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Abstract

Auxiliary particle filters (APFs) are a class of se-
quential Monte Carlo (SMC) methods for Bayesian
inference in state-space models. In their original
derivation, APFs operate in an extended state space
using an auxiliary variable to improve inference.
In this work, we propose optimized auxiliary parti-
cle filters, a framework where the traditional APF
auxiliary variables are interpreted as weights in a
importance sampling mixture proposal. Under this
interpretation, we devise a mechanism for propos-
ing the mixture weights that is inspired by recent
advances in multiple and adaptive importance sam-
pling. In particular, we propose to select the mix-
ture weights by formulating a convex optimization
problem, with the aim of approximating the filter-
ing posterior at each timestep. Further, we propose
a weighting scheme that generalizes previous re-
sults on the APF (Pitt et al. 2012), proving unbi-
asedness and consistency of our estimators. Our
framework demonstrates significantly improved
estimates on a range of metrics compared to state-
of-the-art particle filters at similar computational
complexity in challenging and widely used dynam-
ical models.

1 INTRODUCTION

State-space models (SSMs) allow a mathematical descrip-
tion of complex dynamical systems which are very relevant
in computational statistics, machine learning and signal pro-
cessing, among many other fields [Särkkä, 2013]. Particle
filters (PF) or sequential Monte Carlo methods (SMC) are
the de facto family of algorithms to perform inference tasks
in virtually any SSM, e.g., filtering, prediction, or parameter
estimation [Doucet et al., 2001]. PFs have been used for
solving complex real-world problems in robotics [Thrun,

2002], object tracking [Vlassis et al., 2002, Wardhana et al.,
2013] and image processing [Nummiaro et al., 2003]. PFs
are also used for problems beyond the classical SSM setting.
For instance, they have been recently applied in reinforce-
ment learning [Maddison et al., 2017, Wang et al., 2020,
Piché et al., 2019], generative modelling [Lawson et al.,
2018, Le et al., 2018], and more generally for approximate
Bayesian inference in large probabilistic models [Gu et al.,
2015, Naesseth et al., 2018, Ma et al., 2020]. PFs are Monte
Carlo methods that approximate probability density func-
tions (pdfs) of interest with M particles. The bootstrap PF
(BPF) [Gordon et al., 1993] is the most popular algorithm,
because of its simplicity and reasonable performance in sev-
eral settings. However, alternatives are needed for challeng-
ing applications that require models with complex posterior
distributions. Most notably, the auxiliary PF (APF) [Pitt
and Shephard, 1999] was designed to make use of the ob-
servation before the simulation of the particles.
In this paper, we develop a framework named optimized
APF (OAPF) for accurate inference in SSMs. The OAPF
framework implements a mixture proposal sampling and an
associated weighting scheme at each time step within the PF,
allowing for variance reduction in the importance weights,
the key aim in SMC methods [Doucet and Johansen, 2009].

The structure of the paper is as follows. In Section 2, we
review SSMs and give a brief overview on PFs. In Section
3, we derive our OAPF framework, discussing the design
choices and providing a theoretical analysis of its estimators.
In Section 5, we show improved results against common
particle filters and the recent improved APF [Elvira et al.,
2018] in challenging and widely used nonlinear state-space
models such as a stochastic Lorenz 63 model and a multi-
variate stochastic volatility model. We conclude the paper
in Section 6 with some final remarks.

Contributions. (1) We develop the optimized auxiliary
particle filter (OAPF) framework, which encompasses other
particle filters as special cases and allows the development
of new algorithms with improved estimators. Our framework
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 has a flexible mixture proposal distribution which appears
in the importance weights, provably reducing their variance.

(2) We prove that the resulting marginal likelihood esti-
mators are unbiased and consistent, generalizing the APF
estimator in [Pitt et al., 2012].

(3) We propose strategies to select kernels and mixture
weights in the proposal. The mixture weights are optimized
by matching proposal and posterior at a set of relevant points.
Crucially, this allows us to find mixture weights as a solution
to a convex optimization problem. Therefore, our strategy
allows for optimizing the proposal in very generic models
(transition and observation pdfs), while avoiding black-box
non-convex optimization methods that are common in for
instance in variational inference [Archer et al., 2015, Dieng
et al., 2017]. Further, we allow for a flexible choice of the
number of kernels, detaching this choice from the number
of particles unlike previous works (see for instance [Elvira
et al., 2019a]).

(4) We propose specific implementations of our framework
and show their effectiveness with widely used state-space
models. We compare to BPF, APF and to the improved
APF (IAPF) [Elvira et al., 2018], a recent algorithm which
provides the state-of-the-art in terms of importance weight
variance. We show evidence for better estimates in OAPF
with similar computational complexity.

2 BACKGROUND

2.1 STATE-SPACE MODELS AND PARTICLE
FILTERING

State-space models (SSM) describe the temporal evolu-
tion of a system in a probabilistic manner. They are com-
posed of a stochastic discrete-time Markovian process of
a (potentially multivariate) hidden state {xt}t≥1, which
can only be observed via corresponding noisy measure-
ments {yt}t≥1. SSMs are fully specified by a prior proba-
bility density function (pdf), p(x0), and by the transition
and observation kernels, f(xt|xt−1) and g(yt|xt), respec-
tively, defined for t ≥ 1. In these models, the filtering
task consists in the sequential estimation of the filtering
density p(xt|y1:t), as well as expectations of the form
I(ht) = Ep(xt|y1:t)[ht(xt)] =

∫
ht(xt)p(xt|y1:t)dxt, for

(integrable) functions of interest. For most SSMs of inter-
ests, the filtering pdf is intractable and one needs to resort to
approximate inference. In this context, particle filters (PFs)
are the most popular inferential methods, approximating the
filtering pdf with a set of random particles (Monte Carlo
samples). PFs are a sequential implementation of impor-
tance sampling (IS), generating at each time step M parti-
cles {x(m)

t }Mm=1 from a proposal pdf q(xt) and assigning
them normalized importance weights w(m)

t . The unnormal-
ized importance weights can be computed by updating the

previous weights as

w̃
(m)
t = w

(m)
t−1

g(yt|x(m)
t )f(x

(m)
t |x(m)

t−1)

q(x
(m)
t |yt,x

(m)
t−1)

, (1)

which can be derived by factorizing a joint proposal
q(x1:t−1|y1:t)q(xt|yt,xt−1) and targeting joint posterior
p(x1:t|y1:t) [Särkkä, 2013]. Therefore, a particle filter
maintains a set of normalized weights and particles
{w(m)

t ,x
(m)
t }Mm=1 as a representation of the filtering pdf,

updating weights at each time step with as in Eq. (1). The
most popular choice for q(xt|yt,xt−1) is f(xt|xt−1) and
leads to the bootstrap particle filter (BPF) [Gordon et al.,
1993]. The advantage of this choice is that the weights in (1)
simply become w(m)

t−1g(yt|x(m)
t ). In practice, particle filters

suffer from the weight degeneracy effect [Särkkä, 2013],
consisting on few normalized weights taking all probabil-
ity mass (i.e., the posterior is approximated with very few
samples). In the BPF, a resampling step is introduced to
mitigate this effect. In some implementations, the resam-
pling step is performed only when the effective sample size
ESS = 1∑M

m=1

(
w

(m)
t

)2 is below some threshold [Doucet

et al., 2001, Doucet and Johansen, 2009, Särkkä, 2013].

2.2 AUXILIARY PARTICLE FILTERS

Auxiliary PFs (APFs) were introduced to alleviate some of
the limitations of existing PF methods [Pitt and Shephard,
1999]. For instance, it is well known that informative like-
lihoods often impact negatively the ability of the standard
BPF to reconstruct the filtering pdf [Doucet and Johansen,
2009, Johansen and Doucet, 2008, Whiteley and Johansen,
2011].1 Intuitively, the reason is that the resampling step
at the end of the recursion at time t− 1 does not take into
account the new observation yt. In the standard APF, the
resampling step at t − 1 is delayed until the new observa-
tion yt is available. Then the resampling is performed with
modified unnormalized weights

λ̃
(m)
t = w

(m)
t−1g(yt|µ(m)

t ), λ
(m)
t =

λ̃
(m)
t∑M

i=1 λ̃
(i)
t

, (2)

where µ(m)
t = E

f(xt|x(m)
t−1)

[xt]. Then the particles are prop-

agated using the transition kernel f(xt|xt−1) as in BPF.
Finally, the importance weights are chosen as

w̃
(m)
t−1 =

g(yt|x(m)
t )

g(yt|µ(i(m))
t )

, (3)

where i(m) denotes the index of the ancestor that generates
the m-th resampled particle. Intuitively, this can be seen

1Informally, an informative likelihood refers to a peaky likeli-
hood that heavily influences the shape of the posterior.



 as scaling down the BPF weights, taking into account that
particles have been already resampled in large number in re-
gions of high likelihood. A different interpretation of APFs
2 is possible from the multiple importance sampling (MIS)
perspective [Elvira et al., 2019a]. Note that MIS refers to
the different sampling and weighting schemes that are pos-
sible in the presence of multiple proposals in IS [Veach and
Guibas, 1995, Elvira et al., 2019b]. In this perspective, a re-
sampling step followed by a propagation step is considered
to be simply a single sampling step from a mixture pdf. The
improved APF (IAPF) [Elvira et al., 2018] exploits the MIS
interpretation so that the weight of the m-th proposal, λ(m)

t ,
depends on the location of other particles j 6= m. The MIS
perspective is related to auxiliary marginal particle filters
(AMPF) [Klaas et al., 2005], where a similar importance
weight is derived, but λ(m)

t is chosen as in APF. It is worth
noting that [Fearnhead, 1998, Chapter 4,Section 3.2] earlier
analysed the basic idea behind AMPF. The AMPF interprets
that the inference is performed in the marginal space of xt

(marginalizing the auxiliary variable), which guarantees to
reduce (in a non-strict sense) the variance of the importance
weights (it is a Rao-Blackwellization that can be proved by
the variance decomposition lemma).

Optimality criteria for APF. A version of the APF
known as the fully adapted APF (FA-APF) is considered
to implement a locally optimal choice. Its implementation
requires the computation of the (generally) intractable distri-
butions p(xt|xt−1,yt) and p(xt−1|y1:t). While often pre-
sented as the optimal choice, in Doucet and Johansen [2009]
the FA-APF is shown to provide worse estimators than the
BPF in one example. The reason is that FA-APF minimizes
the variance considering only one step ahead, as explained
thoroughly in [Chopin and Papaspiliopoulos, 2020]. There-
fore, the intractability of FA-APF as well as its only relative
optimality motivates the search for better PFs.

3 OPTIMIZED AUXILIARY PARTICLE
FILTERS

3.1 THE OAPF FRAMEWORK

In this section, we present our new framework for optimized
auxiliary particle filters (OAPFs). The OAPF framework
extends the MIS perspective, considering a generic mixture
as proposal where all samples are (independently) simulated.
We consider the generic mixture proposal at each t as

ψt(xt) =

K∑
k=1

λ
(k)
t q

(k)
t (xt), (4)

2Note that it is also possible to refer to as APF to a generic
PF with λt being a free choice. Eq. (2) is an approximation to
p(yt|xt)

with associated mixture weights λ(k)t . To the best of our
knowledge, the OAPF is the first method to detach the choice
of K from the number of samples M (i.e., K 6= M in the
general case).

Algorithm 1: Optimized Auxiliary Particle Filter
Input: prior, transition, and observation pdfs

p(x0), f(xt|xt−1), g(yt|xt), and sequence of
observations y1:T

Output: set of weighted samples for each time step
{x(m)

t , w̃
(m)
t }M,T

m=1,t=1

1 Draw M samples from prior: x(m)
0 ∼ p(x0) and set

w
(m)
0 = 1/M ;

2 for t = 1, . . . , T do
3 (a) optimization step: optimize the mixture proposal

by selecting K kernels q(k)t and choosing their
associated mixture weight λ(k)t that compose the
mixture proposal ψt (see Section 3.3)

4 (b) sampling step: simulate M particles x(m)
t from

the proposal as

x
(m)
t ∼ ψt(xt) (5)

5 (c) weighting step: calculate new importance
weights as:

w̃
(m)
t =

g(yt|x(m)
t )

∑M
i=1 w

(i)
t−1f(x

(m)
t |x(i)

t−1)∑K
k=1 λ

(k)
t q

(k)
t (x

(m)
t )

(6)
6 end

The OAPF framework is described in Algorithm 1. The
method starts by simulating M samples from the prior pdf,
and then at each time t, it consists of the three following
stages: (a) optimization, (b) sampling, and (c) weighting
steps. Note that this structure keeps also some ties with
adaptive IS (AIS) algorithms. In particular, the optimization
step can be seen as an adaptive procedure of the mixture
proposal with one iteration (see [Bugallo et al., 2017] for
more details). First, the optimization step adapts the mixture
proposal of Eq. (4). This procedure is discussed in detail in
the next Section. Second, the new M particles are simulated
from the mixture proposal. Third, the importance weights
are calculated as in Eq. (6). It is worth remarking that the
numerator does not evaluate the true filtering pdf but only
an (unnormalized) approximation. However, the importance
weights are still proper ([Liu, 2004]), as we show below.

3.2 OAPF IMPORTANCE WEIGHTS

The importance weights play a crucial role both in the esti-
mators of generic moments of the approximate distributions
and also in the behavior of the PF for the next time step.



 Hence, reducing the variance of the importance weights is
the ultimate goal in PF. Since this variance depends on the
discrepancy between the proposal and target pdfs [Ryu and
Boyd, 2014] the benefit of considering a mixture proposal
in Eq. 4 and for the importance weights in Eq. (6) is twofold.
First, mixtures are a flexible way to approximate a large
collection of pdfs. Second, while PFs work implicitly with
mixture proposal, only few works use them in the denomi-
nator of the importance weights [Klaas et al., 2005, Elvira
et al., 2018, 2019a]. Moreover, to the best of our knowl-
edge these works did not extend the consistency results for
the APF (Pitt 2012) to this importance weight. Placing the
whole mixture in the denominator, as we do in OAPF, is
known to reduce variance in MIS [Elvira et al., 2019b],
even yielding zero-variance weights in the case of perfect
matching between the mixture proposal and target pdfs.

In OAPF, the standard IS estimators can be built. More
precisely, moments of the filtering pdf can be approximated
by the self-normalized IS (SNIS) estimator as

Î (ht) =

M∑
m=1

w
(m)
t ht(x

(m)
t ), (7)

where w(m)
t =

w̃
(m)
t∑M

j=1 w̃
(j)
t

are the normalized weights. Fi-

nally, the weights of OAPF can be used to build an unbiased
estimator of p(y1:t), which is crucial for many statistical
tasks such as model selection [Luengo et al., 2020]. We
build the OAPF estimator as:

p̂(y1:T ) = p̂(y1)

T∏
t=2

p̂(yt|y1:t−1), (8)

where p̂(yt|y1:t−1) = 1
M

∑M
m=1 w̃

(m)
t . The functional

form of the OAPF estimator is similar to other PFs and
can be justified by standard IS arguments, but the compu-
tation of the importance weights w̃(m)

t differs from other
methods as discussed above. In the following, we prove
that the estimator p̂(y1:T ) is unbiased and consistent, which
turns the SNIS estimator of Eq. (7) consistent.

Theorem 1 For any set of mixture proposals {ψt(xt)}Tt=1

fulfilling standard regularity conditions in IS, the normal-
izing constant estimator in Eq. (8) is unbiased and consis-
tent, i.e., E[p̂(y1:T )] = p(y1:T ) and limM→∞ p̂(y1:T ) =
p(y1:T ) a.s. for any T ∈ R+.

Proof: The proof is presented in the supplementary material
as well as a description of the regularity conditions. �

Note that the consistency of the SNIS estimator in Eq. (7)
is also guaranteed by standard IS arguments (we complete
this discussion in the supplement).

Finally, note that the minimization of the variance of the
normalizing constant is equivalent to minimizing the vari-
ance of the importance weights w̃t [Doucet and Johansen,

2009]. The OAPF explicitly aims at reducing this variance
by minimizing the mismatch between the target pdf and the
mixture proposal. In the supplement, we also present a proof
showing that the variance the OAPF weights in Eq. (6) is
always less than those of APF in Eq. (3), when K = M and
the mixture weights are the same.

3.3 OPTIMIZATION OF THE MIXTURE
WEIGHTS

In this section we discuss an approach to select the weights
of the mixture proposal ψt. The ultimate goal is to select
them so that the proposal is a good approximation of the
approximate filtering posterior. To achieve this, we impose
these two distributions to be pointwise close at a set of
E evaluation points {z(e)t }Ee=1. We will show that this ap-
proach is flexible and brings several advantages. For sim-
plicity, we start considering the case with K = E, where
the evaluation points are the centers of the K kernels q(k)

in the proposal (4), i.e., {z(e)t }Ee=1 = {µ(k)
t }Kk=1. More pre-

cisely, theK kernels could be chosen as a subsetK elements
from the set of M transition kernels (from the previous M
particles). Note that APF and improved APF [Elvira et al.,
2019a] also use the center of the transition kernels. Alterna-
tively, we could also use “optimal” SMC kernels [Doucet
and Johansen, 2009] which are defined via the intractable
function p(xt|xt−1,yt). Our framework allows for generic
choices so these restrictions are not necessary. We continue
this section in a generic setting, expanding the discussion
on how many kernels and evaluation points to choose in
Section 3.4.

Now that we have fixed the K mixture kernels and the E
evaluation points, we can satisfy the condition previously
mentioned and build a linear system of E equations as:

K∑
k=1

λ
(k)
t q

(k)
t (z

(e)
t ) =

g(yt|z(e)t )

M∑
m=1

w
(m)
t−1f(z

(e)
t |x

(m)
t−1), e = 1, . . . , E, (9)

where theK mixture weights λ(k)t are unknown at each time
t. For a unique solution to exist is necessary that K = E,
but in general we do not need to restrict to this case. Below,
we show how to turn this problem into a (constrained)
convex optimization problem. Let us define the the vectors
λ = (λ

(1)
t , . . . , λ

(K)
t )>,w = (w

(1)
t−1, . . . w

(M)
t−1 )>, f (e) =

(f(z
(e)
t |x

(1)
t−1), . . . , f(z

(e)
t |x

(M)
t−1 ))>, and q(e) =

(q
(1)
t (z

(e)
t ), . . . , q

(K)
t (z

(e)
t ))>. Then, we can re-write

Eq. (9) as

q(e)>λ = g(yt|z(e)t )�w>f (e)︸ ︷︷ ︸
π̃(e)

, (10)



 for e = 1, . . . , E, where � is elementwise multiplication
and defining additionally the right-hand side to be π̃(e).
More compactly, Eq. (10) can be re-expressed in matrix
form as:

E×K︷ ︸︸ ︷ q(1)>

...
...

...
q(E)>


K×1︷ ︸︸ ︷ λ

 =

E×M︷ ︸︸ ︷
g(yt|z(1)t )� f (1)

>

...
...

...
g(yt|z(M)

t )� f (E)>


M×1︷ ︸︸ ︷ w

,
(11)

defining Q as theE×K matrix on the left-hand side of (11)
and π̃ as the resulting E × 1 vector on the right-hand side.
We now define a generic constrained optimization problem
as for the mixture weights as:

λ∗ = arg min
λ

L (Qλ, π̃) , (12)

where L(·) a generic loss function. The optimization will
be constrained since λ will be used for resampling, and
therefore needs to have non-negative elements.3 In in the
next Section, we present a possible strategy to implement
L(·) and solve the optimization problem.

Optimization via Non-Negative Least Squares (NNLS)
The previous problem can be encoded as a non-negative
least squares problem by taking the squared distance of the
pdfs at the E evaluation points {z(e)t }Ee=1. Taking squared
differences between left-hand side and right-hand side of
(11) leads to:

λ∗ = arg min
λ

‖Qλ− π̃‖22 subject to : λ ∈ RK
≥0.

This problem is a (constrained) quadratic program. There-
fore, it is convex and the non-negativity constraints form
a convex feasible set. When Q has full column rank, then
there is a unique solution. Theoretical results on NNLS have
shown that, especially when the dimension of Q is large
(large K and E in our case), the solutions tend to be very
sparse [Slawski et al., 2013, Meinshausen et al., 2013]. The
optimization problem can be solved by the widely used
algorithm in [Lawson and Hanson, 1995], as well as by con-
current work on exact sparse NNLS [Nadisic et al., 2020]
and even strong GPU accelerations could be exploited [Luo
and Duraiswami, 2011, Kysenko et al., 2012]. There are
other possible choices to implement Eq. (12). For instance,
it is possible to formulate a linear program and solve it with
the Simplex algorithm. We tried this approach, but found
that the stability of the algorithm may be endangered above
3 to 5 dimensions.

3The resulting values can be normalized afterwards so they
parametrize the mixture proposal in Eq. (4).

3.4 SELECTION OF KERNELS, EVALUATION
POINTS, AND COMPUTATIONAL
COMPLEXITY

The generic OAPF framework also allows for the choice
of the number and type of kernels. In our experiments, we
choose the transition kernel for simplicity (as it is done in
APF or BPF), but other choices are equally valid. Regard-
ing the number of kernels K, the novel MIS perspective
allows for an extra degree of freedom unlike in standard
filters. In particular, we have found that it is in general pos-
sible to reduce K dramatically w.r.t. M , without a a loss of
performance; howevere, the ESS as a degeneracy measure
seems more sensitive to the decrease in K. Further work
could develop a formal analysis to explain this behavior.
Moreover, we are also able to reduce the number of target
evaluations E w.r.t M at the optimization step (see more
details in Section 3.3). Unlike in the APF where the number
of pre-weights is necessarily K = M , in OAPF this is a
choice. The reason is that the purpose of the evaluations is
to evaluate the target pdf so the mixture proposal can place
probability mass in relevant parts of the space. Therefore,
the number of evaluation points (E) can be much smaller
than the number of particles (more details are provided in
the Supplement).

As a general guideline, our starting point is setting K = E
and choosing the evaluation points (deterministically) as the
center of each q(k)t , retaining those associated with the E
greatest values of the approximate filtering pdf in the RHS
of Eq. (9): this simple scheme worked well in our experi-
ments. Ultimately, we remark how more evaluation points
can only improve the quality of the approximation to the
filtering posterior. More strategies in evaluation points se-
lection (number, deterministic selection vs sampling) could
be explored in further work.

The computational complexity of OAPF can be decomposed
in weighting and optimization steps. In the former, the nu-
merator of Eq. (6) has been shown to have very good ap-
proximations in Marginal PFs [Klaas et al., 2005] in time
O(M logM) using dual-tree methods for weighted kernel
density estimation problems. Further, due to the sparsity
properties in the recovered λ (see Section 3.3), our method
improves the effective runtime in the calculation of the im-
portance weights.
The optimization step can be accelerated significantly by
implementing standard methods of the rich literature on fast
and accurate approximations to constrained least-squares
problems [Pilanci and Wainwright, 2016], or via direct ap-
plication of Frank-Wolfe algorithms [Jaggi, 2013].

4 RELATED WORK

The OAPF follows a different approach w.r.t. most papers
in the PF literature by interpreting the M samples to be sim-
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(a) In this first example we choose a unimodal posterior. OAPF
substantially outperforms the other algorithms.
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(b) OAPF is the only algorithm who can match well both modes
simultaneously with this multimodal posterior.

Figure 1: Experiment 1 (Toy Example.) In this experiment we show that OAPF proposals are closer to true posteriors
compared to its competitors. We calculated χ2-divergence for these examples in Table 1. Note that here OAPF uses
transition kernels for the proposal and their centers as evaluation points. We provide all parameters for reproducibility in the
supplement.

ulated from a mixture proposal with K components. More-
over, unlike other popular PFs, we allow for a reduction
of the number of the components, exploiting the sparsity
behavior of the optimization algorithm. This perspective
is connected to the auxiliary marginal PF (AMPF) [Klaas
et al., 2005] and improved APF (IAPF) [Elvira et al., 2018]
algorithms, and is supported by recent advances in MIS
[Elvira et al., 2019b] (see also the discussion of the vari-
ance reduction in [Klaas et al., 2005]), and it also links
with the re-interpretation of BPF and APF [Elvira et al.,
2019a]. The selection of the mixture weights has connec-
tions with other works. For instance, a flexible framework
named twisted APFs is developed in [Guarniero et al., 2017],
where APFs are interpreted as a special case of changing
the distribution targeted in IS (this interpretation appeared
first in [Johansen and Doucet, 2008, Doucet and Johansen,
2009]. In this method, the computation is done in an offline
fashion (see an extension of this line in [Heng et al., 2020]).
Resampling weights were also found in [Reich, 2013] via
a convex optimization problem derived via optimal trans-
port arguments, which is however more computationally
expensive than ours, and scales worse to higher dimensions.
Further, our selection can be connected to black-box im-
portance sampling [Liu and Lee, 2017], which computes
IS weights4 in a static setting with convex optimization. In
[Akyildiz and Míguez, 2020], they develop a PF framework
with a different approach, preemptively moving a subset of
particles to a region of high likelihood with gradient meth-
ods. In [Cornebise et al., 2014], the method adapts a mixture
of kernels in a more generic setup (sequential Monte Carlo
samplers), focusing in the choice of kernels. Further, the
approach in [Kronander and Schön, 2014] propagates parti-
cles associated with kernels that are placed high likelihood
regions, which could be combined in our framework.

4rather than simulation weights, which are specific to APF

5 EXPERIMENTS

We compare OAPF with BPF, APF as well as the recent
improved APF (IAPF) [Elvira et al., 2018], which also uses
a mixture in the denominator of the importance weights
and can be seen as a special case in our framework. The
IAPF strictly improves over APF and BPF in most settings
[Elvira et al., 2018]. Note that the simple BPF can some-
times perform unexpectedly well, as it is well known in the
PF community. In the linear Gaussian model, we addition-
ally compare with the fully adapted APF (FA-APF). We
evaluate our framework in 4 sets of experiments.
Our aim is to show the benefits of OAPF in terms of variance
of importance weights, which is crucial in particle filters:
the weights are used not only for approximating integrals of
interest but also for building better particle approximations
in the next time steps. Therefore, we choose metrics that are
directly connected to the variance of the importance weights:
χ2-divergence between mixture proposal and filtering pdfs,
error in the estimation of the posterior mean and marginal
likelihood, and effective sample size (ESS) [Särkkä, 2013].
The setup of the experiments is as follows:

• Experiment 1: Toy example. We show visually that
the mixture proposal in OAPF reconstructs the poste-
rior better than its competitors, both with unimodal and
multimodal posteriors. Numerically we show an im-
proved χ2-divergence between proposal and filtering
pdfs, which directly translates into lower variance of
importance weights.

• Experiment 2: Linear dynamical model. We exploit
the closed-form solution of the linear dynamical model,
perhaps the most known SSM and widely used for
instance in object tracking [Särkkä, 2013]. This allows
comparison with sampling from the Kalman Filter, as
well as a closed form FA-APF. We show that OAPF



 reaches better solutions with highly reduced runtime
w.r.t IAPF thanks to our selection of K and E.

• Experiment 3: Stochastic Lorenz 63 model. Transi-
tioning to more challenging non-linear non-Gaussian
models, we show an improved performance on dis-
cretized version of this popular chaotic dynamical sys-
tem, which is used for instance in atmospheric models
for weather forecasting [Ott et al., 2004, Yeong et al.,
2020]. We compare the PFs in terms of the ESS, which
is widely used as a proxy for the weight variance.

• Experiment 4: Stochastic volatility model. Finally,
we perform inference for a multivariate stochas-
tic volatility model used in related work on APFs
[Guarniero et al., 2017]. Here, as in Experiment 4, we
look at ESS and show improved performance against
all other algorithms.

We consider time-series with T = 100 time steps, except
otherwise stated. We let dx be the dimension of the hidden
state, i.e., xt ∈ Rdx . Due to the curse of dimensionality,
a general reduction in performance for all methods is ex-
pected as dx grows. For linear dynamical models, we show
improved estimates with significantly reduced runtime than
all other algorithms, including IAPF. For the more chal-
lenging models where ground truth is not available, we
achieve better ESS than the competitors. Note that in those
experiments, we set K = E = M . However, due to the
high sparsity of solutions in OAPF, our effective K is much
lower. ForM = 1000 particles we report an average of 88%
sparsity, while for M = 100 an average of 65%. All aver-
ages and standard errors are obtained with 100 independent
Monte Carlo runs.5

Table 1: Experiment 1 (Toy example). χ2-div. between
filtering and mixture proposal pdfs in Figure 1.

Method χ2-div. (Fig. 1a) χ2-div. (Fig. 1b)

BPF 0.1662 0.2245
APF 0.0916 0.1633
IAPF 0.0870 0.2402
OAPF 0.0069 0.0819

1. Toy Example. The main goal of this toy example is
to illustrate that the OAPF mixture proposal better recon-
structs the filtering pdf. We also measure the χ2-divergence
between both pdfs. We consider a single iteration of each
PF algorithm and build artificial proposals by multiplying a
mixture of 4 Gaussians with a Gaussian likelihood. Results
from the two experiments with the above setting are shown

5The code used in the experiments can be found at
https://github.com/nicola144/optimized_
auxiliary_particle_filters

in Figure 1. We select the means of the transition kernel
f(·) as evaluation points, and set K = E = M = 4. In
Figure 1a, we show the results for a unimodal posterior. This
setting is advantageous for the IAPF, as transition kernels
significantly overlap (see [Elvira et al., 2019a] for more
details). The likelihood is sufficiently informative, which
explains why APF outperforms BPF. Figure 1b shows a
more complex multimodal posterior with a more diffused
likelihood. Interestingly, we find that IAPF can perform
even worse than APF, while our OAPF does not suffer from
this issue. Table 1 quantifies (for both settings) the mis-
match between mixture proposal and filtering pdfs in terms
of χ2-divergence, confirming the visual analysis of Fig. 1a.

2. Linear Dynamical Model. The linear dynamical
model is arguably the most popular SSM, routinely be-
ing the first choice to assess PFs. It has been applied in
a wide range of applications (e.g., robotics [Särkkä, 2013]).
This model is particularly useful for validating PFs since
it is one of the few models admitting closed-form solu-
tions of the filtering distribution and the normalizing con-
stant (via the celebrated Kalman filter). The defining tran-
sition and observation equations are standard (see e.g.,
[Särkkä, 2013]) and require mainly the selection of obser-
vation and transition covariances (more details in the sup-
plement). We tested the algorithms for different choices of
model parameters, e.g., for high-variance observation noise
or high-variance transition noise. In Figure 2a, we calcu-
late the normalized mean-squared error (NMSE) 6 between
the estimate of the posterior mean and the true value for
M ∈ {10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000}
with dx = 10. Here, observation and transition covariances
were set to 5I and 2.5I respectively; complementary results
with other parameters, dimensions, as well as additional
results on estimation of the normalizing constant are avail-
able in the supplement. The proposed OAPF outperforms
all the competitors with a low K = E = 5 in all settings,
which is translated into large computational savings. Similar
conclusions can be extracted for other choices of the model
parameters.

3. Stochastic Lorenz 63 Model. The Lorenz 63 is a
chaotic system, since slightly different initial conditions
generate extremely different trajectories. Due to this diffi-
culty, this model is often used to evaluate PFs [Akyildiz
and Míguez, 2020]. We consider a discretized version of
the state dynamics using an Euler-Maryuyama scheme and
observations with additive noise. The hidden state is three di-
mensional x = [x[1], x[2], x[3]] and the transition dynamics

6We define NSME as mean-squared error divided by true value.

https://github.com/nicola144/optimized_auxiliary_particle_filters
https://github.com/nicola144/optimized_auxiliary_particle_filters
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Figure 2: (a) Experiment 2 (Linear dynamical model). NMSE to the true posterior mean as function of the number of
particles, with dx = 10. Note that OAPF runs withK = E = 5 in all cases, selected by the strategy described in Section
3.4. The FA-APF is only available analytically in this model, and the line true posterior samples (sampled from the Kalman
filter) is presented as benchmark. (b) Experiment 4 (Stochastic volatility). ESS as a function of time with dx = 10,
M = 1000.

are defined by the differential equations:

dx[1] = σ(x[2] − x[1])dτ + dwx[1] (13)

dx[2]) = (ρx[1] − x[3]x[1] − x[2])dτ + dwx[2] (14)

dx[3] = (x[1]x[2] − βx[3])dτ + dwx[3] (15)

where τ denotes continuous time, wx[1] , wx[2] , wx[3] are
independent one-dimensional standard Wiener processes
and (σ, ρ, β) are parameters of the model. We use the
an increment ∆t in the discretization, and partially ob-
serve the hidden state (only the first dimension) with scalar
yt ∼ Nyt

(x(1), σ2
yt

= 1), using the standard values for
(σ, ρ, β) (see supplement). The results of averaged ESS with
two different values of ∆t ∈ {0.01, 0.008} are shown in
Table 2. Note that even these small changes in ∆t cause very
different trajectories, as we also show in the supplement.

4. Stochastic Volatility Model. We perform inference in
a multivariate stochastic volatility model (SVM), a type of
stochastic process where the variance is a latent variable
that follows itself a stochastic process. These are extremely
useful models to apply for many tasks in econometrics, e.g.,
for predicting the volatility of a heteroskedastic sequence
such as returns on equity indices or currency exchanges.
SVMs are often used to evaluate particle filters [Pitt and
Shephard, 1999, Klaas et al., 2005, Guarniero et al., 2017].
We employ the version in [Chib et al., 2009], which is also
used in related work on APFs [Guarniero et al., 2017]. It is
defined by the following pdfs:

p(x0) = Nx0
(m,U0) , (16)

f(xt|xt−1) = Nxt
(m + diag(φ)(xt−1 −m),U) , (17)

g(yt|xt) = Nyt
(0, exp (diag(xt))) . (18)

Table 3 shows averaged ESS for dx = (2, 5, 10). The param-
eters for this experiment are set to m = 0,U0 = I,U =

Table 2: Experiment 3 (Lorenz). T = 1000 timesteps,
M = 100 particles. Averaged ESS and standard errors.

Method ∆t = 0.01 ∆t = 0.008

BPF 57.7± 0.2 58.1± 0.2
APF 55.1± 0.2 55.2± 0.2
IAPF 70.1± 0.1 71.0± 0.1
OAPF 76.7± 0.1 76.4± 0.1

Table 3: Experiment 4 (Stochastic Volatility). Note that
when dx = 10 then M = 1000, otherwise M = 100.
Averaged ESS and standard errors.

Method dx = 2 dx = 5 dx = 10

BPF 63.5± 0.2 33.5± 0.2 108.7 ± 0.8
APF 63.5± 0.2 34.5± 0.2 107.2 ± 1.0
IAPF 73.0± 0.1 44.9± 0.2 203.5± 0.9
OAPF 88.3± 0.2 63.5± 0.2 366.2± 1.8

I, φ = 1. Figure 2b shows the averaged ESS over time
for dx = 10 and same parameters, except φ = 1

21. For
additional results, see supplementary.

6 CONCLUSIONS

In this paper we have proposed the OAPF, a flexible frame-
work for particle filtering that uses a generic mixture dis-
tribution as a proposal and includes it in the importance
weighting scheme. The framework allows for the develop-
ment of particle filters with improved performance, and we



 provide an explicit implementation. We have proved the
unbiasedness of the OAPF marginal likelihood estimator for
any mixture proposal that fulfills standard IS requirements.
We also show the effectiveness of OAPF in reducing the var-
ince of the IS estimators. In OAPF, we directly optimize the
mixture proposal to the posterior in an online fashion, rather
than making specific analytic choices of mixture weights
like in AMPF or IAPF. Conversely to most other methods
that optimize a proposal (e.g., variational inference), our
optimization strategy is convex, directly addressing the ul-
timate goal of minimizing the variance of the importance
weights. Therefore, OAPF can deal with any likelihood and
transition models (that admit a density) without resorting to
black-box, non-convex methods (see for instance [Archer
et al., 2015, Dieng et al., 2017]). We have shown improved
performance of the proposed implementation of the OAPF
across a series of challenging state-space models and met-
rics, comparing with BPF, APF, and the competitive IAPF.
Finally, the flexibility and the strong theoretical guarantees
of OAPF pave the way for new methodological advances
within this framework.
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