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Abstract

We present a novel model for capturing the be-
havior of an agent exhibiting sunk-cost bias in a
stochastic environment. Agents exhibiting sunk-
cost bias take into account the effort they have
already spent on an endeavor when they evaluate
whether to continue or abandon it. We model plan-
ning tasks in which an agent with this type of bias
tries to reach a designated goal. Our model struc-
tures this problem as a type of Markov decision
process: loosely speaking, the agent traverses a di-
rected acyclic graph with probabilistic transitions,
paying costs for its actions as it tries to reach a tar-
get node containing a specified reward. The agent’s
sunk cost bias is modeled by a cost that it incurs
for abandoning the traversal: if the agent decides
to stop traversing the graph, it incurs a cost of
λ ·Csunk, where λ ≥ 0 is a parameter that captures
the extent of the bias and Csunk is the sum of costs
already invested.
We analyze the behavior of two types of agents:
naive agents that are unaware of their bias, and
sophisticated agents that are aware of it. Since op-
timal (bias-free) behavior in this problem can in-
volve abandoning the traversal before reaching the
goal, the bias exhibited by these types of agents
can result in sub-optimal behavior by shifting their
decisions about abandonment. We show that in
contrast to optimal agents, it is computationally
hard to compute the optimal policy for a sophis-
ticated agent. Our main results quantify the loss
exhibited by these two types of agents with respect
to an optimal agent. We present both general and
topology-specific bounds.

*Missing proofs are included as supplementary material.

1 INTRODUCTION

Imagine that you paid $50 to go to a rock concert and five
minutes into the show you realize that the acoustics are hor-
rible, the venue is smelly and the band is not playing well.
Will you stay or go? Would you have made a different deci-
sion if the concert were free? Many will choose to stay in
the concert in the first case but leave in the second one. This
phenomenon, in which effort or cost invested in the past
affects current decisions, has fascinated many researchers
from different disciplines. This is evident from the variety
of names the phenomenon has been studied under: the sunk
cost effect [Arkes and Blumer, 1985, Thaler, 1980], escala-
tion of commitment [Staw, 1976] and the Concorde fallacy
[Dawkin, 1976, Weatherhead, 1979]. The latter is named
after the famous supersonic airplane whose development
was continued long after it was clear that it did not have
any economic justification. Some of the many situations in
which sunk cost has been observed include auctions [Augen-
blick, 2016], medical treatment [Coleman, 2010, Eisenberg
et al., 2012], project development [Garland, 1990] and poker
[Smith et al., 2009].

Factoring sunk cost into future decisions is at odds with
standard economic theory advocating that decisions should
only depend on marginal costs and gains. Several explana-
tions have been offered for the sunk cost effect. Arkes and
Blumer [1985] suggest it is a manifestation of the “do not
waste” rule that we are often taught as children. Early work
in psychology [Aronson, 1968, Staw, 1980] attributes this
to self justification: decision-makers continue in the same
course of action to justify their initial decision and avoid
cognitive dissonance. Thaler [1980] applies prospect theory
[Kahneman and Tversky, 1979] to explain this bias.

In this paper, we analyze the performance of agents who
engage in activities that require multi-step planning in the
presence of sunk cost bias. Through this, our work is sit-
uated in a recently growing literature in algorithmic game
theory aiming to model and theoretically analyze planning
related biases (e.g., [Kleinberg and Oren, 2014, Gravin et al.,
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 2016, Kleinberg et al., 2016, Albers and Kraft, 2016, Tang
et al., 2017, Kleinberg et al., 2017]). Despite the crucial role
played by sunk cost bias in empirical studies of behavior,
it has received very little theoretical study in this style; the
main prior contribution is a model of Kleinberg et al. [2017]
that considered the interplay of sunk cost bias with present
bias in a deterministic setting. However, looking at the sce-
narios discussed so far, we see that many of them crucially
involve agents who are planning with respect to uncertainty
about future outcomes: the sunk cost bias often becomes
particularly dangerous when an agent takes an action while
the future remains uncertain, and then is subject to the sunk
cost from this action after the uncertainty is resolved. In-
deed, many of the most natural questions that arise when
studying sunk cost bias in isolation (separately from other
effects such as present bias) do not have natural formula-
tions in deterministic models. It is therefore an important
and unexplored question to analyze the effects of sunk cost
bias in a model featuring uncertainty.

A Stochastic Model of Sunk Cost. We present a stochastic
model aiming to study scenarios involving sunk cost bias
and uncertainty. We focus on situations in which taking
sunk cost into account is irrational,1 for example, a gambler
who has already “invested” $100 in a slot machine and
keeps playing because they are sure that after “investing” so
much money they will hit the jackpot soon. These situations
involve the following basic ingredients: an agent needs to
formulate a plan in which it traverses a set of states, trying
to reach a designated goal state. The transitions between
states are stochastic based on the agents’ actions, and the
agent must deal with its own sunk cost bias as it formulates
and updates its plan for traversing the states.

Motivated by these considerations, we model the agent’s
problem using a directed acyclic graph in which the agent
must traverse a path from a start node s to a target node t,
with a reward of R for reaching t. Each node is assigned a
cost of going forward and there is a probability distribution
on its outgoing edges, determining the next node that the
agent would reach. This is a type of a Markov decision
process. After each step, the agent has to choose whether
to stop or keep traversing the graph. If the agent at some
node v decides to continue traversing the graph then it pays
the cost assigned to v and moves to a neighboring node of v
determined stochastically according to a distribution on v’s
neighbors.

We model the decision making process of agents with sunk
cost bias similarly to Kleinberg et al. [2017]. We assume
that an agent exhibiting sunk cost bias has some parameter
λ ≥ 0 that represents the extent to which the agent cares

1We note that as McAfee et al. [2010] advocates taking sunk
cost into account can sometimes be rational. For example, in a
project with an unknown completion time, the time already in-
vested can hint at the actual completion time.

about sunk cost2. While the regime of 0≤ λ ≤ 1 is perhaps
more natural, for sake of generalization, we present and
analyze our model using the more general assumption of
λ ≥ 0. Let Csunk be the cost that the agent already invested.
An agent with sunk cost bias views the option of quitting
as having a cost of λCsunk, hence it will continue traversing
the graph if and only if the expected payoff from continuing
is greater than −λCsunk. We stress that, while our paper
uses the basic means of accounting for sunk cost employed
by Kleinberg et al. [2017], the models studied in the two
papers are inherently different. The current paper studies a
stochastic model focusing on the effects of sunk cost bias
by itself; in contrast, the model of Kleinberg et al. [2017]
is a deterministic formalism that studies the simultaneous
effect of present bias and sunk cost bias, and through its
deterministic structure cannot encapsulate the key issues
that we address here.

Following O’Donoghue and Rabin O’Donoghue and Ra-
bin [1999, 2001], we analyze the behavior of two types
of agents: naive agents that are unaware of their bias, and
sophisticated agents that are aware of it. Even though a so-
phisticated agent is aware of its bias it cannot simply ignore
it. However, loosely speaking, it can take future actions to
minimize the negative implications of its bias. To under-
stand the behavior of the different agents, it is best to walk
through a simple example. Consider a slot machine with a
probability of 1/3 of winning a reward of $10. As part of
a promotion the casino prices the first round at $3 instead
of the usual price of $4. This scenario is depicted in the
graph in Figure 1. An unbiased (e.g., optimal) agent would
only play as long as the expected payoff is greater than 0.
Hence, in this game, it will only play the first round. Now,
consider a naive agent exhibiting sunk cost bias with a pa-
rameter λ = 1/3. If it loses the first round it would have a
sunk cost of 1/3 ·3 = 1. Thus, its payoff for quitting would
be −1 while its expected payoff for continuing would be
1/3 ·10−4 =−2/3. The naive agent will therefore play the
next round as well and attain a negative expected payoff. In
fact, we show that the negative payoff of a naive agent can
be exponentially large in the size of the graph.
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Figure 1: For R = 10, naive sunk cost bias agents will con-
tinue at v1 and end up with a negative expected payoff.

A sophisticated agent with sunk cost bias is aware of its bias.

2It is natural to limit λ to non-negative values as negative
values imply that the agent believes that if it would stop it would
get some of its investment back. This is the opposite of sunk cost
bias.



 This means that it knows which action it will take in any
subsequent node for any possible sunk-cost and can use this
information to compute its expected payoff. This is different
than a naive agent who is unaware of its bias and hence,
wrongfully, believes that in the future, it will behave the
same as an unbiased agent and therefore, in all subsequent
nodes, will have the same expected payoff as an unbiased
agent.

We observe that the expected payoff of a sophisticated agent
is always non-negative since it would stop traversing the
graph if it knows that its expected payoff for doing so will
be negative. This is the case in the example in Figure 1 in
which the sophisticated agent knows that if it will play the
first round and lose than it will also play the second round.
This implies that its expected payoff for playing the slot
machine is 1/3 · 10− 3+ 2/3(1/3 · 10− 4) = −1/9. The
fact that sophisticated agents sometimes stop traversing the
graph prematurely makes their payoff potentially smaller
than that of an optimal agent, although they avoid some of
the more dramatic payoff shortfalls of naive agents.

Results. We begin by considering naive agents. Since they
believe that in the future they will behave as optimal agents,
their policy can be efficiently computed similarly to the
policy of optimal agents. This is done by going over the
graph in reverse topological order and computing the ex-
pected payoff of continuing at each node. Naive agents can
then decide whether to continue or not by comparing these
values against their sunk cost. We show that since they are
oblivious to their sunk cost bias, we can construct instances
in which they accumulate some sunk cost in the beginning.
Then, due to this sunk cost, they continue traversing the
graph and accumulate more and more sunk cost even when
their expected payoff is negative. As a result, they may end
up with a negative payoff that is exponential in the graph’s
size. This result illustrates the danger of marketing strate-
gies that reduce initial entrance costs to lure individuals to
begin some risky endeavor (e.g., as the investing app Robin-
hood gives a free stock to anyone opening a new account)
or take on some bad habit (e.g., tobacco companies giving
free cigarettes to employees).

Our main focus in this paper is on sophisticated agents. The
behavior of agents that are aware of their bias is much more
complex. In contrast to optimal and naive agents, they can-
not compute their optimal policy by going over the nodes
in reverse topological order. This is because the decision
of whether to stop or continue at each node depends on
the amount of sunk cost they accumulated along the way.
When there are different paths reaching the same node, the
amount of sunk cost may vary depending on the realized
path. In fact, we show that the problem of computing the
optimal policy for a sophisticated agent is #P-Hard. This is
done by reducing from the 0−1 knapsack solution count-
ing problem. Roughly speaking, we construct instances in
which computing the expected payoff of a sophisticated

agent if it starts traversing the graph requires counting the
number of valid solutions to a corresponding knapsack prob-
lem. It is worth noting that a different type of hardness (i.e.,
NP-hardness) was proven by Kleinberg et al. [2017] for so-
phisticated agents exhibiting both sunk cost bias and present
bias. The results strengthen one another and show that under
different models being sophisticated about one’s sunk cost
bias may be quite challenging. As part of future research, it
would be fascinating to model and analyze heuristics that
individuals may use to bypass this hardness.

We continue with comparing the payoff of a sophisticated
agent against the payoff of an optimal agent. Roughly speak-
ing, sophisticated agents exhibit the opposite problem than
naive agents: they take a too conservative approach and stop
traversing the graph prematurely. As a result, they can have
a payoff of 0 even when the optimal agent has a positive
payoff. When λ is approaching infinity this gap can attain its
maximal value which is R. However, the payoff difference
of R is far from tight for smaller values of λ . Hence, we look
for tighter bounds that are more suitable for such values.
We provide a number of bounds on the difference between
the payoff of optimal and sophisticated agents. For example,
we show that πs ≥ πo− λ

1+λ
·R, where πs and πo are the

expected payoffs of the sophisticated and optimal agents
respectively. We present some evidence that this bound is
not tight, particularly, for 0≤ λ ≤ 1. We suspect that graphs
achieving the worst case difference, for 0≤ λ ≤ 1, are fan
graphs (graphs that include a path plus an edge from each
node in the path to the target). We show that for such graphs
πs ≥ πo− 1

e ·λ ·R and prove that this bound is essentially
asymptotically tight (in the graph’s size).

2 MODEL AND NAIVE AGENTS

In our model an agent is traversing a directed acyclic graph
(i.e., DAG). The graph is a Markov decision process (i.e.,
MDP) where each state u has a cost c(u) 3 which is the cost
of an agent at u to continue traversing the graph and for each
neighboring states u and v, p(u,v) denotes the probability
of a u→ v transition. The graph also has a designated target
node t. If the agent reaches t it receives a reward of R. An
agent traversing the graph forms a policy that decides for
each node in the graph whether to continue traversing the
graph or not. The goal of an agent is to choose a policy that
maximizes its expected payoff – the probability of reaching
the target multiplied by R minus the expected cost. We can
define the expected payoff of an agent inductively as follows:
if the agent decides to continue from u, the expected payoff
at a vertex u is the weighted average of the expected payoff
of each neighbor vertex minus the cost for continuing. If
it decides to stop, its expected payoff is 0. We denote the
expected payoff of an optimal agent (i.e., bias-free agent)

3This is a restricted type of MDP in which for every node u
the transition cost to each neighbor is the same.



 currently at node u by πo(u). We have that:

πo(u) = max{ ∑
v∈N(u)

p(u,v) ·πo(v)− c(u),0}

where N(u) denotes the set of neighbors of node u.

An agent with sunk cost bias is characterized by a param-
eter λ ≥ 0 that captures the intensity of its bias. We begin
by considering naive agents. These agents are unaware of
their bias and as a result plan as if they will behave op-
timally in the future. A naive sunk cost bias agent, per-
ceives the cost of stopping as λ multiplied by the cost it
invested. Therefore, it will continue traversing the graph at
node u after accumulating a sunk cost of K if and only if
∑v∈N(u) p(u,v) ·πo(v)− c(u) ≥ −λK. For consistency, we
use the term expected payoff, for all types of agents to de-
note their actual expected payoff and not the perceived one.
Thus, the expected payoff of the naive agent is πn(u,K) = 0
if it decides to abandon and is otherwise

πn(u,K) = ∑
v∈N(u)

p(u,v) ·πn(v,K + c(u))− c(u).

It is not very hard to construct instances in which the payoff
of the naive agent is negative. Here, we show that its negative
payoff can grow exponentially in the graph’s size. We first
get the agent to incur sufficient sunk cost. Once the agent
incurred this amount of sunk cost it would rather continue
with no chance of reaching any reward than cut its losses
and stop. Essentially, the agent prefers continuing a lost
cause to admitting defeat. It always believes that it will take
just one more step and then give up, but once it gets there, it
finds that it no longer wants to give up.

Claim 2.1 The negative expected payoff of a naive agent
may be exponential in the graph’s size.

Proof: Consider the instance depicted in Figure 2. Observe
that a naive agent will choose to continue at s since the
expected payoff is 0.4 If it ends up at v1 it will again choose
to continue, for the same reason, for any value of λ . Now
for any 2 ≤ i ≤ n−1, the agent at vi will continue to vi+1
since it will accumulate a cost of

R+
i−3

∑
j=0

λR(1+λ ) j = R · (1+λ )i−2

Thus, it will have a perceived cost of stopping of λR · (1+
λ )i−2 which is the same as the cost it thinks it will have for
continuing one step and then stopping. Since the expected
payoff of the two first steps is 0, we get that the expected
payoff of the naive agent is − 1

4 R(1+λ )n−2.

4We assume that for naive agents ties are broken in favor of
continuing.

3 SOPHISTICATED SUNK COST BIAS
AGENT

Recall that a sophisticated agent is aware of its bias and
hence it can compute its actual expected payoff for contin-
uing traversing the graph. Hence, a sophisticated agent at
node u that accumulated a sunk cost of K decides to con-
tinue if its (actual) expected payoff is at least −λK. For this
reason, a sophisticated agent will only traverse the graph if
its expected payoff is non-negative. Nevertheless, for any
W , we can construct an instance in which a sophisticated
agent has an expected payoff of 0 while the optimal agent
has an expected payoff of W > 0. Consider Figure 3, with
R = 10W and λ = 0.5. An optimal agent would continue at
s and stop at u, with expected payoff W . However, a sophis-
ticated agent would continue at u as well, so its expected
payoff would be 0.

As we discussed, computing a policy for optimal or naive
agents is computationally easy. We observe that this is not
the case for sophisticated agents. Since a sophisticated agent
is aware of its bias, in order to compute its expected payoff
it should know which action its future selves will take in
each of the following nodes. This problem is complicated
by the fact that the choice depends on the amount of sunk
cost they accumulated in reaching these nodes. We observe
that there are instances in which computing the expected
payoff is computationally hard. Hence, it is computationally
hard for a sophisticated agent to compute its policy.

Proposition 3.1 The problem of computing the optimal pol-
icy for a sophisticated sunk cost bias agent is #P-hard.

Proof: We use the following reduction from knapsack
solution counting. We are given a capacity for the knapsack
B and n objects with weights w1, . . .wn. Our goal is to count
the number of subsets S such that ∑i∈S wi ≤ B. Given an
instance of the counting problem we construct the Markov
decision process illustrated in Figure 4.

Let K be the cost incurred after s and just before q, meaning
K is the sum of some subset of the wi’s. We observe that at
q′, the agent will have a different policy based on the value
of K. Continuing at q′ yields a net payoff of −λ (B+C),
while the perceived cost of stopping is −λ (K +C). Hence,
the agent continues at q′ if and only if K > B. 5 Thus, we
can separate all paths leading to q into two types based on
whether the agent would stop or continue at q′ if it reaches
it. We first prove correctness under the assumption that the
agent will always reach q and then show it holds.

For paths along which the agent would not continue at q′, the
expected payoff is π�s = R

2 −E [K|K ≤ B]−C. This is be-
cause such paths reach t when a q→ t transition is realized

5For ease of presentation we break ties in favor of not continu-
ing. This can be avoided by introducing small perturbations.
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Figure 2: Graph for which the expected payoff are exponentially negative.
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Figure 3: Sophisticated agent gets 0, optimal agent gets W .

(with probability 1
2 ). Note that we can complete the reduc-

tion without knowing the value of E [K|K ≤ B]. For paths
along which the agent would continue at q′ the expected
payoff is

π
©
s =

R
2
−E [K|K > B]− λ

2
(B+C)−C.

This is because these paths always reach t, but they incur
a cost of R+ λ (B+C) with probability 1

2 . Let p be the
probability that K ≤ B. The total expected payoff is then

πs = p ·π�s +(1− p) ·π©
s

= p
R
2
+(1− p)

R
2
− p ·E [K|K ≤ B]− (1− p) ·E [K|K > B]

− p ·C− (1− p) ·
(

λ

2
(B+C)+C

)
=

R
2
− 1

2

n

∑
i=1

wi−C − λ

2
(1− p)(B+C)

where in the last step we use:

p ·E [K|K ≤ B]+ (1− p) ·E [K|K > B] = E [K] =
1
2

n

∑
i=1

wi.

By rearranging we get that:

p =
2πs +∑

n
i=1 wi−R+2C

λ (B+C)
+1

Since the number of paths such that K ≤ B is p ·2n, and the
number of such paths is the same as the number of solutions
to the knapsack problem, we have

# Solutions = 2n
(

2πs +∑
n
i=1 wi−R+2C

λ (B+C)
+1
)
.

Hence, if the sophisticated agent can compute its expected
payoff in polynomial time, it can also solve the #P-hard
problem of knapsack solution counting. To complete the
reduction, we first show that the agent will always reach
q if it starts to traverse the graph. To do this, we observe
that from any node before q (not including s) the expected
payoff is at least R

2 − λ (B+C)−∑
n
i=1 wi. Therefore, the

agent will continue as long as

R
2
−λ (B+C)−

n

∑
i=1

wi≥−λC.

By rearranging we get the reduction holds for any
R≥2∑

n
i=1 wi +2λB.

Finally, recall that we need to show that the problem of
computing the optimal policy for a sophisticated agents is
#P-hard. This requires us to construct an instance in which
the agent has to know the exact expected payoff to compute
its policy. We prove the following claim:

Claim 3.2 For any 0 < α < 1 there exists C and R such
that a sophisticated agent will traverse the graph if and only
if #Solutions≥ α ·2n.

Proof: Let R = 2∑
n
i=1 wi + 2λB. We show that for any

0 < α < 1 there exists C such that the expected payoff of
the sophisticated agent is 0 if p = α . This implies that the
agent will traverse the graph if and only if p≥ α as required.
Observe that

πs =
R
2
− 1

2

n

∑
i=1

wi−C− λ

2
(1−α)(B+C) = 0

=⇒ C =
R−∑

n
i=1 wi−λ (1−α)B
2+λ (1−α)

Finally, notice that both R and C have a polynomial repre-
sentation as they are defined by arithmetic operations over
numbers that their representation is polynomial in the prob-
lem’s size.

The claim implies the proof of Proposition 3.1 since if the
sophisticated agent can compute its optimal policy for any
instance constructed for 0 < α < 1, we can use its poly-time
algorithm to run a binary search over the fractions of valid
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Figure 4: Reduction from knapsack solution counting to computing the payoff of a sophisticated sunk cost biased agent.

solutions. Since the size of the search space is 2n, our binary
search will compute the exact number of solutions to the
knapsack problem in polynomial time.

Note that even though a naive agent can efficiently decide on
its actions (as it plans to behave optimally), the same reduc-
tion as in the proof of Proposition 3.1 shows that computing
the expected payoff of a naive agent is also #P-Hard.

3.1 BOUNDING THE PAYOFF OF A
SOPHISTICATED AGENT

In this section, we try to further understand how much
smaller the payoff of a sophisticated agent may be relative to
the payoff of an optimal agent. As discussed in the example
in Figure 3, we cannot have a multiplicative bound here as
in some cases the payoff of the optimal agent can be positive
while the payoff of a sophisticated agent is 0. As the payoff
of an optimal agent is at most R we have that for any value
of λ ≥ 0, πs ≥ πo−R. In fact, this bound is asymptotically
tight even for a 3-node graph as λ is approaching infinity.
We prove this by showing in the supplementary material
that for any value of λ ≥ 0 there exists a 3-node instance
such that, πs = πo− 2+λ−2

√
1+λ

λ
·R. This implies that there

exists a family of instances such that as λ is approaching
infinity πo−πs is approaching R. While the trivial bound
πs ≥ πo−R is asymptotically tight for very large values of
λ , as we will see next, it is far from tight for smaller values
of λ . Hence, for the rest of the paper, we look for tighter
bounds on the payoff of sophisticated agents.

To help analyze the payoff of the sophisticated agent we
define an auxiliary “hybrid” agent with the following be-
havior: it continues wherever the optimal agent continues
until it either reaches the goal or the optimal agent stops.
If the optimal agent stops, then it does what the sophisti-
cated agent would have done. We show that the payoff of
the sophisticated agent is always higher than the expected
payoff of the “hybrid” agent and then provide bounds on the
expected payoff of a hybrid agent.

Proposition 3.3 The expected payoff of a sophisticated
agent is at least the expected payoff of a hybrid agent.

Proof: We label the nodes of the graph according to the

manner in which the hybrid agents behaves: nodes that it
behaves as an optimal agent are labeled by o and those at
which it behaves as a sophisticated agent by s. In particular,
nodes that the optimal agent reaches and decides to continue
are labeled by o and the rest of the nodes are labeled by s.
Since the decisions of the optimal agent do not depend on
the path leading to a node this is a well defined distinction.
Moreover, once the hybrid agent starts behaving as a sophis-
ticated agent it would keep doing so until it either reaches
the target or stops. Thus, starting from any s-labeled node
the sophisticated and hybrid agents will behave the same.

Denote the payoff of the hybrid agent by πh. We show that
for every o-labeled node u and every K which is the weight
of a path from s to u we have that πh(u,K)≤ πs(u,K). As-
sume towards a contradiction that there exists an o-labeled
node u and a path reaching this node of cost K such that
πh(u,K)> πs(u,K). If there is more than one such node, let
u be the last such node in the topological order. This implies
that for every node v subsequent to it and any K′ > 0 a cost
of a path reaching v we have that πh(v,K′)≤ πs(v,K′).

Since in all o-labeled nodes the optimal agent decides to
continue there are two cases. In the first case, at u the sophis-
ticated agent decides to continue as well, thus the expected
payoff is the weighted average over all successor nodes,
and hence πh(u,K) ≤ πs(u,K). In the second case, the so-
phisticated agent stops and the hybrid agent continues. We
know that the expected payoff of the sophisticated agent
if it continued would be non-positive, as the sophisticated
agent decides to stop, and the expected payoff of the hybrid
agent is the weighted average over all successors. Again,
by our assumption on subsequent nodes, we have that the
weighted average over these successors for the hybrid agent
must be no more than the same weighted average for the
sophisticated agent, which we know is no more than 0. Thus,
πh(u,K)≤ πs(u,K).

In order to lower-bound the payoff of a sophisticated agent,
we now take a closer look at the payoff of an optimal agent.
Let S denote the event in which the optimal agent reaches t
(starting from s) and p(S) the probability of this event. The
payoff of an optimal agent is: πo = p(S) ·R−E[C], where C
is a random variable equal to the cost that the optimal agent
incurred. By decoupling the event in which the optimal



 agent reaches the target and does not reach the target:

πo = p(S) ·R− p(S) ·E[C|S]− (1− p(S)) ·E[C|S̄]

Based on this we can bound the payoff of the hybrid agent:

Lemma 3.4 πh ≥ πo−λ · (1− p(S)) ·E[C|S̄]

Proof: The hybrid agent reaches the target with probability
at least p(S) since whenever the optimal agent reaches the
target the hybrid agent reaches it as well. In this case its
expected cost would be E[C|S]. Wherever the optimal agent
stops, the hybrid agent follows the sophisticated agent’s
actions. Assume that the hybrid agent has incurred some
cost K in reaching a node u at which the optimal agent stops.
At this point, using the decision rule for the sophisticated
agent, we know that πs(u)≥−λK. In particular, this implies
that the extra expected cost for continuing is at most λK.
Thus, the hybrid agent can incur a total cost of at most
(1+λ )K along this path. Taking this as an expectation over
all paths in which the optimal agent stopped prematurely,
we find that the expected cost incurred by the hybrid agent
is at most (1+λ )E[C|S̄]. Thus, the expected payoff of the
hybrid agent is at least:

p(S) ·R− p(S) ·E[C|S]− (1− p(S))(1+λ )E[C|S̄]

which equals πo−λ · (1− p(S)) ·E[C|S̄].

By applying Proposition 3.3 we conclude that

Corollary 3.5 πs ≥ πo−λ · (1− p(S)) ·E[C|S̄].

Next, we derive two more specific bounds:

Claim 3.6 πs ≥ πo−λ · p(S) ·R.

Proof: As we know that optimal agent always has a non-
negative payoff we have that:

p(S) ·R− p(S) ·E[C|S]− (1− p(S)) ·E[C|S̄]≥ 0
=⇒ (1− p(S)) ·E[C|S̄]≤ p(S) ·R− p(S) ·E[C|S]
=⇒ (1− p(S)) ·E[C|S̄]≤ p(S) ·R

By applying Corollary 3.5 we have that
πs ≥ πo−λ · (1− p(S)) ·E[C|S̄]≥ πo−λ · p(S) ·R

We can get a closed form bound by using the fact that πs ≥ 0:

Proposition 3.7 πs ≥ πo− λ

1+λ
·R.

Proof: If πo≤ λ

1+λ
·R, then the claim holds simply because

πs ≥ 0. Else, πo ≥ λ

1+λ
·R. Thus we have that:

πo = p(S) ·R− p(S) ·E[C|S]− (1− p(S)) ·E[C|S̄]≥ λ

1+λ
·R

By rearranging we get that:

(1− p(S)) ·E[C|S̄]≤ p(S)(R−E[C|S])− λ

1+λ
·R

≤ R− λ

1+λ
·R≤ 1

1+λ
·R

This implies that πs ≥ πo− λ

1+λ
·R as required.

In the supplementary material we provide a complete anal-
ysis of 3-node graphs and show that for such graphs this
bound is not tight. This is done by showing that for any
3-node graph πs ≥ πo− 2+λ−2

√
1+λ

λ
·R and noting that for

any λ ≥ 0 we have that λ

1+λ
> 2+λ−2

√
1+λ

λ
. The gap be-

tween the two bounds increases as λ approaches 0, hence,
in the next section we focus on the case of 0≤ λ ≤ 1 and
present a tighter bound for this specific and natural topology.
We present some evidence that this bound is, in a sense,
asymptotically tight. It is interesting to note that the bound
πs ≥ πo− λ

1+λ
·R is tight for any value of λ ≥ 0 in an ex-

tended model in which the cost for continuing at a certain
node may depend on the edge that was taken. In other words,
the costs are on the edges instead of on the nodes. We pro-
vide this proof in the supplementary material as well.

4 ANALYSIS OF THE FAN GRAPH

In this section we focus on 0≤ λ ≤ 1, motivated by our goal
of finding tighter bounds when λ is bounded. We consider a
specific graph topology which is relatively easy to analyze:
the fan. A fan graph consists of a path (s = v1,v2, . . . ,vn, t)
such that for any 1≤ i< n: p(vi,vi+1) = pi, p(vi, t) = 1− pi
and c(vi) = ci. Also, p(vn, t) = 1 and c(vn) = cn. A sketch of
a specific fan is depicted in Figure 5. Fan graphs can be used
to capture, for example, scenarios of project development:
at every step some cost should be invested to continue the
project and then with some probability it is successful.

For fans we derive an essentially asymptotically tight bound
on the difference between the payoff of a sophisticated
agent and an optimal agent. We present the bound and then
demonstrate its tightness:

Theorem 4.1 In every fan graph πs ≥ πo−λ · (1− 1
n )

n ·R.

Proof: Recall that by Corollary 3.5 we have that πs ≥
πo− λ · (1− p(S)) ·E[C|S̄], where S is the event that the
optimal agent reached the target and E[C|S̄] is the expected
cost of the optimal agent for paths in which it stopped before
the target. To bound the payoff of the sophisticated agent we
bound (1− p(S)) ·E[C|S̄]. Assume without loss of generality
that the optimal agent stopped traversing at vk. In the fan
there is only a single failing path (s,v2, . . . ,vk). Thus,

(1− p(S)) ·E[C|S̄] = (
k−1

∏
i=1

(1− pi)) · (
k−1

∑
i=1

ci) (1)



 

Figure 5: An instance of the Fan graph for Theorem 4.1.

We now use the fact that the optimal agent traverses the
graph till vk to get an upper bound on (1− p(S)) ·E[C|S̄].

Lemma 4.2 If the optimal agent reaches vk then ∑
k−1
i=1 ci ≤

∑
k−1
i=1 pi ·R.

Proof: Let πo(v j,vk) denote the payoff of an optimal
agent traversing the graph from node v j to vk. We prove
by a backward induction that for any j ≥ 1, πo(v j,vk) ≤
∑

k−1
i= j (pi ·R− ci). For the base case observe that if the

agent continues from vk−1 to vk it is indeed the case that
πo(vk−1,vk) = pk−1 ·R− ck−1. For the induction step we
assume correctness for v j+1 and prove it for an agent
traversing the graph starting from v j. Observe that, if the
agent traverses the graph from v j to vk then: πo(v j,vk) =
p j ·R−c j +(1− p j) ·πo(v j+1,vk). By the induction hypoth-
esis we have that πo(v j+1,vk)≤ ∑

k−1
i= j+1 (pi ·R− ci) putting

this together we get that πo(v j,vk) ≤ ∑
k−1
i= j (pi ·R− ci) as

required. Thus, the expected payoff of the optimal agent
reaching vk is at most ∑

k−1
i=1 (pi ·R− ci). Since this quantity

has to be non-negative, we have ∑
k−1
i=1 ci ≤ ∑

k−1
i=1 pi ·R.

By applying Lemma 4.2 on Equation 1 we get that

(1− p(S)) ·E[C|S̄]≤ (
k−1

∏
i=1

(1− pi)) · (
k−1

∑
i=1

R · pi)

In the supplementary material we show that the maximum
of this function is attained when for every 1≤ i < k: pi =

1
k

implying

(1− p(S)) ·E[C|S̄]≤ R · (k−1) · 1
k
· (1− 1

k
)k−1 = R · (1− 1

k
)k

thus, the maximum is attained for k = n.

By noticing that when n approaches infinity (1− 1
n )

n ap-
proaches 1

e we conclude that:

Corollary 4.3 In every fan graph πs ≥ πo− 1
e ·λ ·R.

Next, we show this bound is, in some sense, tight in the
limit:

Theorem 4.4 There exists a family of instances in which λ

is a function of n, such that as n goes to infinity limn→∞ πo−
1
e ·λ ·R = πs.

Proof: We consider fan graphs in which the transition
probabilities and costs on the path are identical. That is, for
every 1 ≤ i < n, pi = p = 1

n and ci = c = 1
n −

1
n2 . We also

set R = 1. The graph is illustrated in Figure 5.

It is easy to see that the optimal agent would traverse the
graph till it reaches vn as the expected payoff of each step
by itself is strictly positive. The optimal agent would stop at
vn as the expected payoff of this last step is negative. The
expected payoff of the optimal agent is

πo =
n−1

∑
i=1

(1− p)i−1(p− c) =
1− (1− p)n−1

p
(p− c)

Next, we let λ = πo
(1−p)n−1(n−1)c . In Lemma ?? in the ap-

pendix, we show that it is indeed the case that λ ≤ 1.

Observe that limn→∞(1− p)n−1(n−1)c = 1
e . Thus, we have

that as n approaches infinity πo is approaching λ

e . To com-
plete the proof we show that for this value of λ , πs = 0. To
this end we show that if the agent starts traversing the graph
it will go all the way to t and in this case its expected payoff
will be 0. Observe that the expected payoff of a sophisticated
agent that continues from node vk till t is:

πs(vk) = πo(vk)−λ (1− p)n−k(n−1)c

The first term is the payoff of the sophisticated agent for
getting to t before vn which is just the same as the optimal
agent and the second term is the cost that the sophisticated
agent incurs for taking the last step from vn to t. Thus, the
expected payoff of a sophisticated agent that starts at s and
only stops when reaching t is

πs(v1) = πo−λ (1− p)n−1(n−1)c

which is 0 for our choice of λ .

We now prove that a sophisticated agent that starts traversing
the graph will go all the way to t. We give a proof by a back-
ward induction. That is, we assume that if the agent arrives
at vk+1 from vk then it will go all the way to t. For the base
case observe that if the agent arrives at vn, then the payoff
for abandoning is−λc(n−1). On the other hand, moving to
t incurs the same payoff: R−(λc(n−1)+R) =−λc(n−1)
which is the same as quitting. For ease of presentation we
assume that the agent breaks ties in favor of continuing and
hence the agent will choose to continue.6 For the induction
step we assume correctness for vk+1 and prove for an agent
traversing the graph from vk. By the induction hypothesis,
since the sophisticated agent continues to traverse the graph
from vk+1 till t then its expected payoff for continuing is
πs(vk). To complete the proof we show that the expected
payoff is greater than or equal to the agent’s sunk cost (i.e.,
πs(vk)≥−λc(k−1)):

6To avoid applying a tie-breaking rule we can add small pertur-
bations to the costs to make sure that the agent will strictly prefer
to continue.



 Lemma 4.5 πs(vk)≥−λc(k−1).

Proof: We need to show that:

πo(vk)−λ (1− p)n−k(n−1)c≥−λc(k−1)

By rearranging we get that:

πo(vk)≥ λc
(
(1− p)n−k(n−1)− (k−1)

)
Since λc> 0, if ((1− p)n−k(n−1)−(k−1))≤ 0 the lemma
trivially holds. Else, assume that ((1− p)n−k(n−1)− (k−
1))> 0, hence we can divide by this and get that

λ ≤ πo(vk)

c((1− p)n−k(n−1)− (k−1))

By substituting for our choice of λ we get that:

πo

(1− p)n−1(n−1)c
≤ πo(vk)

c((1− p)n−k(n−1)− (k−1))

By rearranging we get that:

1− (1− p)n−1

(1− p)n−1(n−1)
≤ 1− (1− p)n−k

(1− p)n−k(n−1)− (k−1)

which implies that

(1− p)n−k(n−1)− (k−1)+(1− p)n−1(k−1)︸ ︷︷ ︸
f (k)

≤

(1− p)n−1(n−1)

Finally, we apply Lemma 4.6 to show that the above inequal-
ity holds. This is done by proving that f (k) is bounded from
above by (1− p)n−1(n−1) for any integer 1≤ k ≤ n.

Lemma 4.6 The function f (x) = (1− p)n−x(n−1)− (x−
1)+(1− p)n−1(x−1) where 0 < p < 1 is bounded above
by (1− p)n−1(n−1) for each 1≤ x≤ n.

Proof: In order to prove this claim we show that f is
convex in [1,n] and that f (1) = f (n) = (1− p)n−1(n− 1).
Therefore, for each x ∈ [1,n], f (x)≤ (1− p)n−1(n−1).

Observe that indeed f (1) = f (n) = (1− p)n−1(n− 1). In
addition:

f
′
(x) =− ln(1− p)(n−1)(1− p)n−x +(1− p)n−1−1

f
′′
(x) = ln2(1− p)(n−1)(1− p)n−x

Thus, for 1 < x < n and 0 < p < 1 we have that f
′′
(x)≥ 0.

Therefore, f (x) ≤ (1− p)n−1(n− 1) for each x ∈ [1,n] as
required.

5 CONCLUSION AND FURTHER
DIRECTIONS

Sunk cost bias is a key behavioral bias that people exhibit,
and it interacts in complex ways with uncertainty about the
future. We have proposed a model that allows us to study
this interaction, by analyzing the loss in performance of
agents that experience sunk cost bias as they perform a
planning problem with stochastic transitions between states.

There are a number of further questions suggested by this
work. A central open question is whether fan graphs rep-
resent the worst case for sophisticated agents with sunk
cost bias. It would also be interesting to explore how the
stochastic environment for sunk cost bias can be adapted to
incorporate agents with other kinds of biases as well.
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