

TRUMPETS: Injective Flows for Inference and Inverse Problems

Konik Kothari1 AmirEhsan Khorashadizadeh2 Maarten de Hoop3 Ivan Dokmanić2

1Coordinated Science Laboratory, University of Illinois at Urbana-Champaign
2Department of Mathematics and Computer Science, University of Basel

3 Computational and Applied Mathematics, Rice University

Abstract

We propose injective generative models called
TRUMPETs that generalize invertible normalizing
flows. The proposed generators progressively in-
crease dimension from a low-dimensional latent
space. We demonstrate that TRUMPETs can be
trained orders of magnitudes faster than standard
flows while yielding samples of comparable or bet-
ter quality. They retain many of the advantages
of the standard flows such as training based on
maximum likelihood and a fast, exact inverse of
the generator. Since TRUMPETs are injective and
have fast inverses, they can be effectively used
for downstream Bayesian inference. To wit, we
use TRUMPET priors for maximum a posteriori
estimation in the context of image reconstruction
from compressive measurements, outperforming
competitive baselines in terms of reconstruction
quality and speed. We then propose an efficient
method for posterior characterization and uncer-
tainty quantification with TRUMPETs by taking ad-
vantage of the low-dimensional latent space. Our
code is publicly available at https://github.
com/swing-research/trumpets.

1 INTRODUCTION

Modeling a high-dimensional distribution from samples is a
fundamental task in unsupervised learning. An ideal model
would efficiently generate new samples and assign likeli-
hoods to existing samples. Some deep generative models
such as generative adversarial networks (GANs) [Goodfel-
low et al., 2014] can produce samples of exceedingly high
quality, but they do not give access to the underlying data
distribution. Moreover, GANs are often hard to train, suffer-
ing from pathologies such as mode collapse [Thanh-Tung
and Tran, 2020, Arjovsky and Bottou, 2017]. Since they are

generally not invertible, or computing the inverse is slow,
they are not well-suited for downstream inference tasks such
as image reconstruction from compressive measurements or
uncertainty quantification.

Normalizing flows alleviate many of the drawbacks of
GANs: they approximate high-dimensional probability dis-
tributions as invertible transformations of a simple, tractable
base distribution. They allow both efficient sampling and
likelihood evaluation. They can be trained using maximum
likelihood, and at inference time they provide direct access
to likelihoods. These desirable features are a consequence
of clever architectural components known as coupling lay-
ers [Dinh et al., 2014].

Normalizing flows, however, are extremely compute-
intensive. As a case in point, training a Glow model [Kingma
and Dhariwal, 2018] for the 5-bit 256× 256 CelebA dataset
takes a week on 40 GPUs. This is in part because the dimen-
sion of the “latent” space in normalizing flows equals that
of the generated images. Since signals of interest are often
concentrated close to low-dimensional structures embedded
in high-dimensional spaces, this is a waste of resources. Be-
yond reducing computational cost, a low-dimensional latent
space acts as a natural regularizer when solving ill-posed
inverse problems [Bora et al., 2017].

In this paper we propose a new generative model termed
TRUMPET—an injective flow based on convolutional layers
that are injective by construction. Similarly to traditional
coupling layers, our proposed layers have fast, simple in-
verses and tractable Jacobians; however, they map to a space
of higher dimension. Since they are injective, they can be
inverted on their range. Our design combines standard cou-
pling layers with recent results on injective neural networks
[Puthawala et al., 2020]. Further, our models can be trained
via exact maximum likelihood by separating the training of
the injective part from that of the bijective part [Brehmer
and Cranmer, 2020].

TRUMPETs can be trained an order of magnitude faster than
earlier injective models based on traditional normalizing

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Konik Kothari <kkothar3@illinois.edu>?Subject=Your UAI 2021 paper
https://github.com/swing-research/trumpets
https://github.com/swing-research/trumpets

 flows [Brehmer and Cranmer, 2020] while producing sam-
ples of comparable (or better) quality. Moreover, thanks to
their fast inverse, they can be used to design fast inference
algorithms based on generative priors. We apply TRUMPETs
to Bayesian inference problems in compressive sensing and
limited-angle tomography. In particular, we devise an algo-
rithm for efficient computation of a MAP estimator using a
variant of projected gradient descent. The fast inverse yields
a projection while thanks to injectivity we can compute the
likelihoods. We then adapt recent work on uncertainty quan-
tification for inverse problems with normalizing flows [Sun
and Bouman, 2020] to work with generative priors and a
low-dimensional latent space of TRUMPETs. We anticipate
that neural-network-based uncertainty quantification can be
naturally integrated in a rigorous analysis in the context of
inverse problems [Mosegaard and Tarantola, 1995, Monard
et al., 2020].

Our main contributions can be summarized as follows:

• We propose injective coupling layers with fast inverses
and tractable Jacobians.

• We use these layers to construct TRUMPETs—injective
flow generative models. The proposed generative mod-
els train orders of magnitude faster than the usual flow
models while producing samples of comparable or bet-
ter quality and giving access to likelihoods.

• We apply the proposed models to Bayesian inference
problems and uncertainty quantification, showing re-
markable gains in efficiency and reconstruction quality
over established methods. In particular, we show how
the low-dimensional latent space of TRUMPETs leads
to an efficient variational approximation of the poste-
rior distribution.

In the following section we describe the construction of
TRUMPETs; an overview of related work is given in Sec-
tion 5.

2 TRUMPETS: INJECTIVE FLOWS

Flow-based generative models [Dinh et al., 2014, 2016]
approximate the target distribution via a series of bijec-
tive transformations of a simple latent distribution. Unlike
GANs [Goodfellow et al., 2014] or VAEs [Kingma and
Welling, 2013] they allow for efficient exact likelihood
evaluation. Crucial to the design of flow-based models are
tractable inverses and Jacobians of all the constituent bijec-
tive transformations [Kingma and Dhariwal, 2018, Grath-
wohl et al., 2018], based on special coupling layers such as
NICE [Dinh et al., 2014] or Real-NVP [Dinh et al., 2016].
A generative model fθ : RD → RD parameterized by the
weights θ maps latent variables Z to data X . Note that we
use uppercase letters for random vectors and corresponding
lowercase letters for their realizations. Log-likelihoods of

the generated samples x = fθ(z) can be evaluated as

log pX(x) = log pZ(f−1
θ (x))− log |det Jfθ (f

−1
θ (x))|.

(1)
Given an iid training dataset {ξ(i)}ni=1 from some ground
truth distribution1 pΞ, training a normalizing flow entails
maximizing the log-likelihood of the training data given
as
∑N
i=1 log pX(ξ(i)) over the weights θ in order to learn

a generative model fθ. Equivalently, it entails minimizing
the KL divergence between pX and pΞ. While invertibility
ensures a non-singular Jfθ at all points, defining likelihoods
only requires injectivity of fθ.2

2.1 MAKING FLOWS INJECTIVE

Machine learning for high-dimensional signals such as im-
ages relies on the fact that these signals concentrate around
low-dimensional structures. We adopt the common assump-
tion that pΞ is concentrated close to a d-dimensional mani-
fold in RD, with d� D. We then aim to learn a generative
model fθ, now mapping from Rd to RD, such that the ob-
served data lies in the range of fθ. When fθ is an injective
map its Jacobian Jfθ ∈ RD×d has full column rank for all
input points. Thus one can still have access to likelihoods
of samples generated by fθ by modifying (1) as [Boothby,
1986]

log pX(x) = log pZ(f†θ (x))

− 1

2
log |det[Jfθ (f

†
θ (x))TJfθ (f

†
θ (x))]|, (2)

which is valid for x ∈ Range(fθ). We use f†θ to denote
an inverse of fθ on its range, that is f†θ (fθ(z)) = z. As
described later, due to the way we construct f†θ , (2) corre-
sponds to the likelihood of a projection of x on the range of
fθ for x /∈ Range(fθ).

Building on the general change of variable formula (2), we
propose TRUMPET—a network architecture that is injective
by construction. The network architecture (Figure 1) con-
sists of a “flat” invertible part which maps Rd to Rd and an
expanding injective part which maps Rd to RD, resembling
its namesake in shape. Crucially, expansion is enabled via
injective revnet steps [Jacobsen et al., 2018] generalizing
the recently proposed Glow [Kingma and Dhariwal, 2018]
layers.

We begin by reviewing the revnet step. A forward (F) revnet
step has 3 operations, each having a simple inverse (I):

1We use ξ to denote samples from the ground truth distribution
pΞ to distinguish them from the samples x from pX , the distribu-
tion induced by our network fθ .

2With (L)ReLU activations, Jacobians are defined “only” al-
most everywhere; this rarely (if ever) causes issues in practice.

Injective
generator

Bijective flowGaussian latent

distribution
Data manifold

Generating samples
Encoding data

Encoder

Figure 1: TRUMPET—A reversible injective flow-based generator

1. activation normalization,

F: y =
x− µ
σ

, I: x = σy + µ,

2. 1× 1 convolution with a kernel w,

F: y = `w(x) = w ∗ x, I: x = w−1 ∗ y,

3. affine coupling layer

F: y1 = x1, y2 = s(x1) ◦ x2 + b(x2),
I: x1 = y1, x2 = s(y1)−1 ◦ (y2 − b(y1)),

where y =

[
y1

y2

]
, x =

[
x1

x2

]
, and s and b are the scale and

bias functions that are implemented by neural networks. The
coupling layers have triangular Jacobians making their log
determinants easy to compute.

We now generalize the second step to allow for an increase
in dimension while retaining computational tractability.

Injective 1×1 convolutions. We consider generalizations
of the 1 × 1 convolution layers (`w) that (1) are injective,
(2) have fast (pseudo)inverse and (3) a fast Jacobian inde-
pendent of x. These requirements yield two layer variants—
linear and ReLU 1× 1 convolutions:

LINEAR ReLU

FORWARD y = w ∗ x, y = ReLU

([
w
−w

]
∗ x
)

;

INVERSE x := w† ∗ y, x := w† ∗
([
I − I

]
y
)
.

Here w† is the left pseudoinverse of w. Since w is a 1× 1
convolution, we write it as a matrix of size cout × c, where
c, cout are the number of input and output channels respec-
tively; taking the pseudoinverse of this matrix yields w†.

In Appendix B, we show that for both types of layers,

log det JT
`wJ`w =

c∑
i=1

si(w)2,

where the si(w) are the singular values of w. We choose
the size of w such that the number of output channels is kc
(resp. bk2 cc) for the linear (resp. ReLU) layer. While k ≥ 1
is enough for the linear variant to be injective, k ≥ 2 is
necessary and sufficient for the ReLU variant [Puthawala
et al., 2020].

Injective revnet step. By generalizing the 1×1 convolu-
tions to increase dimensions, we can still utilize the revnet
step as in Glow by replacing the invertible 1 × 1 convolu-
tions by their injective counterparts. Therefore, if the input
tensor is of size N ×N × C, the output after an injective
revnet step is of size N ×N × kC, where the expansion by
a factor k occurs in the injective convolution (`w) step.

2.2 ARCHITECTURE OF TRUMPETS

Injective coupling layers introduced in the previous section
allow us to build an architecture that trains at a fraction
of the time and memory cost of regular flows. As shown
in Figure 1, a TRUMPET model fθ(z) = gγ(hη(z)) with
weights θ = (γ, η) has two components: an injective map
gγ(z′) = g1 ◦ g2 . . . ◦ gK(z′) which maps from Rd to RD,
and a bijective part hη implemented as a flow z′ = hη(z) =
h1 ◦ h2 . . . ◦ hL(z) in the low-dimensional latent space.
Unlike normalizing flows such an architecture allows us to
progressively increase dimension and markedly reduce the
number of parameters.

The role of the injective part gγ is to match the shape of
the manifold that supports the ground truth distribution pΞ,
while the role of the low-dimensional flow is to match the
density on the manifold. As recently proposed by Brehmer
and Cranmer [2020] and as we elaborate in Section 2.3, this
separation enables training even though likelihood is not
defined for samples outside the range of fθ.

To build the injective map gγ we compose the proposed
injective revnet layers, progressively increasing dimension
from that of the latent space to that of the image space.
To improve expressivity, at each resolution, we interleave
a small number of bijective revnet layers. Each injective
layer increases feature dimension by a factor of 2 in a single

 step in the forward direction (and decreases it by a fac-
tor of 2 in the reverse direction). Since our latent space is
d-dimensional we need m ≈ log2

D
d injective layers inter-

spersed with a few bijective layers. Following Dinh et al.
[2016] we employ upsqueezing to increase resolution. Our
network architecture results in significantly fewer parame-
ters and faster training than the recently proposed variant of
injective flows [Brehmer and Cranmer, 2020].

Finally, performance of revnets in generative modeling of
images can be improved [Dinh et al., 2016] by introducing
multiscale implementations of the scale (s) and bias (b)
functions. For these implementations, we propose to use
U-Nets [Ronneberger et al., 2015] in affine coupling layers
as opposed to regular convolutional stacks used in previous
normalizing flows [Dinh et al., 2016, Kingma and Dhariwal,
2018]. We find that integrating U-Nets greatly improves the
performance of our network.

2.3 TRAINING OF TRUMPETS

An advantage of injective architectures such as TRUMPETs
is that they can be trained using maximum likelihood. How-
ever, since the range of fθ is a d-dimensional submanifold
in RD, likelihoods of the samples not on this manifold are
not defined. To circumvent this difficulty we adopt a strat-
egy recently proposed by Brehmer and Cranmer [2020]. We
split the training into two phases: (i) the mean squared error
(MSE) phase where we only optimize the injective part gγ ,
and (ii) the maximum likelihood (ML) training phase where
we fit the parameters η of the bijective part hη to maximize
the likelihood of the preimage of training data through gγ ;
this step aims to match the density of pX to that of the
ground truth pΞ.

The loss function that we minimize to find the parameters
of gγ is given as

LMSE(γ) =
1

N

N∑
i=1

‖ξ(i) − gγ(g†γ(ξ(i)))‖22 (3)

where ξ(i)-s are the training samples. We find that only a
few epochs of training are sufficient to train gγ . Note that
Pgγ (x) := gγ(g†γ(x)) is an idempotent projection operator
on the range of gγ . The low-dimensional range of gγ acts as
a regularizer in the context of inverse problems. Injectivity
implies that the range of fθ is a true manifold unlike in the
case of GANs where it may be an arbitrary low-dimensional
structure [Puthawala et al., 2020]. This allows us to define
likelihoods as in (2).

After the MSE training phase, we have a manifold that near-
interpolates the data samples. In the ML training phase, we
match the density (or measure) on the manifold to pΞ by
maximizing the likelihood of the preimages of the training
samples {g†γ(ξ(i))} over η. This gives us the loss function

for the ML training phase as

LML(η)

=
1

N

N∑
i=1

(
− log pZ(z(i)) +

L∑
l=1

log |det Jhη,l |

)
, (4)

where z(i) = h−1
η (g†γ(ξ(i))) and Jhη,l are evaluated at ap-

propriate intermediate inputs. Together with the gradually-
expanding architecture of TRUMPETs this two-step proce-
dure yields much faster training than previous work which
concatenates standard invertible flows.

Stability of layerwise inversions. To minimize LMSE (3),
we need to calculate the left inverse g†γ for points that
do not lie in the range of gγ . This entails computing the
pseudoinverses of injective convolutional layers `w. We
study the stability of inversion for out-of-range points under
the assumption that y′ = `w(x) + ε, ε ∼ N (0, σ2

ε I). In
particular, we are interested in estimating the inverse er-
ror EInv(y′) = ‖`†w(y′) − x‖22 and the re-projection error
EProj(y

′) = ‖`w(`†w(y′))− y′‖22.

We show in Appendix B that for both linear and ReLU
injective convolutions the average errors are

EεEInv(y) ∝ σ2
ε

c∑
i=1

1

si(w)2
, EεEProj(y) ∝ σ2

ε ,

where si(w)-s are the singular values of w and c is the
number of input channels in the forward direction.

The reconstruction error thus behaves gracefully in σε, but
could blow up for poorly conditioned w. In order to stabi-
lize inversions and training, we regularize the inverse via
Tikhonov regularization. This changes the error terms from∑c

i=1 1/si(w)2 to
∑c
i=1

si(w)
si(w)2+λ which is upper bounded

by c
2
√
λ

, thus effectively stabilizing training. Here, λ is the
regularization parameter.

3 INFERENCE AND UNCERTAINTY
QUANTIFICATION WITH TRUMPET

We consider reconstructing an object x ∈ RD from mea-
surements y ∈ Rn. We assume that x and y are realizations
of jointly distributed random vectors X , Y , with the joint
distribution pX,Y (x, y). In inference, we are mainly inter-
ested in characterizing the posterior pX|Y (x|y). We note
that this setting generalizes point estimation of x given y
common in inverse problems where the task is to recover
x from measurements y = Ax + ε, where ε is additive
noise and A ∈ Rn×D is the forward operator. Examples
of forward operators include the subsampled Fourier trans-
form in magnetic resonance imaging (MRI) and a random
matrix in compressed sensing. In many practical problems
the number of measurements n is much smaller than the

 number of unknowns to recover D. In such applications one
often computes the maximum a posteriori (MAP) estimate
xMAP = argmaxx pX|Y (x|y); Bayes theorem yields

xMAP = argminx− log pY |X(y|x)− log pX(x)

= argminx
1
2‖y −Ax‖

2
2 − σ2

ε log pX(x), (5)

where we assume that ε ∼ N (0, σ2
ε I).

3.1 MAP ESTIMATION WITH TRUMPET PRIOR

We now address two inference tasks where TRUMPETs are
particularly effective. Recall that since gγ is injective one
can build a fast projector Pgγ (x) = gγ(g†γ(x)) on the range
of gγ , i.e., the range of our generator.

Beyond simply projecting on the range, injectivity and
Bayes theorem enable us to maximize the likelihood of the
reconstruction under the posterior induced by the TRUM-
PET prior [Whang et al., 2020]. The injective flow (iFlow)
algorithm described below in Algorithm 1 then alternates
projections on the range with gradient steps on the data
fidelity term and the prior density. We study two variants—
iFlow and iFlow-L that correspond to running Algorithm 1
without and with the − log pX term.

Algorithm 1: iFlow
Input: loss function L, y,A, gγ
Parameter: step size η and λ(∝ σ2);

x[0] = A†y;
for i← 0 to T − 1 do

v ← Pg(x[i]);
x[i+1] ← GradientStep(L(v));

end
x[T] ← Pg(x

[T]);

One caveat with computing − log pX(x) is that it requires
log |det[JT

fθ
Jfθ](f

†
θ (x))| according to (2). While we have

layer-wise tractable Jacobians, log |det JT
fθ
Jfθ | cannot be

split into layerwise log det terms due to the change of di-
mension. Fortunately, the literature is abundant with efficient
stochastic estimators. We describe one in Section 3.3 that
we use to compare and report likelihoods. In order to im-
plement the iFlow-L, however, we propose a much faster
scheme based on a bound.

We show in Appendix B that for an injective function
g : Rd → RD, where g := g1 ◦ g2 . . . ◦ gK , we have
log |det JT

g Jg| ≤
∑K
i=1 log |det JT

giJgi |. Thus one gets an
upper bound

− log pX(x) ≤ − log pZ(f†(x))

+
1

2

K∑
k=1

log |det JT
gγ,k

Jgγ,k |+
L∑
l=1

log |det Jhη,l |, (6)

where the layer Jacobians are evaluated at the appropriate
intermediate layer outputs. Since all our layers including the
injective layers have log det Jacobians readily available we
use (6) as a proxy for − log pX(x). Denoting the right-hand
side of (6) by R(x) yields the proposed iFlow-L algorithm
(Algorithm 1) for solving (5). The objective function is

L(x) := 1
2‖y −Ax‖

2
2 + σ2R(x). (7)

Note that when solving inverse problems we constrain the
final solution x to be in the range of f , that is, x = fθ(z)
for some z ∈ Rd.

3.2 POSTERIOR MODELING AND
UNCERTAINTY QUANTIFICATION

The second application enabled by TRUMPETs is efficient
uncertainty quantification for inverse problems in imaging.
We build on a method recently proposed by Sun and Bouman
[2020] which computes a variational approximation to the
posterior pX|Y (x|y) corresponding to the measurement y
and a “classical” regularizer. They train a normalizing flow
which produces samples from the posterior, with the prior
and the noise model given implicitly by the regularized
misfit functional.

The injectivity of the TRUMPET generator fθ and the as-
sumption that the modeled data concentrates close to the
range of fθ allows us to write the posterior on X , pX|Y , in
terms of pZ|Y , with X = fθ(Z). That is,

pX|Y (fθ(z)|y) = pZ|Y (z|y) · | det JTfθJfθ |
−1/2. (8)

We can thus derive a computationally efficient version of
the algorithm proposed by Sun and Bouman [2020] by only
training a low-dimensional flow.

Instead of using TRUMPETs to simply reduce computational
complexity, we showcase another interesting possibility: ap-
proximating the posterior with respect to the learned prior
given by the TRUMPET. To do this we train another network
uυ which is a low-dimensional flow, so that the distribution
of fθ ◦ uυ(T) approximates the posterior pX|Y when T is
an iid Gaussian vector. The generative process for (approxi-
mate) samples from pX|Y is then

T
uυ−→ Z

hη−→ Z ′
gγ−→︸ ︷︷ ︸

fθ

X.

We thus require that uυ(T) ∼ pZ|Y with T ∼ N (0, I) and
X = fθ(Z). Letting qυ be the distribution of uυ(T), the
parameters υ are adjusted by minimizing the KL divergence

 between qυ and pZ|Y ,

υ∗ = argminυ DKL
(
qυ ‖ pZ|Y

)
= argminυ EZ∼qυ [− log pY |Z(y|Z)−log pZ(Z)+log qυ(Z)]

= argminυ ET∼N (0,I)[− log pY |Z(y|uυ(T))−log pZ(uυ(T))

+ log pT (T)− log |det Juυ (T)|].
(9)

We revisit the inverse problem associated with y = Ax+ ε
with ε ∼ N (0, σ2I). In this setting we have

υ∗ = argminυ ET∼N (0,I)

[
1
2‖y −Afθ(uυ(T))‖22

− σ2 log pZ(uυ(T))− σ2 log |det Juυ (T)|
]
.

(10)

We evaluate (10) by drawing k iid samples {ti}ki=1 from the
base Gaussian, yielding the following loss to train uυ ,

L(υ) :=
1

k

k∑
i=1

(‖y −Afθ(uυ(tk))‖22

− σ2 log pZ(uυ(tk))− βσ2 log |det Juυ (tk)|), (11)

where we added β as a hyper-parameter to control the di-
versity of samples we generate from the posterior [Sun and
Bouman, 2020].

3.3 ESTIMATING LOG-LIKELIHOODS

The training of TRUMPETs only requires the log det of the
Jacobian of hη. Some applications call for the log det of
the Jacobian of the full network, typically evaluated a small
number of times. Here, we provide a stochastic estimate via
the truncation of a Neumann series.

As JT
fθ
Jfθ is a square matrix, we find that

log |det JT
fθ
Jfθ | = Tr(log JT

fθ
Jfθ)

= Tr

(
log

1

α
(I − (I − αJT

fθ
Jfθ))

)
= −Tr

(∞∑
k=1

(I − αJT
fθ
Jfθ)

k

k

)
− d logα

≈ −Ev
n∑
k=1

1

k
vT(I − αJT

f Jf)kv − d logα

where we choose α such that the maximal singular value
of I − αJT

fθ
Jfθ is about 0.1. This ensures that the series

converges fast and we can truncate the expansion to about
10 terms. We estimate the largest singular value of JT

fθ
Jfθ

using power iteration. In the last step we use the Hutchinson
trace estimator [Hutchinson, 1989] to evaluate the trace; the
v-s are sampled iid from N (0, I). The terms of the power
series can be efficiently implemented by vector-Jacobian and
Jacobian-vector products using automatic differentiation as
described in Algorithm 2 [Chen et al., 2019].

Algorithm 2: Stochastic log det Jacobian estimator
Input: f, n
Output: log |det JT

f Jf |
log det = 0
β = 0.9 (MaxSingularValue(Jf))

−1;
Draw v from N (0, I);
wT = vT;
for k=1 to n do

uT1 = jvp(w);
uT2 = vjp(u1);
w = w − βu2;

log det −=
wTv

k
;

end
log det −= d log β

4 COMPUTATIONAL EXPERIMENTS
WITH IMAGING PROBLEMS

We begin by evaluating the generative performance of
TRUMPETs. Next, we test TRUMPETs on two inference
tasks in imaging: maximum a posteriori estimation and un-
certainty quantification. .

4.1 GENERATIVE MODELING

We train TRUMPETs on the MNIST [LeCun et al., 1998],
CIFAR10 [Krizhevsky et al., 2009], CelebA [Liu et al.,
2015] and Chest X-ray [Wang et al., 2017] datasets with
image sizes 32 × 32 × 1, 32 × 32 × 3, 64 × 64 × 3 and
128× 128× 1 respectively.

We find that our networks train much faster than invertible
flows and their recent injective generalizations. As a point
of comparison, training the models of Brehmer and Cran-
mer [2020] takes over 10 days on the CelebA dataset. The
corresponding TRUMPET trains in 38 hours while yielding
better samples in terms of the Fréchet inception distance
(FID) [Heusel et al., 2017] (see Table 1).3

Since the range of a TRUMPET is a manifold, a relevant

metric is the reconstruction error, ‖ξ−fθ(f†
θ (ξ))‖

‖ξ‖ , which we
report for ξ-s on the test set in Table 2. We show gener-
ated samples and reconstructions on test sets from trained
TRUMPETs in Figures 6b, 7b, 8 and 9 in Appendix C.

We note that the variants with the linear and ReLU 1 × 1
convolutions perform similarly (see Figures 6a,6b, 7a, 7b);
hence, for the subsequent datasets and experiments we only
report results with the linear variant.

3Our FID scores are reported at sampling temperature T = 1,
that is, we use the same prior distribution statistics for training
and sampling. We show the variation of the FID metric with the

Table 1: FID scores on 8-bit 64× 64 celebA dataset.

Model FID

Kumar et al. [2020] 40.23
Brehmer and Cranmer [2020] 37.4
TRUMPET (Ours) 34.3

Table 2: Training times in hours for TRUMPET: all models
were trained on a single V100 GPU

Training
time (hours)

‖x− fθ(f†θ (x)‖
‖x‖

Trainable
params

MNIST 11 0.04 9M
CIFAR10 11 0.22 9M
CelebA 38 0.15 16M
Chest X-ray 25 0.13 11M

The negative log-likelihood values estimated for trained
TRUMPET models using Algorithm 2 on the [−1, 1] nor-
malized MNIST and CelebA dataset are 114.82± 5.8 and
294± 7.4 nats respectively. Note that these represent like-
lihoods over measures supported in a d-dimensional latent
space whereas the previous literature [Kingma and Dhariwal,
2018, Dinh et al., 2016] reports D-dimensional likelihoods.
This issue is unfortunately not resolved by simply divid-
ing by dimension. We thus caution the reader that such a
comparison may be misleading.

4.2 MAP ESTIMATION

We test TRUMPETs on image reconstruction from compres-
sive measurements. We work with four different forward
operators / corruption models: (i) RandGauss (m): we sam-
ple an entrywise iid Gaussian matrix A ∈ Rn×D, where
n = 250 and D is the dimension of the vectorized image;
(ii) RandMask (p): we mask pixels (that is, replace a pixel
with zero) with probability p = 0.15; (iii) Super-resolution
(x4): we downsample the image by a factor of 4 along each
dimension; and (iv) Mask (s): we mask (replace with zero)
an s× s-size portion of the image.

d

Since TRUMPETs have a readily available inverse we focus
on the benefits this brings in imaging. Specifically, we use
Algorithm 1 to compute an estimate using a trained TRUM-
PET prior. We test the algorithm on the MNIST and CelebA
datasets and use the same TRUMPET prior for all problems.
We compare our approach to two deep learning baselines—
compressed sensing with generative models (CSGM) [Bora
et al., 2017] and deep image prior (DIP) [Ulyanov et al.,
2018]. CSGM solves x̂ = f(argminz ‖y−Af(z)‖22) while

temperature in Figure 5 in Appendix C

Input CSGM DIP Ground truth

S
u
p
er

re
so

lu
ti
o
n
 x

4
R
an

d
o
m

 m
as

k
 p

=
0
.2

iFlow iFlow-L

Figure 2: Comparison of various reconstruction schemes.
The iFlow-L and iFlow methods refer to Algorithm 1 re-
spectively with and without the likelihood term.

Table 3: Performance on inverse problems measured in re-
construction SNR (dB)

Dataset CSGM DIP iFlow iFlow-L

RandGauss (m = 250)
MNIST 11.32 12.72 21.34 21.81
CelebA 8.98 11.25 8.90 8.91

RandMask (p = 0.15)
MNIST 3.85 4.94 4.76 10.10
CelebA 12.63 17.26 13.89 14.43

Super-resolution (×4)
MNIST 5.943 1.0 9.851 12.75
CelebA 11.08 14.12 17.36 20.07

Mask (s = 15 px)
MNIST 3.34 4.38 3.90 9.54
CelebA 13.42 21.31 21.74 21.79

Limited-view CT Chest 11.58 13.76 20.93 21.23

DIP solves x̂ = fθ(argminθ ‖y − Afθ(z)‖22) given a ran-
domly chosen fixed z and regularized by early stopping.
Figure 2 compares all methods for the superresolution and
random masking problems on the CelebA dataset while
Table 3 gives a comprehensive evaluation for all inverse
problems.

We also perform an ablation study to assess the influence of
including the prior likelihood as opposed to simply doing a
gradient descent with manifold projections [Raj et al., 2019].
The latter corresponds to setting λ = 0 in Algorithm 1. Table
3 clearly shows that accounting for the prior density and
not only support—that is, computing the MAP estimate—
performs better in almost all settings.

We mention that we attempted to compare with a method
involving projections proposed by Shah and Hegde [2018]
but found it to be 50 − 100× slower than iFlow. It was
thus infeasible to finalize this comparison. On average we
found that DIP converged the fastest followed by our method
which was about 2× slower. Finally, while each iteration of
CSGM was as fast as each of DIP, CSGM requires several
restarts which made the method about 4× slower than ours.

 We report the best results from CSGM with 10 restarts.

Note that the baselines [Bora et al., 2017, Ulyanov et al.,
2018, Shah and Hegde, 2018] were developed without injec-
tivity as a constraint. As a result they typically use off-the-
shelf GAN architectures inspired by [Radford et al., 2015],
but they are by design agnostic to architectural details. To
keep the comparisons fair we use the same generative model
fθ for all methods. This allows us to test the importance of
tractable inverses and likelihoods for the design of image
reconstruction algorithms based on generative priors.

4.3 POSTERIOR MODELING AND
UNCERTAINTY QUANTIFICATION

Next, we use TRUMPET priors for uncertainty quantifica-
tion in computed tomography. We work with a chest X-ray
dataset and use the limited-angle CT operator as the forward
operator, A. We choose a sparse set of nangles = 30 view
angles from 30◦ to 150◦, with a 60◦ missing cone.4 We
add 30dB noise to the measurements. The resulting inverse
problem is severely ill-posed and solving it requires regu-
larization. (Note that Table 3 includes the performance of
Algorithm 1 on this problem.)

Here we provide a pixel-wise uncertainty estimate of the
form EX∼pX|Y=y

|X − 〈X〉|p, with p = 1, 2, | · | the pixel-
wise absolute value, and 〈X〉 the posterior mean. In Figure 3,
we show the MAP estimate obtained from the iFlow-L al-
gorithm (Algorithm 1). We also show the Fourier spectrum
of the mean absolute deviation calculated in the Fourier
domain where the mean was calculated over the Fourier
transform of all samples from the posterior. We observe a
cone of increased uncertainty in the Fourier spectrum that
corresponds to the missing angles in the limited-view CT
operator. Furthermore, we observe a thick vertical bright
line that corresponds to uncertainty in predicting the loca-
tion of the ribs (which have a strong horizontal periodic
component) as shown in the middle plot of Figure 3.

Reassuringly, both the spatial- and the frequency-domain
representations of uncertainty correlate well with our intu-
itive expectations for this problem. Positions of the ribs in
space and the missing cone in the spectrum exhibit higher
uncertainty.

5 RELATED WORK

Normalizing flows have been introduced in [Dinh et al.,
2014]. The key to their success are invertible coupling layers
with triangular Jacobians. Different variants of the coupling
layer along with multiscale architectures [Dinh et al., 2016,

4We emphasize that the purpose of this numerical experiment
is to illustrate the UQ algorithm rather than provide a realistic,
competitive method. Indeed, in real CT the projections would be
taken in planes perpendicular to the spine.

Kingma and Dhariwal, 2018, Grathwohl et al., 2018] have
considerably improved performance of normalizing flows.
Glow [Kingma and Dhariwal, 2018] uses invertible 1 ×
1 convolutions to improve expressivity, producing better
samples than NICE and Real-NVP. Alas, training a Glow
model is extremely compute intensive—1 week on 40 GPUs
for the 5-bit 256× 256 CelebA dataset. A crucial drawback
of the mentioned models is that they are bijective so the
dimension of the latent and data spaces coincide. This results
in a large number of parameters and slow training: since
the ground data lies close to low-dimensional subset of RD,
training should encourage the model to become “almost non-
invertible” which makes the optimization more difficult.

Kumar et al. [2020] propose approximate injective flows
by using spectral regularization in auto-encoders. However
they lack access to likelihoods. Further, their training strat-
egy is only a proxy for injectivity. Very recently, Brehmer
and Cranmer [2020] proposed injective flows to learn a data
distribution on a manifold very similar to our work, includ-
ing a two-stage training scheme we use. However, they use
regular normalizing flow architectures with zero padding in
the latent space which results in architectures that are very
expensive to train. Cunningham et al. [2020] build injective
flows by adding noise to the range; this requires stochastic
inversion whereas ours is deterministic.

In a parallel development, autoregressive flows were shown
to have favorable expressivity compared to normalizing
flows. We refer to Papamakarios et al. [2017], Kingma et al.
[2016], Oord et al. [2016] and the references therein for a
more extensive account.

6 DISCUSSION AND CONCLUSION

We proposed TRUMPETs—a flow-based generative model
that is injective by construction. TRUMPETs alleviate the
main drawback of invertible normalizing flows which is that
they are very expensive to train. We showed that TRUM-
PETs are competitive in terms of generative modeling per-
formance and that the fast inverse on the range markedly
improves reconstructions in ill-posed inverse problems. We
also showed how to use TRUMPETs to model posteriors
and perform uncertainty quantification directly in the low-
dimensional latent space. Currently our reconstructions on
data lack high frequency features; this is common in nor-
malizing flow models [Dinh et al., 2016]. Strategies such as
adding the adversarial loss in the MSE phase of training may
help alleviate this drawback. Furthermore, using a richer
class of coupling layers may help—Durkan et al. [2019]
show that flows based on rational quadratic splines are more
expressive. Integrating such layers also holds promise for
improving the expressivity of TRUMPETs.

Our work combines several basic ideas in an intuitive way
that yields gains in computational efficiency and modeling

MAP estimate Samples from the posterior distributionGround truth Pseudoinverse

Figure 3: Uncertainty quantification for limited view CT.

quality. It is worth noting that recent results on universal-
ity of globally injective neural networks [Puthawala et al.,
2020] and universality of flows [Teshima et al., 2020] sug-
gest that TRUMPETs are universal approximators of prob-
ability measures concentrated on Lipschitz manifolds; a
rigorous proof is left to future work.

ACKNOWLEDGEMENTS

ID and AK were supported by the European Research Coun-
cil Starting Grant 852821—SWING. MVdH gratefully ac-
knowledges support from the Department of Energy under
grant DE-SC0020345, the Simons Foundation under the
MATH + X program, and the corporate members of the
Geo-Mathematical Imaging Group at Rice University.

References

Martin Arjovsky and Léon Bottou. Towards principled meth-
ods for training generative adversarial networks. arXiv
preprint arXiv:1701.04862, 2017.

William M Boothby. An introduction to differentiable mani-
folds and Riemannian geometry. Academic press, 1986.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Di-
makis. Compressed sensing using generative models.
arXiv preprint arXiv:1703.03208, 2017.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous
manifold learning and density estimation. arXiv preprint
arXiv:2003.13913, 2020.

Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-
Henrik Jacobsen. Residual flows for invertible generative
modeling. arXiv preprint arXiv:1906.02735, 2019.

Edmond Cunningham, Renos Zabounidis, Abhinav
Agrawal, Ina Fiterau, and Daniel Sheldon. Nor-
malizing flows across dimensions. arXiv preprint
arXiv:2006.13070, 2020.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

Conor Durkan, Artur Bekasov, Iain Murray, and George
Papamakarios. Neural spline flows. arXiv preprint
arXiv:1906.04032, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Ad-
vances in neural information processing systems, 27:
2672–2680, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. Ffjord: Free-form con-
tinuous dynamics for scalable reversible generative mod-
els. arXiv preprint arXiv:1810.01367, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash
equilibrium. arXiv preprint arXiv:1706.08500, 2017.

Alfred Horn. On the singular values of a product of com-
pletely continuous operators. Proceedings of the National
Academy of Sciences of the United States of America, 36
(7):374, 1950.

Michael F Hutchinson. A stochastic estimator of the trace
of the influence matrix for laplacian smoothing splines.
Communications in Statistics-Simulation and Computa-
tion, 18(3):1059–1076, 1989.

Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oy-
allon. i-revnet: Deep invertible networks. arXiv preprint
arXiv:1802.07088, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. Improv-
ing variational inference with inverse autoregressive flow.
URL http://arxiv. org/abs/1606.04934, 2016.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Advances in neu-
ral information processing systems, pages 10215–10224,
2018.

 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Abhishek Kumar, Ben Poole, and Kevin Murphy. Regular-
ized autoencoders via relaxed injective probability flow.
arXiv preprint arXiv:2002.08927, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings
of the IEEE international conference on computer vision,
pages 3730–3738, 2015.

François Monard, Richard Nickl, and Gabriel P Paternain.
Consistent inversion of noisy non-abelian x-ray trans-
forms. Communications on Pure and Applied Mathemat-
ics, 2020.

Klaus Mosegaard and Albert Tarantola. Monte carlo sam-
pling of solutions to inverse problems. Journal of Geo-
physical Research: Solid Earth, 100(B7):12431–12447,
1995.

Aaron Van Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks.
In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 1747–1756,
New York, New York, USA, 20–22 Jun 2016. PMLR.
URL http://proceedings.mlr.press/v48/
oord16.html.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation. In Ad-
vances in Neural Information Processing Systems, pages
2338–2347, 2017.

Michael Puthawala, Konik Kothari, Matti Lassas, Ivan Dok-
manić, and Maarten de Hoop. Globally injective relu
networks. arXiv preprint arXiv:2006.08464, 2020.

Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Ankit Raj, Yuqi Li, and Yoram Bresler. Gan-based projector
for faster recovery with convergence guarantees in linear
inverse problems. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 5602–
5611, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical im-
age computing and computer-assisted intervention, pages
234–241. Springer, 2015.

Viraj Shah and Chinmay Hegde. Solving linear inverse
problems using gan priors: An algorithm with provable
guarantees. In 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages
4609–4613. IEEE, 2018.

He Sun and Katherine L Bouman. Deep probabilistic imag-
ing: Uncertainty quantification and multi-modal solu-
tion characterization for computational imaging. arXiv
preprint arXiv:2010.14462, 2020.

Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono,
Masahiro Ikeda, and Masashi Sugiyama. Coupling-based
invertible neural networks are universal diffeomorphism
approximators. arXiv preprint arXiv:2006.11469, 2020.

Hoang Thanh-Tung and Truyen Tran. Catastrophic forget-
ting and mode collapse in gans. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages
1–10. IEEE, 2020.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9446–
9454, 2018.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Moham-
madhadi Bagheri, and Ronald M Summers. Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of com-
mon thorax diseases. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
2097–2106, 2017.

Jay Whang, Qi Lei, and Alexandros G Dimakis. Com-
pressed sensing with invertible generative models and
dependent noise. arXiv preprint arXiv:2003.08089, 2020.

http://proceedings.mlr.press/v48/oord16.html
http://proceedings.mlr.press/v48/oord16.html

