{ j} for j ∈ [N]. To simplify the notation,
we let [0] = ∅, R0 := {0}, x∅ = 0, and [N]0 = {0}.

Problem setup and goal. Throughout the paper, we fix
D ∈ N, and let Z = ×D

j=1Z
j where each Z j is a subset of

Z
j
that is R, Z, or a finite set. Let p be the joint probability

density of Z := (Z1, . . . ,ZD) taking values inZ. One of the
variables, e.g., Z j∗ ( j∗ ∈ [D]), is the target variable that we

want to predict. Let X = × j∈[D]\{ j∗}Z
j

and Y = Z
j∗

. Let

F ⊂ YX be a hypothesis class and ` : F ×
(
×D

j=1Z
j
)
→ R

be a loss function. We consider the supervised learning
setting; that is, given the training data D = {Zi}

n
i=1 that is

an independently and identically distributed sample from
p, our goal is to find a predictor f̂ ∈ F with a small risk
R( f̂ ) = E[`( f̂ ,Z)], where E denotes the expectation with
respect to p.

Assumption. Let G = ([D],E,B) be an acyclic directed
mixed graph1 (ADMG; Richardson, 2003; Richardson et
al., 2017), where [D] is the set of the vertices, E is the
uni-directed edges, and B is the bi-directed edges. For the
simplicity of exposition, in this paragraph, we temporarily
assume that [D] is concordant with topological order of G
without loss of generality.2 Our main assumption is that p
satisfies the topological ADMG factorization property with
respect to G (Bhattacharya et al., 2020), i.e.,

p(Z) =

D∏
j=1

p j|mp( j)(Z j|Zmp( j)), (1)

where mp( j) ⊂ [ j − 1] denotes the Markov pillow of j ∈
[D] in G, and p j|mp( j) denotes the conditional density of Z j

given Zmp( j). The Markov pillow mp( j) is the collection
of the following vertices: (1) those connected to j via bi-
directed paths (including j itself), and (2) all parents of
such vertices (see Appendix A or Bhattacharya et al. (2020)
for the definition). Markov pillow generalizes the notion
of parents; if all edges are uni-directed, mp( j) matches the
parents of j, and hence Eq. (1) is a generalization of the
usual Markov factorization with respect to directed acyclic
graphs (DAGs; Pearl, 2009, p.16) to ADMGs. In the special
case that the ADMG is uninformative, i.e., when the graph is
complete and all edges are bi-directed, Eq. (1) reduces to the
ordinary chain rule of probability: p(Z) =

∏D
j=1 p(Z j|Z[ j−1]),

since mp( j) = [ j − 1] in this case. We assume that we are
given an ADMG Ĝ = ([D], Ê, B̂) that is an estimator of
G, and hereafter we assume that [D] is concordant with
topological order of Ĝ without loss of generality.

Details on the assumption. ADMGs with bi-directed
edges appear in the case where unobserved confounders
exist; they are used to represent semi-Markovian causal
graphical models (CGMs; Tian et al., 2002), which are
CGMs allowing for the existence of hidden confounders.
The assumption of topological ADMG factorization is satis-
fied by such CGMs (Tian et al., 2002). We refer the readers
to Section 2 of Richardson et al. (2017) for an overview of
ADMGs and their use in CGMs involving latent variables.
By accommodating not only DAGs (i.e., those without bi-
directed edges) but also general ADMGs in the assumption,

1Here, mixed indicates that the graph may contain bi-directed
edges in addition to uni-directed ones.

2That is, if 1 ≤ i < j ≤ D, there is no directed path from j to i.



 the applicability of the proposed method is extended to the
case where there are unobserved confounders. Note that the
topological ADMG factorization, in general, captures only
part of the equality constraints imposed by an ADMG on
a semi-Markov model (Bhattacharya et al., 2020). Indeed,
Bhattacharya et al. (2020) proposed a simple sufficient con-
dition called the mb-shieldedness (mb stands for “Markov
blanket”) under which the topological ADMG factorization
captures all the equality constraints. Also note that a CG
encodes more information/assumptions than the CI rela-
tions, namely, it encodes causal assumptions that describe
how the data distribution should shift under an intervention
(Pearl, 2009). In this work, we only exploit the statistical as-
sumptions, namely the CI relations, implied by a given CG.
Although our method does not directly exploit the causal
interpretation of the DAGs/ADMGs, the causal modeling
perspective can be useful in obtaining the DAGs/ADMGs
from domain experts, i.e., one may be able to draw the
DAGs/ADMGs by considering the (non-parametric) struc-
tural equations (Pearl, 2009).

3 PROPOSED METHOD

In this section, we explain the proposed data augmentation
method to directly incorporate the prior knowledge of an
ADMG into supervised learning. The method generalizes
the intuitive data augmentation method described in the
trivariate DAG example in Section 1, making it applica-
ble to general ADMGs whose encoded CI relations do not
necessarily involve all variables. The idea is to consider a
nested conditional resampling; instead of trying to generate
all elements of the new data vector at once, we successively
resample each variable from the conditional empirical dis-
tribution (Stute, 1986; Horváth et al., 1988) conditioning
on its Markov pillow. Then, our proposed method ADMG
data augmentation is obtained by considering all possible
resampling paths simultaneously. We later confirm that the
proposed method indeed generalizes the previous procedure
considered in the trivariate case of Fig. 1.

Derivation of the proposed method. Recall, given
Eq. (1), we can express the risk functional as

R( f ) =

∫
Z

`( f ,Z)
D∏

j=1

p j|mp( j)(Z j|Zmp( j))︸                ︷︷                ︸
(*)

dZ.

Then, to formulate the nested conditional resampling pro-
cedure, we select a kernel function K j : Z

mp( j)
→ R≥0 for

each j ∈ [D].3 Using this kernel function in the spirit of
kernel-type function estimators (Nadaraya, 1964; Watson,
1964; Einmahl et al., 2000), we approximate each condi-

3For notational simplicity, we define K j := 1 where j is such
that mp( j) = ∅.

tional density (∗) as

p̂ j|mp( j)(Z j|Zmp( j)) :=

∑n
i=1 δZ j

i
(Z j)K j(Zmp( j) − Zmp( j)

i )∑n
k=1 K j(Zmp( j) − Zmp( j)

k )
,

where δz denotes Dirac’s delta function centered at z
(e.g., Zorich, 2015, Section E.4.1), and the right-hand side
is defined to be zero when the denominator is zero. The
resulting approximation to the risk functional R( f ), denoted
by R̂aug( f ), is

R̂aug( f ) :=
∫
Z

`( f ,Z)
D∏

j=1

p̂ j|mp( j)(Z j|Zmp( j))dZ.

Here, the right-hand side can be interpreted as representing
a nested conditional resampling procedure, in which we se-
quentially select i1, . . . , iD ∈ [n]. Indeed, since each p̂ j|mp( j)

places its mass on {Z j
i }

n
i=1, the integration for Z j amounts

to substituting Z j = Z j
i j

and summing over the choices

i j ∈ [n] with appropriate weights. The weight placed on Z j
i

by p̂ j|mp( j), namely K j(Zmp( j)−Zmp( j)
i )I,0∑n

k=1 K j(Zmp( j)−Zmp( j)
k )

, depends on Zmp( j), and

it can be computed from (Z1
i1
, . . . ,Z j−1

i j−1
) which are already

selected at the time we select Z j
i j

since mp( j) ⊂ [ j − 1].

Proposed method. By simultaneously considering all the
possible resampling candidates, we reach at the instance-
weighted data augmentation procedure:

R̂aug( f ) =
∑
i∈[n]D

ŵi · `( f ,Zi), (2)

where

ŵi =

D∏
j=1

K j(Zmp( j)
i1: j−1
− Zmp( j)

i )∑n
k=1 K j(Zmp( j)

i1: j−1
− Zmp( j)

k )
, (3)

Zi = (Z1
i1 , . . . ,Z

D
iD

), Zi1: j−1
= (Z1

i1 , . . . ,Z
j−1
i j−1

),

for i = (i1, . . . , iD) ∈ [n]D and i1: j−1 = (i1, . . . , i j−1), and the
right-hand side of Eq. (3) is defined to be zero when the
denominator is zero. Here, we use the convention Zmp(1)

i1:0
:=

0 to be consistent with the notation.

Here, Eq. (2) represents a data-augmentation procedure in
which new data points are created (see Fig. 1). Each new
data point Zi is generated by the following procedure. First,
D training data points are selected with replacement (spec-
ified by i = (i1, . . . , iD) ∈ [n]D). Then, Zi is constructed
by copying the j-th element Z j

i j
from Zi j ( j ∈ [D]). Eq. (2)

performs this procedure for all combinations of the indices
i ∈ [n]D.

In the proposed data augmentation method, which we call
ADMG data augmentation, we considerDaug := {Zi}i∈[n]D

to be a weighted training data whose weights areWaug :=



 {ŵi}i∈[n]D , and we perform supervised learning usingDaug
and Waug, where any standard method that incorporates
instance weights can be employed. As a practical device, to
account for the possibility that Ĝ is only an inaccurate ap-
proximation of G, we propose to use a convex combination
of the empirical risk estimator R̂emp( f ) := 1

n
∑n

i=1 `( f ,Zi)
and the augmented empirical risk estimator R̂aug( f ), that is
to use

f̂ ∈ arg min
f∈F

{(1 − λ)R̂emp( f ) + λR̂aug( f ) + Ω( f )}

as the predictor, where λ ∈ [0, 1] is a hyper-parameter and
Ω is a regularization term for f ∈ F . In the experiments in
Section 5, we used a fixed parameter λ = .5 and observed
that it performs reasonably for all data sets.

The ADMG data augmentation generalizes the idea de-
scribed in the trivariate example X1 ← Y → X2 in Section 1.
In fact, in the trivariate example of Fig. 1, Waug places
equal weights on the augmented data, essentially yielding
the same augmented data set as that in Fig. 1.

Practical implementation. To reduce the computation
cost of calculating the weightsWaug, we exploit the recur-
sive structure in Eq. (3) that can be represented by a proba-
bility tree (Brase et al., 2012), where we sequentially select
the values i1, . . . , iD ∈ [n] (Fig. 2). To see this, recursively
define

ŵi1:0 = 1, ŵi1: j = ŵi j |i1: j−1 · ŵi1: j−1 ( j ∈ [D], i1: j−1 ∈ [n] j−1),

where

ŵi j |i1: j−1 :=
K j(Zmp( j)

i1: j−1
− Zmp( j)

i )∑n
i=1 K j(Zmp( j)

i1: j−1
− Zmp( j)

i )
,

and the right-hand side is defined to be zero when the de-
nominator is zero. Then, we have ŵi = ŵi1:D .

With this recursive structure in mind, we construct the prob-
ability tree as follows: we index the root node by 0 and the
nodes at depth j ∈ [D] by i1: j in a standard manner, assign
the weight ŵi j |i1: j−1 to each edge (i1: j−1, i1: j), and assign to
each node i1: j the product of the weights of the edges on the
path from the root to i1: j. Then, by recursively computing
the weights of the nodes on this weighted tree, we can obtain
Waug (Fig. 2). Algorithm 1 summarizes the procedure of
the proposed method.

To reduce the computation cost, we specify a threshold
θ ∈ (0, 1), and we prune the branches once the node weight
becomes lower than θ along the course of the recursive
computation. Since the edge weights satisfy

∑n
i j=1 ŵi j |i1: j−1 ∈

{0, 1} and ŵi j |i1: j−1 ≥ 0 for each i1: j−1, the node weight ŵi1: j

is monotonically decreasing in j. Therefore, the above prun-
ing procedure only discards the nodes for which ŵi < θ.
The worst-case computational complexity of Algorithm 1

Figure 2: Probability tree to compute the weights of the
augmented instances. At each depth j, the index i j is selected
and the weight is updated as ŵi1: j = ŵi j |i1: j−1 · ŵi1: j−1 .

Algorithm 1 Proposed method: ADMG data augmentation

Input: Training data D, ADMG Ĝ, coefficient λ ∈ [0, 1],
regularization functional Ω, pruning threshold θ ∈ [0, 1),
hypothesis class F , kernel functions {K j}Dj=1, loss func-
tion `.

1: function FillProbTree(D, Ĝ, θ, {K j}Dj=1) . see Fig. 2
2: for j ∈ [D] . for each variable j
3: for i1: j−1 ∈ [n] j−1 . current node (depth j)
4: for i j ∈ [n] . next node (depth j + 1)
5: ŵi1: j−1 ← ŵi1: j−1 1

[
ŵi1: j−1 ≥ θ

]
. pruning

6: ŵi1: j ← ŵi j |i1: j−1 · ŵi1: j−1

7: returnWaug := {ŵi}i∈[n]D

8: LetWaug = FillProbTree(D, Ĝ, θ, {K j}Dj=1).
9: Let R̂aug( f ) :=

∑
i∈[n]D ŵi · `( f ,Zi).

10: Let R̃λ( f ) := (1 − λ)R̂emp( f ) + λR̂aug( f ) + Ω( f ).
Output: f̂ ∈ arg min

f∈F
R̃λ( f ): the predictor.

is O
(
nD

)
(see Appendix D), and it is important in future

work to explore how to effectively reduce the computation
complexity. Apart from the pruning procedure, to reduce the
computation time by taking advantage of the probability-
tree structure, one may well consider employing heuristic
top candidate search methods such as beam search (Bisiani,
1987) or stochastic optimization methods such as stochastic
gradient descent (Goodfellow et al., 2016, Section 5.9).

4 THEORETICAL JUSTIFICATION

In this section, we provide a theoretical justification of the
proposed method in the form of an excess risk bound, under
the assumption that the CG is perfectly estimated. The goal
here is to elucidate how the proposed data augmentation
procedure facilitates statistical learning from a theoretical
perspective. We focus on the case that Z

j
= R for all j ∈

[D]. Select K̃ j and h = (h1, . . . ,hD) ∈ RD
>0, and define

K j(u) := 1
| det H j |

K̃ j(H−1
j u), where H j := diag(hmp( j)) is a

diagonal matrix with elements hmp( j).



 For function classes, we quantify their complexities using
the Rademacher complexity.

Definition 1 (Rademacher complexity). Let q denote a prob-
ability distribution on some measurable space X. For a
function class F ⊂ RX, define

Radm,q(F ) := EqEσ

sup
f∈F

∣∣∣∣∣∣∣ 1
m

m∑
i=1

σi f (Xi)

∣∣∣∣∣∣∣
 ,

where {σi}
m
i=1 are independent uniform {±1}-valued random

variables, and {Xi}
m
i=1

i.i.d.
∼ q.

To state our result, let us define the set of marginalized
functions and that of the shifted kernel functions as

L
j
F

:=
{
` f , j(z1, . . . ,z j−1, ·) : f ∈ F , (z1, . . . ,z j−1) ∈ Z[1: j−1]

}
,` f , j :


z1

...
z j

 7→
∫

`( f , z)

 D∏
k= j+1

pk|mp(k)(zk |zmp(k))

 dz[ j+1:D]

 ,
K

j
H :=

{
K j(zmp( j) − (·)) : zmp( j) ∈ Zmp( j)

}
,

where the integration is overZ[ j+1:D].

Theorem 1 (Excess risk bound). Let f̂ ∈ arg min
f∈F

{R̂aug( f )}

and f ∗ ∈ arg min
f∈F

{R( f )}, assuming both exist. Assume Ĝ =

G and also assume thatZ j ⊂ R is compact. Let pmp( j) and
p j,mp( j) denote the marginal density of Zmp( j) and the joint
density of (Z j,Zmp( j)), respectively, and assume pmp( j) and
p j,mp( j)(z j, ·) (z j ∈ Z j) have extensions to the entire R|mp( j)|

belonging to Σ(β, L), where Σ(β, L) denotes the Hölder class
of functions, β > 1, and L > 0. Define

RH :=
D∑

j=1

(
max

j′∈mp( j)
h j′

)β
, RK :=

D∑
j=1

∣∣∣det H j

∣∣∣ Radn,p(K j
H),

RF ,K :=
D∑

j=1

∣∣∣det H j

∣∣∣ Radn,p

(
L

j
F
⊗ K

j
H

)
.

Under additional assumptions on the boundedness and
smoothness of the kernels and the underlying densities (see
Theorem 1 in Appendix C.2), there exist C1,Cp,C2,C3,C4 >
0 depending on the boundedness and the smoothness of
p, `, {K̃ j}Dj=1, and H, such that for any δ ∈ (0, 1), we have
with probability at least 1 − δ,

R( f̂ ) − R( f ∗) ≤ C1RH + Cp︸       ︷︷       ︸
Kernel Bias

+ C2RK︸︷︷︸
Kernel Complexity

+ C3RF ,K︸  ︷︷  ︸
Hypothesis Complexity

+ C4

√
log(4D/δ)

2n︸              ︷︷              ︸
Uncertainty

.

A proof is provided in Appendix C.2. Note that the existence
of a smooth extension is satisfied by, e.g., a truncated version
of a smooth density on R|mp( j)|.

Implications. Theorem 1 implies that the proposed
method contributes to statistical learning by reducing the
apparent complexity of the hypothesis class at the cost of
introducing the additional complexity and bias arising from
the kernel approximations. In the interest of space, we pro-
vide a formal assessment of this complexity reduction effect
in Proposition 2 in Appendix C.3 under some additional
Lipschitz-continuity assumptions. In the derivation of Propo-
sition 2 indicating the complexity reduction effect, the fact
that L j

F
consists of univariate functions is critical. In Sec-

tion 5, we empirically confirm that the complexity reduction
effect is worth the newly introduced bias and complexity
due to the kernel approximation in practice.

Scope of the analysis. It should be noted that the present
theoretical guarantee only covers the case that the condi-
tional independence assumptions implied by the CG are
correct. The robustness of the proposed method to the con-
ditional independence assumptions is an important area of
research in future work.

5 REAL-WORLD DATA EXPERIMENT

In this section, we report the results of the real-world data
experiments to demonstrate the effectiveness of the proposed
method in improving the prediction accuracy.

5.1 EXPERIMENT SETUP

The goal of this experiment is to confirm that the proposed
method contributes to the performance of the trained predic-
tor, especially in the small-data regime. To investigate the
performance improvement, we make a comparison between
the two cases: training with and without the proposed de-
vice, using the same hypothesis class and the same training
algorithm. To analyze the performance improvement in rela-
tion to the sample size, we vary the fraction of the data used
for training the predictor and compare the performances of
the proposed method and that of the baseline without a de-
vice. For further details omitted here for the space limitation,
please refer to Appendix B.

Data sets. We employ 6 data sets for the experiment,
namely Sachs (Sachs et al., 2005), GSS (Shimizu et
al., 2011), Boston Housing (Harrison et al., 1978), Auto
MPG (Quinlan, 1993), White Wine (Cortez et al., 2009), and
Red Wine (Cortez et al., 2009). Table 1 summarizes these
data sets. The Sachs data and the GSS data are accompanied
by the ADMGs obtained from domain experts (Fig. 3(b)
and Fig. 3(a), respectively), and hence we use them in the
experiment. For the other data sets, we first perform Di-
rectLiNGAM (Shimizu et al., 2011) on the entire data set
to obtain the estimated CGs, simulating a situation that we
have background knowledge from domain experts. Since



 DirectLiNGAM produces DAGs, the CGs used in this exper-
iment are DAGs except for the case of GSS data set which
is accompanied by an ADMG produced by domain experts
(Fig. 3(b)).

Predictor model class. We employ the gradient boosted
regression trees (Friedman, 2001; Chen et al., 2016) as the
predictor model class. The hypothesis class consists of the
convex combinations of binary regression trees with at most
M leaves:

FM,K :=

 K∑
k=1

αkwhk(·)
k : α ∈ ∆K ,Tk ∈ [M],wk ∈ R

Tk , hk ∈ TTk

 ,
where M,K ∈ N, TT represents the set of binary tree struc-
tures mapping X to [T ], and ∆K is the (K − 1)-dimensional
probability simplex. The loss function is the squared error
`( f ,Z) = (Y − f (X))2 where Y = Z j∗ and X = Z[D]\{ j∗}, and
the regularization function is Ω( f ) =

∑K
k=1

ρ
2 ‖wk‖

2 (ρ > 0).
We fix M = 64 and search the number of boosting rounds
K in {10, 50, 250, 1250} and the `2-regularization coeffi-
cient ρ in {1, 10, 100, 1000}. The hyper-parameters are se-
lected by the grid-search based on 3-fold weighted cross-
validation. Note that, for the proposed method, we per-
form cross-validation on the union of the original training
data and the augmented data with the weights adjusted by
λ, namely D∏Daug with weights (1 − λ)Worig ∏ λWaug
whereWorig = ( 1

n , . . . ,
1
n ).

Configurations of the proposed method. We select h =

(h1, . . . ,hD) ∈ RD
>0 and use the product kernel K j(x−y) :=∏

j′∈mp( j)
1
h j′ K

j
j′

(
x j′−y j′

h j′

)
for the proposed method. For each

j′ ∈ mp( j), if the variable is continuous (i.e.,Z
j′

= R), we

use the Gaussian kernel K j
j′ (x − y) := (2π)−1/2 exp

(
−

(x−y)2

2

)
.

Otherwise, i.e., if the variable is discrete, we use the identity
kernel K j

j′ (x − y) := 1
[
x = y

]
and h j′ = 1. For the Gaussian

kernels, we select the kernel bandwidth h j′ based on Silver-
man’s rule-of-thumb (Silverman, 1986, pp.45–47). In the
experiment, we fix λ = .5 throughout all runs and find that
it yields reasonable performances in all data sets.

Compared methods. We compare the performances of
the proposed method and the naive baseline method without
a device:

f̂ ∈ arg min
f∈F

{R̂emp( f ) + Ω( f )}.

In Section 5.2 where we report the results, the two methods
are referred to as Proposed and Baseline, respectively.

Evaluation procedure. The prediction accuracy is mea-
sured by the mean squared error (MSE). For each data set,
we randomly subsample a fraction of the data as the training
set and use the rest as the testing set. The fraction of the

Table 1: Summary of Data Sets (NAME: name of the data set,
#VAR: number of variables in the data set, #OBS: number of
observations, GRAPH: CG used for the proposed method,
Consensus: consensus network (Fig. 3(b)), Domain: do-
main knowledge of the status attainment model (Fig. 3(a)),
LiNGAM: CG is estimated by performing DirectLiNGAM
on the entire data set).

NAME #VAR #OBS GRAPH

Sachs 11 853 Consensus
GSS 6 1380 Domain
Boston Housing 14 506 LiNGAM
Auto MPG 7 392 LiNGAM
White Wine 12 4898 LiNGAM
Red Wine 12 1599 LiNGAM

training set is varied in {.1, .15, . . . , .85}. For each training
set fraction, random train-test splits are performed 20 times.
Subsequently, for each split, Proposed and Baseline are
trained on the training set, and then evaluated on the testing
set. We report the average performances as well as the stan-
dard errors over the 20 runs for each training set fraction.

5.2 RESULTS

Fig. 4 shows the experimental result. We observe a con-
sistent performance improvement in most of the data sets.
For the data sets for which the domain knowledge CG is
provided (i.e., Sachs and GSS), we can see clear relative
improvement ranging from 3% to 7% on average, especially
in the small-data regime where approximately 10–40% is
the training set fraction. In the other data sets without the
background knowledge, relatively little improvement is ob-
served except in the small-data regions of Red Wine and
White Wine, where up to 4% relative improvement on av-
erage is observed. The lack of relative improvement in the
majority of these cases emphasizes the importance of hav-
ing accurate domain knowledge in the proposed approach,
and it motivates the development of effective causal discov-
ery methods. In the White Wine data, the proposed method
coincides with the baseline in the larger-data region as the
augmentation did not effectively take place due to the adap-
tive bandwidth that is narrowed according to the sample size.
For supplementary figures visualizing the average relative
improvements, see Appendix B.5.

6 RELATED WORK AND DISCUSSION

In this section, we explain the context of the paper in relation
to existing work.



 

(a) Reference graph for Sachs data. Figure excerpted from
Mooij et al. (2013).

(b) Reference graph for GSS data. Figure excerpted from
Shimizu et al. (2011).

Figure 3: Reference CGs for the data sets used in our experiments. (a) Consensus graph in Sachs et al. (2005). (b)
Domain-knowledge graph based on the status attainment model (Duncan et al., 1972).
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(a) Sachs data.
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(b) GSS data.
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(c) Boston Housing data.
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(d) Auto MPG data.
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(e) Red Wine data.
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(f) White Wine data.
Figure 4: Illustration of the experimental results. In all figures, the horizontal axis is the varied size of the training data
before augmentation, and the vertical axis is the performance metric (MSE; the lower the better). The markers and the lines
indicate the average over the 20 independent runs, and the shades are drawn for the width of the standard errors both above
and below the lines. The proposed method shows a consistent improvement over the naive baseline based on the empirical
risk minimization with the same hypothesis class, particularly in the small-data regime.

6.1 CGMS AND PREDICTIVE MODELING

Variable selection in a single-distribution setting. The
background knowledge encoded in a CG can be used for
variable selection by identifying a Markov boundary of the
target variable. Here, mb( j) ⊂ [D] is called a Markov blan-
ket of j if Z j is conditionally independent of all the other

variables given Zmb( j). If, moreover, mb( j) is minimal, i.e.,
if none of its proper subsets are Markov blankets, it is called
a Markov boundary (MB). Under certain assumptions, the
MB of a target variable is known to be the minimal set of
variables with optimal predictive performance (Tsamardi-
nos et al., 2003). For a recent comprehensive review on
MB estimation, see Yu et al. (2020). The present paper is



 orthogonal to this line of work. In fact, the CGs can encode
more information than a specification of the Markov bound-
ary of the predicted variable; for example, consider the CG
X1 ← Y → X2 where Y is the target variable and (X1, X2)
are the predictors. In this case, the Markov boundary of
Y is (X1, X2), and hence the variable selection does not re-
duce the number of the predictors. On the other hand, the
proposed method still leverages the factorization structure
of the data distribution entailing the CG. In practice, the
two approaches can be combined straightforwardly. In our
experiments, we do not perform variable selection using
the data regarding the possibility that the obtained CGs are
inaccurate.

Variable selection in distribution-shift setting. Another
line of research is concerned with making predictions under
distribution shift and leverage feature selection based on
causal background knowledge or causal discovery. Maglia-
cane et al. (2018) considered the case that a distribution shift
is due to intervention in some variables, and they proposed
a method to perform domain adaptation by identifying a set
of variables that is likely to perform well regardless of the
intervention. Rojas-Carulla et al. (2018) assume that if the
conditional distribution of the predicted variable given some
subset of features is invariant across different distributions,
then this conditional distribution is the same in the target
distribution for which one wants to make good predictions,
and leveraged it to find the set of variables for which the
relation to the target variable does not change. The present
paper is complementary to this line of work since our goal
is to make good predictions in a single fixed distribution.

Regularization and model selection. Kyono et al. (2019)
proposed a model selection criterion that can reflect the
structure of a CG. The goal of Kyono et al. (2019) is do-
main generalization and out-of-distribution prediction, i.e.,
making good predictions under a distribution shift without
access to any samples from the target distribution or making
good predictions for the data that is outside the support of
the training data distribution. To achieve it, given a DAG
as prior knowledge, Kyono et al. (2019) first modify it so
that the edges coming out of the target variable are removed.
Then, to score the predictor model candidates, it generates a
data set whose predicted variables are replaced by the pre-
dictions of the model and computes the Bayes Information
Criterion (BIC) that evaluates the fitness of the modified
DAG structure to the generated data set. Another approach
for using the background knowledge of a CG is the CASTLE
regularization (Kyono et al., 2020). CASTLE regulariza-
tion regularizes a neural network while performing the CG
discovery as an auxiliary task. The method imposes a re-
construction loss using the internal layers of the predictor
implemented by neural networks under a DAG constraint.
The present paper is orthogonal to these researches and can
be straightforwardly combined in practice. Also note that

our method has a theoretical justification while Kyono et al.
(2019) provided no theoretical justifications.

Inference under specific CGs. Under some specific prob-
lem settings with known specific underlying CGs, methods
to take advantage of the prior knowledge have been devel-
oped. For example, in the instance weight estimation for
episodic reinforcement learning, methods to perform state
simplification based on the CGs have been proposed (Bot-
tou et al., 2013; Peters et al., 2017, Section 8.2). Schölkopf
et al. (2015) considered removing systematic errors using
half-sibling regression inspired by the CG of the observa-
tion mechanism found in the exoplanet search. Pitis et al.
(2020) proposed a method to enhance the sample efficiency
in reinforcement learning (RL) by a procedure to exchange
the realizations of the variables within the (conditionally)
disconnected components in the CG of the Markov decision
process of specific RL instances. This line of work and the
present work are complementary in that our approach is
widely applicable to general ADMGs whereas these anal-
yses have the potential to exploit the characteristics of the
specific problem setups.

Causal bootstrapping. Recently, Little et al. (2020) pro-
posed causal bootstrapping, a weighted bootstrap-type al-
gorithm that is relevant to our method. While, method-
ologically, both the present paper and Little et al. (2020)
can be seen to be based on kernel-type function estima-
tors (Stute, 1986; Horváth et al., 1988; Einmahl et al., 2000)
and CGs (Pearl, 2009), the two works are complementary in
that the problem setups differ. Causal bootstrapping of Little
et al. (2020) aims at mitigating the performance degradation
due to a distribution shift arising from an intervention, and
it uses kernel-type function estimators to simulate sampling
from an interventional distribution. On the other hand, we in-
vestigate the performance improvement yielded from using
the background knowledge of a CG in a scenario without a
distribution shift.

Constructing probabilistic graphical models. Evans et
al. (2014) provided a smooth parametrization of the set of
distributions that are Markov with respect to an ADMG G
in the binary case:Z

j
= {0, 1} ( j ∈ [D]). Complementarily,

for the case of Z
j

= R ( j ∈ [D]), Silva et al. (2011) pro-
posed the construction of flexible probability models that
are Markov with respect to a given ADMG. Similarly, in the
case that the ADMG has no bi-directed edges, constructing
a Bayesian network by specifying the conditional distribu-
tions appearing in the Markov factorization (Eq. (1)) is one
natural way to exploit this prior knowledge (Lucas et al.,
2004). This approach has the limitation that it inevitably
restricts the modeling choice, e.g., the constructed predic-
tor is a generative model as opposed to a discriminative
model (Shalev-Shwartz et al., 2014, Chapter 24), whereas
our approach has the virtue of being model-agnostic.



 6.2 CAUSAL DISCOVERY AND TRANSFER
LEARNING

Our method provides a channel through which an estimated
CG can be used for enhancing the predictive modeling. In
this sense, the proposed method can serve as a transfer learn-
ing method under a transfer assumption of common CG, i.e.,
an assumption that one is given many samples from an-
other distribution sharing the same CG with the distribution
for which we want to make the predictions. Under such
an assumption, one may first estimate the ADMG using
causal discovery methods to estimate the Markov equiv-
alence class of ADMGs expressed as a partial ancestral
graph (PAG) (Zhang, 2008), e.g., the fast causal inference
(FCI) algorithm (Spirtes et al., 1995; Zhang, 2008), enu-
merate the ADMGs in the equivalence class (e.g., by the
Pag2admg algorithm; Subramani, 2018), select a plausible
candidate ADMG that is concordant with the domain knowl-
edge, and apply the proposed method. Such an assumption
of a common causal mechanism has been exploited in recent
work of causal discovery (Xu et al., 2014; Ghassami et al.,
2017; Monti et al., 2019) and transfer learning (Pearl et al.,
2011; Magliacane et al., 2018; Teshima et al., 2020), and
it is based on a common belief that a causal mechanism re-
mains invariant unless explicitly intervened in (Hünermund
et al., 2019).

6.3 CGMS AND EFFICIENT ESTIMATION

Our method could be also seen as a method to perform
sample-efficient inference given a CG. In the existing work,
the knowledge of a CG has been used for deriving efficient
estimators for identifiable causal estimands (Pearl, 2009)
such as the interventional distributions (Jung et al., 2021b;
Jung et al., 2021a) or the average causal effect (Bhattacharya
et al., 2020). For instance, Jung et al. (2021b) and Jung et al.
(2021a) derived expressions of efficient estimators of the
identifiable interventional distributions given an ADMG and
a PAG, respectively, by leveraging the knowledge of the CG
in the double/debiased machine learning (Chernozhukov
et al., 2018) framework. Another line of research provided
graphical criteria for selecting the efficient adjustment sets,
the set of covariates to be adjusted for producing a valid
estimator of a causal effect with the minimal asymptotic
variance (Henckel et al., 2020; Rotnitzky et al., 2020; Witte
et al., 2020; Smucler et al., 2021). Our goal differs from
the goals of these lines of research; we are interested in
improving the sample efficiency of training the predictor
whereas they aimed to improve the sample efficiency of
causal inference. Nevertheless, it is an interesting direction
of future research to elucidate whether the proposed method
is optimally efficient in estimating the risk functional given
the CG.

7 CONCLUSION

In this paper, we proposed a general method for exploiting
the causal prior knowledge in predictive modeling. We theo-
retically provided an excess risk bound indicating that the
proposed method has a complexity reduction effect that mit-
igates overfitting while it introduces additional complexity
and bias arising from the kernel approximations. Through
the experiments using real-world data, we demonstrated
that the proposed method consistently improves the predic-
tive performance especially in the small-data regime, which
implies that the complexity reduction effect is worth the
newly introduced bias and complexity in practice. Impor-
tant areas in future work include incorporating the equality
constraints imposed by an ADMG but not captured by the
topological ADMG factorization and handling more relaxed
assumptions such as those expressed as PAGs.
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