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Abstract

Updating observations of a signal due to the delays
in the measurement process is a common problem
in signal processing, with prominent examples in a
wide range of fields. An important example of this
problem is the nowcasting of COVID-19 mortality:
given a stream of reported counts of daily deaths,
can we correct for the delays in reporting to paint
an accurate picture of the present, with uncer-
tainty? Without this correction, raw data will often
mislead by suggesting an improving situation.
We present a flexible approach using a latent
Gaussian process that is capable of describing
the changing auto-correlation structure present in
the reporting time-delay surface. This approach
also yields robust estimates of uncertainty for
the estimated nowcasted numbers of deaths. We
test assumptions in model specification such as
the choice of kernel or hyper priors, and evaluate
model performance on a challenging real dataset
from Brazil. Our experiments show that Gaussian
process nowcasting performs favourably against
both comparable methods, and against a small
sample of expert human predictions. Our approach
has substantial practical utility in disease model-
ling — by applying our approach to COVID-19
mortality data from Brazil, where reporting delays
are large, we can make informative predictions on
important epidemiological quantities such as the
current effective reproduction number.

1 INTRODUCTION

In many real-world settings, current observations from a
noisy signal can be systematically biased, with these biases
only being corrected after subsequent updates create more

complete data. Often, these updates occur much later in
the future due to data processing or reporting delays. Not
accounting for these delays would result in biased predic-
tions, while waiting for updates would result in a lack of
timely estimates. The need for timely estimates to predict
the present is colloquially known as nowcasting, and its
importance has been shown in a wide range of fields such as
actuarial science, economics, and epidemiology [Kaminsky,
1987, Lawless, 1994, Bastos et al., 2019, McGough et al.,
2020].

Nowcasting, as defined by Banbura et al. [2010] at the
European Central Bank, is the process of predicting the
present, the very recent past, and very near future using time
series data known to be incomplete. An example from eco-
nomics is using monthly data to nowcast the current state
of important indicators for an economy such as GDP or
income. More broadly, nowcasting is relevant for scenarios
not only where the data are incomplete, but when the data
are comprised of a biased subsample that will be updated in
the future retrospectively, following lengthy delays.

In epidemiology, nowcasting is required due to delays in
reporting arising from limitations in testing capacity, data
curation, and the requirement for pseudonymisation of pa-
tient data [Bastos et al., 2019]. These delays are further
compounded by the noise inherent in such data due to lim-
ited sampling (typically only a subset of the population is
sampled). Throughout this paper, we specifically focus on
the delays in the reporting of deaths. An individual dies of a
disease on a given day, but the delay between this event and
the death being reported (and appearing in the dataset) can
be substantial because of the reasons noted above. These
reporting delays mask the true current state of the epidemic,
and have material consequences for our understanding of
both present and future evolution of the epidemic. For ex-
ample, estimation of key epidemiological quantities such
as the effective reproduction number (Rt) would be sys-
tematically biased. Contemporary, real-time and unbiased
estimates are necessary for effective public health planning
and policy.
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Figure 1: A) Reported daily hospital deaths are censored at recent times due to reporting delays. This can be seen by
comparing the raw data with a ground truth from two months in the future, when the records have been backdated. B-C) The
effective reproduction number Rt for SARS-CoV-2 infections in Brazil from 30-Jun-2020 to 23-Nov-2020, estimated using
deaths from the raw reported data released on the 23-Nov-2020, and using a backdated ground truth based on data released
on 08-Feb-2021. D) Rt estimates based on nowcasted mortality data. Whereas the raw data results in misleading estimates
of Rt, with the estimated Rt < 1, by applying nowcasting to the deaths counts we achieve a picture of the epidemic closer
to the truth.

In this paper we propose a nowcasting framework based on
latent Gaussian processes (GPs). This methodology is used
to address the specific problem of delayed reporting in the
true incidence of deaths due to COVID-19 in Brazil.

1.1 RELATED METHODS

Previous methods for nowcasting exist in several different
contexts. Bańbura and Modugno [2014] propose a maximum
likelihood approach with a dynamic factor model to predict
GDP. Shi et al. [2015] use a deep learning approach based
on LSTM to nowcast rainfall intensity. Codeco et al. [2018]
provide a framework to gather epidemiological information
and correct for delays in reporting in Brazilian data. Bas-
tos et al. [2019] present a Bayesian hierarchical model for
nowcasting applied on data relating to dengue fever and
severe acute respiratory infection cases. In McGough et al.
[2020] a Bayesian nowcasting approach is proposed that
produces accurate estimates that capture the time evolution
of the epidemic curve. Specifically for COVID-19, Bayesian
nowcasting approaches have been used to correct for the
reporting delays in Bavaria and Sweden [Günther et al.,
2020, Altmejd et al., 2020]. Further discussion around the
challenges in estimating reporting delays are also addressed
in Seaman and De Angelis [2020]. Finally the problem and
background context in Brazil for delays in reporting with
corrected data are further explained in Bastos et al. [2020],
Villela [2020].

Our methods build upon and generalize the NobBS (Now-
casting by Bayesian Smoothing) method originally proposed
by McGough et al. [2020]. NobBS is a Bayesian method

that produces smooth and accurate nowcasted estimates in
the presence of multiple diseases. NobBS allows for both
uncertainty in the delay distribution and the evolution of the
epidemic curve. While an effective method, NobBS has sev-
eral limitations, such as inability to pick up fast-occurring
changes in the delay distribution, which we overcome in
this paper. The extensions we show result in comparable
performance for COVID-19 mortality surveillance in Brazil,
but present a better fit to the dynamic delays distribution.

2 OUR CONTRIBUTIONS

The problem tackled in this paper is conceptually illustrated
in Figure 1. The black points are the data available to us
at a given time, and the red the ground truth that is only
available much further in the future. It can be seen that the
discrepancy between the presently available data and the un-
derlying ground truth data grows markedly as we approach
the present – a distinguishing characteristic of reporting
delays. Alongside this, in Figure 1 we also show 3 estimates
of the effective reproduction numberRt (defined as the aver-
age number of infections an infected individual will go on to
infect), obtained using a Bayesian hierarchical renewal-type
model [Flaxman et al., 2020, Mellan et al., 2020, Mishra
et al., 2020]. Understanding this epidemiological quantity is
vital – Rt > 1 results in epidemics growing, while Rt < 1
results in epidemics declining. Figure 1B shows estimates
of Rt derived from the raw data, while Figures 1C and 1D
show estimates of Rt derived from the ground truth data
and our nowcasting approach respectively. These plots show
that not correcting for delays can lead to a fundamentally



 different picture of the current epidemic state. Delays in
death reporting lead to an underestimation of the true num-
ber of deaths in the observed data - the result is a suggestion
of a declining epidemic, despite the fact that the epidemic is
actually growing.

In this paper we focus on the Brazilian death data from the
publicly available hospitalisation database with deaths from
both confirmed and suspected COVID-19 diagnostic status
[Ministério da Saúde, 2020]. Our central premise is that
using these daily death data alone results in policy decisions
being made based on false statistics and trends [Villela,
2020]. To facilitate well informed policy making based on
unreliable data streams we propose and implement a now-
casting method using latent Gaussian processes. These GPs
are capable of capturing the complex correlation structure
in delayed data and present an effective means to correct
the reporting delays. We use this corrected death data to
calculate the effective reproduction number Rt using raw
retrospective observed data, nowcasted data and the ground
truth updated dataset (Figure 1).

Our contributions are the following:

• We provide a new, flexible and accurate way to cor-
rect for delays in reporting. Our framework solves the
nowcasting problem through using latent GPs, and
provides realistic estimates for the deaths today given
incomplete data. Our approach closely predicts the non
observed/missing values and simultaneously learns the
underlying (latent) data generating mechanisms of the
delays.

• We compare our approach to an established alternative
method (NobBS), and in a novel contribution, also
provide a comparison to a small human expert panel of
infectious disease epidemiologists. Domain knowledge
is of primary importance for such applications, and
is frequently the primary approach taken to interpret
data. In generating estimates that are improved over
both existing computational methods as well as human
experts, we demonstrate the utility of our approach.

• An important contribution of this work are the results
and estimates provided. Implementing our approach
enables generating of more accurate estimates of the re-
production number; and in turn, a better understanding
of the evolution of the COVID-19 epidemic in Brazil.
Our framework is implemented in the easy to use prob-
abilistic program PyStan, and therefore facilitates use
in low and middle income settings with limited tech-
nical expertise.

The structure of the paper is as follows: In section 3 we
briefly introduce Gaussian processes and describe the latent
GP nowcasting models with several variants. In section 4 we
describe the data and perform retrospective tests to evaluate
the accuracy of the new models and compare them with a
sample of human experts predictions. Finally, we discuss the

advantages and limitations of the GP nowcasting framework
in section 5.

3 GAUSSIAN PROCESS NOWCASTING

3.1 NOWCASTING

Let nt denote the response variable of interest that needs
to be nowcasted at time t. In this paper nt represents the
reported COVID-19 mortality in week t. The mortality ob-
servations, in general, consist of measurements from an
online data source, subject to distributed observation delays.
The central task of nowcasting approaches is to identify a
regular time-delay structure, and use this to estimate nt, at a
time when it has only been partially observed. The structure
that nowcasting identifies is the additive decomposition of
the observable over the reporting delay d. That is, the true
signal at a given time t is the sum over all the delayed partial
observations for that time:

nt =
∑
d

nt,d . (1)

The intuition behind this formulation is that the "true" deaths
that occurred at time t are distributed over various delays d
due to the delays in reporting them.

A visual example of partial observation at recent times is
the right-censored epidemiological data shown in Figure 2A.
For all data releases, we observe precipitous declines in con-
temporary data, which is then subsequently revised upwards
as the data becomes more complete. In the COVID-19 con-
text this occurs due to time lags in registering and reporting
death certificates [Villela, 2020]. Figure 2B shows that most
deaths are reported to near completeness after around 5
weeks, and 90% are reported within 10 weeks. Splitting the
data up by delay index we form a 2D array in time and delay,
nt,d. The filled-in part of nt,d, called the reporting triangle,
is shown in Figure 2C. The lower triangle part of this 2D
array is missing, since at any time T only the number of
deaths reported with delay d ≤ T − t are known for each
epidemiological week t.

The representation of the data by time and delay, rather
than time and reporting date, induces a regular structure —
one that is auto-correlated and approximately monotonically
decreasing in delay (Figure 2C). This relatively simple struc-
ture makes this problem amenable to statistical modelling.
The lower triangle of the nt,d matrix can be predicted with
the model, and therefore an estimate of the true signal is
available for any time up to the current time by Eqn. 1, by
summing over the delays. This is a common theme from
which variations of nowcasting branch out.

To model the discrete positive values of nt,d, we can use a
Poisson or a negative-binomial likelihood for overdispersed
data:

nt,d ∼ NB(λt,d, r) . (2)
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Figure 2: A) Daily COVID-19 deaths in Brazil as reported in releases of data between July-2020 and Feb-2021. Each line
represents a single release. B) Total number of deaths reported per reporting delay in weeks. Most deaths are reported with
delay ≤ 5 weeks. C) The reporting triangle, showing the number of COVID-19 deaths reported for each week with specific
reporting delay. Mortality data were obtained from the SIVEP-Gripe hospitalisation database [Ministério da Saúde, 2020].

In the negative-binomial case, the dispersion parameter r is
a hyperparameter that can be learnt or given an informative
prior based on the problem. The latter approach is common
among the established Bayesian nowcasting methods [Bas-
tos et al., 2019, Günther et al., 2020, McGough et al., 2020].
The mean of the negative binomial, λtd , is often modelled as
a random walk [Bastos et al., 2019] or as an auto-regressive
process [McGough et al., 2020] along the time dimension,
that is joint independent with a learnt vector of delays. The
second approach is taken in the NobBS model [McGough
et al., 2020], used in this paper as a benchmark. Specifically,
the NobBS model describes λtd as:

log(λt,d) = αt + log(βd) (3)

where αt is a latent signal for week t and βd is the probabil-
ity of reporting with delay d. It is worth noting, that with this
approach, the distribution of delays βd is fixed throughout
the window of analysis.

This approach has been successful for dengue and influenza
surveillance [Codeco et al., 2018, Bastos et al., 2019], but
has limitations in terms of the generality of the time-delay
covariance structure that can become apparent in more dy-
namic nowcasting scenarios, such as an evolving epidemic
with changing delay distributions (Figure S1 in the Supple-
ment). Such issues can be minimised by tuning the window
over which the static delay vector is estimated, or by manu-
ally adding cross-term covariates. Here we employ Gaussian
processes as a generic flexible alternative to model arbit-
rarily structured λtd . The details of this are set out in the
following section.

3.2 LATENT GP

The introductory model we consider consists of a latent
GP with a 1D kernel. In general terms, GPs are a class of
Bayesian non-parametric models that define a prior over
functions. They are a powerful tool in machine learning,

for learning complex functions with applications in both
regression and classification problems [Rasmussen and Wil-
liams, 2006, Wilson and Adams, 2013]. In recent years GPs
have gained popularity in statistics and in machine learning,
due to their flexibility and excellent performance for many
spatial and spatiotemporal problems [Wilson and Adams,
2013, Flaxman et al., 2015], including COVID-19 model-
ling [Qian et al., 2020]. The covariance function or kernel
together with the mean function completely define a GP.
The mean function is the base function around which all of
the realizations of the GP are distributed. The covariance
kernel is a crucial component of the Gaussian process, as
it describes the covariance of the Gaussian process random
variables i.e. how similar two points are. Therefore, the ker-
nel defines the shape of the distribution and which type of
functions are more probable.

One of the most popular choices of covariance kernel, and
the one we chose to introduce the model with, is the squared
exponential kernel, kSE, with entries defined by a covariance
function kSE(·, ·) such that

kSE(ti, tj) = α2exp
(
−||ti − tj ||

2
2

2ρ2

)
. (4)

The parameter α defines the kernel’s variance scale, and ρ
is a lengthscale parameter that specifies how nearsighted the
correlation between pairs of time points (ti) is. The kernel
results in a prior over a set of functions to describe, λt,d, the
mean of the statistical model in Eqn. 2. This is modelled as
a zero mean log-space latent Gaussian process

log(λt,d) ∼ GP(0, kSE) . (5)

Due to weak identifiability [Rasmussen and Williams, 2006],
a strategy to identify the hyperparameters ρ and α is to fix
the lengthscale ρ to the maximum delay time considered in
the nowcasting problem, and learn only the scale parameter
α. Markov Chain Monte Carlo (MCMC) is used in order



 to generate posterior summaries for arbitrary (non-normal)
latent Gaussian processes.

3.3 GENERALISED MODEL

3.3.1 Additive Kernel Model

The basic model introduced above can be extended to
provide a more expressive description of the data. The pur-
pose of this is to be able to describe the complex structure
in nt,d.

Using the compositional kernel approach [Duvenaud et al.,
2013, Wilson and Adams, 2013, Wilson et al., 2016], we
can create a new additive kernel over multiple lengthscales,
indexed s, as

kadd =
∑
s

ks ,

log (λt,d) ∼ GP(0, kadd) . (6)

The lengthscale hyperparameters are fixed or given strongly
informative priors, ρs, while each αs is learnt. In the
simplest case we consider a kernel with two lengthscale
contributions, short- and long-range correlation structure:

kadd(ti, tj) = klong(ti, tj) + kshort(ti, tj) + σ2δij , (7)

plus a regularising term with a Kronecker delta function
ensuring σ2 Gaussian noise is only added when i = j. The
choice of kernel confers bias that can result in a better gen-
eralisation. The logic of this kernel is to split the covariance
into two components: (a) a smooth long-range component,
used to extrapolate the trend into the unknown part of the
reporting triangle where large distances from the observed
points exist and (b) a part for describing variation in nt,d
over shorter lengthscales. Additionally, the separation of
kernels provides a generic method to describe more com-
plex data generating processes – for example, the long-range
kernel can be squared-exponential, while the short-range
can be a less smooth type with a different power spectrum
such Matérn (1/2). This can be used to create a general stat-
istical model for all of nt,d. Furthermore, in this regard the δ
contribution provides a source of regularisation which may
be useful if there is reason to believe nt,d values are subject
to variation beyond the scope of the basic nowcasting frame-
work. For example, if a death can switch category from a
COVID-19 suspected death to a cause other than COVID-19
in later data releases, this could result in a negative nt,d
count, which can be modelled as an error to be regularised.

A further modification that can be applied if the time-delay
surface nt,d has a complex structure, is to split the data
into two components and model each with separate kernels.
For example, if delays of 0 or 1 weeks account for a large
fraction of total counts, they can be considered separately to
delays > 1. This approach is considered later in section 4.2.

But a more generic formulation is to consider a 2D kernel to
fully account for the time-delay correlation structure, which
is introduced below.

3.3.2 2D Kernel Model

As a further expansion of the approach described before, we
introduce a separable two dimensional kernel over time and
delay, k((ti, tj), (di, dj)) = kt(ti, tj)kd(di, dj). Separable
kernels can be efficiently implemented using Kronecker
product algebra as described in Flaxman et al. [2015]. Spe-
cifically, individual Gram matrices for time and delay are
combined using the Kronecker product such that

Kt,d = Kt ⊗Kd . (8)

As before, the kernel can be given an additive structure over
multiple lengthscales. For example,

klong(t, d) = ktlongk
d
long ,

kshort(t, d) = ktshortk
d
short ,

log (λt,d) ∼ GP(0, klong(t, d) + kshort(t, d)) . (9)

This approach captures the relationship between t and d. In
both 1D and 2D kernel approaches it is possible to perform
partial pooling of the models parameters by combining two
or more spatial locations with similar features, for example
neighbouring states, if limited data is available. In practice
however we found that there was a limited gain in doing so
as our approach works well with relatively few observations.

4 DATA AND MODEL PROPERTIES, FIT
AND TESTING

4.1 DATA

The numbers of deaths per date have been extracted from
the Brazilian Ministry of Health’s Sistema de Informação
de Vigilância Epidemiológica da Gripe (SIVEP-Gripe) data-
base [Ministério da Saúde, 2020]. SIVEP-Gripe is a large
publicly available database providing anonymised patient-
level records of all individuals who died or were hospitalised
with suspected or confirmed COVID-19 in Brazil [Bastos
et al., 2020, de Souza et al., 2020, Niquini et al., 2020]. New
data have been released regularly online, on a weekly basis,
in the second half of 2020 considered here. In this study,
we extracted all SIVEP-Gripe data releases from 7-July-
2020 to 31-May-2021. We consider all cases of suspected
or confirmed COVID-19 (class 4 and 5).

There are a number of potential sources of error in the
reported SIVEP data. One is underascertainment — sys-
tematic biases which are beyond the scope of correction
by this nowcasting methodology. Another source of error



 is delayed classification. After the initial input of patient’s
data into the database (usually at the time of hospitalisa-
tion), the entry might be later updated with clinical and
laboratory data, including confirmatory COVID-19 testing.
Further updates will include the outcome and its date (i.e.
date of death or date of hospital discharge) and cases receive
a final classification. Cases can be classified as confirmed
(class 5) or suspected COVID-19 (class 4), or other causes
(classes 1-3). Despite being described as a "final classifica-
tion", reclassification does occur, and is especially common
for unknown cases to be reclassified as COVID-19 once
results from confirmatory tests are informed to the health
authorities. On the other hand, some deaths attributed to
suspected SARS-CoV-2 infection are later "removed" from
the SIVEP database, due to duplicate filtering or because
they are eventually attributed to other diseases. That can
cause the number of deaths on certain days to decrease
in consecutive data releases, as shown in Figure S2 in the
Supplement.

The number of deaths per day as reported by each release
is presented in Figure 2, together with a reporting triangle,
showing the distribution of the reporting delays across time.
According to the SIVEP-Gripe dataset, over 90% of all
deaths have been reported with delay less than 10 weeks
(Figure 2B). We therefore choose the maximum reporting
delay D for our data to be D = 10, and sum up all deaths
which were reported with the delay longer than 10 weeks.
Finally, to create the reporting triangle appropriate for our
model, we aggregate the data into weeks.

4.2 MODEL FIT

We fit and present 7 models. For 1D kernel GPs, we consider
a single SE kernel (1D SE), and additive long- and short-
range component kernels (1D SE+SE and 1D SE+Mat). The
additive long- and short-range component kernels are also
considering splitting the data into across delay greater and
less than one (1D SE+SE data-split). Finally we consider
a 2D kernel GP model with additive long and short range
components (2D additive). The NobBS model of McGough
et al. [2020] is fitted and presented for reference of the
current state-of-the-art. All models are fitted to the SIVEP-
Gripe weekly COVID-19 deaths reported in Brazil, currently
available until 31-May-2021.

Posterior samples of the parameters in the models were gen-
erated using Hamiltonian Monte Carlo with Stan [Hoffman
and Gelman, 2014, Carpenter et al., 2017], using the PyStan
interface (version 2.19.0.0). For each fit we used 4 chains
and 1000 iterations, with 400 iterations dedicated to warm-
up. The convergence of each model fit was evaluated by
ensuring that R̂ < 1.01 for each parameter. Traceplots and
other MCMC diagnostic measures were also investigated
(Supplement, section 3).

Each of the models, characterised by the likelihood given
in Eq (2), and a latent GP part for modelling the λt,d (sec-
tion 3.2) is trained by supplying the reporting triangle nt,d
filled with data available up to the point of the nowcast.
Each of the parameters governing the model, such as over-
dispersion r or lengthscales and variances of the GPs are
learnt during the model fit. The best performing hyperpara-
meters of the prior distribution were selected conditioned on
the observed results. All of those parameters and their prior
densities are given in the Supplement, Table S1. The training
of the model and nowcasting through sampling each element
of the nt,d matrix is done simultaneously. Specifically, at
each iteration parameter values are sampled and immedi-
ately used to sample from the negative-binomial distribution
to obtain all elements of the nt,d matrix.

Other nowcasting methods, including NobBS, focus primar-
ily on estimating only the "missing" part of the nt,d array
and comparing the total numbers nt, that is sums of each
row of the array. Here, we aim to obtain a statistical model
explaining all elements of the nt,d matrix. The reason for
that is twofold: firstly, having a model that describes the
whole nt,d surface well increases the reliability of the model,
which is vital in any healthcare setting. Secondly, the SIVEP-
Gripe database contains hard to identify errors discussed in
section 4.1, therefore it is preferable to treat the reported
data with additional statistical uncertainty. The fit of the 2D
GP and the NobBS models to the nt,d matrix is presented in
Figure 3 and shows that the GP-based nowcasting method
fits the time-delay structure much closer than NobBS.

4.3 RETROSPECTIVE TESTING

To evaluate the accuracy of the competing nowcasting mod-
els, we fit all of the models to the retrospective data sets
available at each week between 05-Oct and 30-Nov-2020,
using the numbers of deaths recorded for the whole of Brazil.
This way we obtain 63 different sets of nowcasts, which we
compare to the numbers of deaths reported by the most
recent SIVEP-Gripe data release from 31-May-2021. The
start date gives us at least 15 weeks of training data for each
of the nowcasts. The end date of 30-Nov is 26 weeks before
the most recent release, so the number of deaths reported
in the most recent release can be confidently taken as a true
value. The comparison is done by calculating the weighted
and unweighted rooted mean squared error (RMSE) and the
continuous ranked probability score (CRPS) between the
"true" values from the most recent release and the nowcas-
ted values. The differences between the ground truth and
raw data, as shown in Figure 1A, are used as weights. For
each RMSE and CRPS evaluation, we use the mortality data
from the 10 weeks leading up to the date of the nowcast.

Out of all tested models, GP models with 1D kernels with 2
components (SE+SE and SE+Mat) performed worse than
the benchmark. The predictive accuracy of the other mod-
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Figure 4: Retrospective testing for the whole of Brazil using
the 2D additive GP model.

els was comparable to that of the benchmark, as shown in
Figure 5, while also simultaneously giving an appropriate
statistical description of the data (Figure 3). These results
provide empirical evidence that our proposed method, un-
der correct specification, gives a complete and accurate
approach for describing and nowcasting COVID-19 death
data. Model fits for the 2D additive GP model, including the
95% credible intervals (CrI) are shown in Figure 4 and the
fits for the remaining models are shown in Figures S8-S14.

In addition to the forecasting metrics, as a novelty, we also
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Figure 5: RMSE and CRPS evaluated for nt for tested now-
casting methods over the weeks 5-Oct to 30-Nov-2020. For
the weighted RMSE, the weights were calculated as a dif-
ference between the ground truth and the raw data available
up to the nowcasting date.

evaluate how the GP nowcasting model performs when
compared to human experts’ predictions. We asked a group
of infectious disease epidemiology experts to provide a
series of nowcasts when presented with time series data
up to 12-Oct and 23-Nov-2020. They were asked for their
estimates of the true numbers of deaths due to COVID-
19 in Brazil on the 08-Oct and 19-Nov-2020 (Figure S15).
The dates were specifically chosen to represent different
scenarios. In the first one, 08-Oct-2020, both the raw data
and the updated numbers of daily deaths were declining.
Whereas in the second date, 19-Nov-2020, the raw data
were declining while the updated release revealed that the
true numbers of daily deaths were actually increasing. For
this experiment, 36 anonymous experts provided their point
estimates and confidence intervals, which are presented in
Figure 6. To extract daily deaths from the model’s weekly
estimates, we performed a simple interpolation, through
setting the nowcasted number of deaths per week divided by
7 to the middle day of the given week, and interpolating the
remaining values using splines (example shown in Figure
S16).
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Figure 6: Human experts estimates of the true number of
deaths are shown with the black points and errorbars.



 Notably in both cases the median value guessed by the
human experts was not far from the "true" value (difference
of 55 and 73 deaths/day respectively for the human median
estimate and 13 and 72 for the nowcasting model mean),
however only 36% and 50% of all answers included the true
value within the provided credible intervals, respectively.
The confidence intervals given by the human experts were
comparable with the 95% CrI of the model, with the model
confidence narrower by 19 deaths/day for the first date and
27 deaths/day for the second date.

4.4 SENSITIVITY ANALYSIS

We performed basic sensitivity analysis for the 1D SE+SE
data-split GP model. We first varied the prior for the over-
dispersion parameter r. This parameter is often unidentifi-
able by the models and has to be chosen based on the data
[McGough et al., 2020]. This is confirmed by our sensitivity
analysis, where changing the prior for r changed the width
of the confidence interval, but did not impact the mean pre-
dictions, as shown in Figures S19 and S20. Changing the
priors for the scale parameter α to less informative, that is
increasing the variance of the priors does not significantly
affect the mean predictions (Figures S21, S22). Changing
the mean of the priors does however have an impact on the
predictions and leads to bi-modality of the posterior distri-
bution if the model is misspecified, e.g. when N(0, 1) priors
are used (Figures S23, S24).

5 DISCUSSION

Applying nowcasting to surveillance data suffering from
the reporting delays is crucial to accurate tracking of real-
time epidemic dynamics. The limitations associated with
using non-corrected data in epidemiological analyses is high-
lighted with our results of the Rt estimates shown in Fig-
ure 1. Use of this raw data leads to continued underestima-
tion of Rt and predicts a declining epidemic. Specifically, in
the month preceding the nowcast, the relative entropy value
for the ground truth and raw data Rt was on average 13.14
(max 43.8) and for ground truth and nowcasted data Rt only
0.26 (max 0.35) (see Figure S4). By contrast, the ground
truth results show that the epidemic remains uncontrolled,
with Rt remaining above 1 - an important conclusion also
captured by our nowcasting approach.

The recent emergence of SAR-CoV-2 variants of concern
with altered epidemiological characteristics, such as in-
creased transmissibility [Volz et al., 2021] or partial evasion
of immunity [Faria et al., 2021], emphasise the need accur-
ate and continued real-time epidemic tracking. To estimate
COVID-19 mortality in Brazil, during a resurgent phase
of the epidemic concurrent with the emergence of the P.1
variant, we perform nowcasting using data released on the
8-Feb-2021 and compare the predictions to the updated

numbers of deaths released on the 31-May-2021. The res-
ults of the nowcast for the whole of Brazil are shown in
Figure 7. The reported data show a decline in the weekly
number of deaths since epidemiological week 54 for Brazil,
however the nowcasted results show much higher numbers
of estimated weekly deaths, closer to the true value.
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Figure 7: Nowcasted and reported deaths due to COVID-19
death for Brazil up to 8-Feb-2021 generated with the 2D
additive GP model. 50% and 95% CrI for the GP model now-
casts are shown with the ribbon. True values were obtained
from the SIVEP release on the 31-May-2021.

The GP nowcasting framework we introduced was bench-
marked with the established NobBS method [McGough
et al., 2020]. The main theoretical difference between the
two proposed models is how the mean of the negative-
binomial distribution, describing the number of deaths per
week, is modelled. Our model uses a latent Gaussian process
to do that, whereas NobBS uses first-order random walk.
The 2D GP model improves on the RMSE for point predic-
tions and CRPS for the distribution of samples compared
to NobBS, as shown in Figure 5, and provides more real-
istic uncertainty intervals (Figures S13 and S14). As well as
improving predictive performance on the missing parts of
the reporting triangle, the GP framework provides a more
expressive statistical model capable of better explaining the
historical reporting data (see Figure 3).

One of the limitations of the approach described here is the
dependence on the historical data and the regularity of the
data releases, a limitation shared by many other nowcasting
approaches. Additional challenges include variability in the
distribution of reporting delays over time. For example, dur-
ing the initial phase of the Brazilian COVID-19 epidemic,
reporting delays were particularly severe. Delays in report-
ing are typically most extensive during outbreaks of a novel
pathogen (such as SARS-CoV-2), due to the limitations
in diagnostic availability and testing capacity. Relatedly,
during epidemic peaks, strain on healthcare systems and
administrative staff due to increasing admissions can also
result in lengthening of reporting delays.

The GP nowcasting models introduced in this paper can be



 readily used for real-time monitoring of the new outbreaks
of diseases, as relatively few data points are required to
train the model, ca. 3 months here. In other applications it is
possible more data may be required, depending on the distri-
bution of reporting delays, variance of counts, and regularity
and granularity of data. Although this paper focuses on ap-
plication of the proposed GP-based nowcasting framework
to the death counts for the whole country, the GP models can
be applied at finer spatial scales, as illustrated for individual
states of Brazil in Figure S5. This flexibility is important
due to the large heterogeneity of the healthcare system in
the country [Baqui et al., 2020].

6 CONCLUSIONS

We have presented a new approach to modelling time-delay
data, which can be used to nowcast online data streams that
have statistically distributed delays. Our approach uses lat-
ent Gaussian processes with additive kernels, and gives a
fully flexible and generic method to describe and predict
the data for unknown delays. The method has been demon-
strated for assessing mortality and estimating the effective
reproduction number for COVID-19 reporting in Brazil, but
can be used for other contexts in which delays in a measure-
ment process exist.

7 CODE AND DATA AVAILABILITY

Python, R and Stan code used to analyse the data
and fit the nowcasting models is available at https:
//github.com/ihawryluk/GP_nowcasting.
The SIVEP-Gripe database [Ministério da Saúde, 2020]
is available to download from Brazil Ministry of Health
website https://opendatasus.saude.gov.br/
dataset/bd-srag-2020.
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