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Abstract

Structural causal models postulate noisy functional
relations among a set of interacting variables. The
causal structure underlying each such model is nat-
urally represented by a directed graph whose edges
indicate for each variable which other variables it
causally depends upon. Under a number of differ-
ent model assumptions, it has been shown that this
causal graph and, thus also, causal effects are iden-
tifiable from mere observational data. For these
models, practical algorithms have been devised
to learn the graph. Moreover, when the graph is
known, standard techniques may be used to give
estimates and confidence intervals for causal ef-
fects. We argue, however, that a two-step method
that first learns a graph and then treats the graph as
known yields confidence intervals that are overly
optimistic and can drastically fail to account for the
uncertain causal structure. To address this issue we
lay out a framework based on test inversion that al-
lows us to give confidence regions for total causal
effects that capture both sources of uncertainty:
causal structure and numerical size of nonzero ef-
fects. Our ideas are developed in the context of
bivariate linear causal models with homoscedastic
errors, but as we exemplify they are generalizable
to larger systems as well as other settings such as,
in particular, linear non-Gaussian models.

1 INTRODUCTION

Anticipating the cause and effect of actions is a task the
human brain is able to master every day, yet it is challenging
to devise statistical methods that reliably infer cause-effect
relations from available data. The field of causal discovery
seeks to address this challenge by clarifying when it is theo-
retically possible to infer a causal effect and by developing

practical methods to estimate the effect from data [Pearl,
2009, Spirtes et al., 2000]. A widely studied approach adopts
the paradigm of structural causal models, in which each vari-
able is a function of a subset of other variables (its causes)
and a stochastic error term; see also Peters et al. [2017]
or Maathuis et al. [2019, Part IV]. The causal perspective
results from viewing these functions as mechanisms that
assign values based on the values of causes. Algorithms for
causal discovery infer the structure of such a causal model,
which is naturally represented by a directed graph whose
edges point from causes to effects. Moreover, for a known
causal graph, standard methods give point estimates and
confidence intervals for a causal effect of interest; at least,
this is the case in the causally sufficient setting, where all
relevant variables have been observed.

It is straightforward to combine a method that learns a graph
with a method to subsequently estimate and make confi-
dence statements about causal effects. However, such a two-
step approach tacitly conditions away the uncertainty that
arises from the data-driven model choice and ignores the
uncertainty that exists with respect to the causal structure.
As a result, this approach is overly optimistic in its conclu-
sions about existence and strength of causal effects. Despite
the extensive literature that exists on causal discovery, we
are not aware of prior work that accounts for uncertainty in
the causal structure when providing confidence statements
about the inferred causal direction or effect size. Here, the
term ‘confidence’ is used in the technical sense of confi-
dence sets with a given desired frequentist coverage proba-
bility. An entirely different approach that we do not consider
here would be to form Bayesian credible sets. Indeed, a
number of authors have pursued Bayesian approaches, but
primarily with a focus on the uncertainty in the graphical
structure as opposed to causal effects; see Hoyer and Hyt-
tinen [2009], Claassen and Heskes [2012], and Cao et al.
[2019] for three selected examples.

In this article we present a framework to construct confi-
dence intervals for the total causal effect that account for the
uncertainty inherent in the data-driven selection of a causal

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:David Strieder <david.strieder@tum.de>?Subject=Your UAI 2021 paper
mailto:Mathias Drton <mathias.drton@tum.de>?Subject=Your UAI 2021 paper


 model. The setting we focus on pertains to the case in which
we only have access to observational data but consider re-
stricted structural causal models for which causal structure
and effects are nevertheless identifiable. Specifically, we
consider the simplest such setting, namely, linear structural
equation models with errors that are homoscedastic, i.e., of
equal variance [Peters and Bühlmann, 2014]. Their causal
ordering is identifiable as it corresponds to an ordering of
conditional variances [Chen et al., 2019, Ghoshal and Hon-
orio, 2018]. Our presentation focuses on this setting and
also the two-variable case, but the framework we lay out in
Section 3 is general and can be applied to larger systems as
well as other model classes, in particular, linear models with
non-Gaussian errors, as we also discuss in Sections 4-5.

2 BACKGROUND

This section reviews linear structural equation models and
the total causal effect that is the central object of study.
Moreover, we discuss the difficulties of applying resam-
pling methods for statistical inference and review the test-
inversion approach.

2.1 STRUCTURAL EQUATION MODELS

Consider observational data in the form of a sample of
independent copies of a random vector X = (X1, ..., Xd)
which, without loss of generality, is assumed to have zero
mean. Linear structural equation models (LSEMs) assume
that X solves the equation system

Xj =
∑
i 6=j

βjiXi + εj , j = 1, ..., d, (1)

where B := [βji]
d
j,i=1 are unknown parameters that consti-

tute direct causal effects between the variables, and the εj
are independent error terms with mean zero. Following a
line of work initiated by Peters and Bühlmann [2014], we
further assume the errors to be homoscedastic, that is, for
an unknown variance parameter σ2 ∈ (0,∞) we have

Var[ε1] = · · · = Var[εd] = σ2. (2)

Each specific LSEM restricts a subset of the parameters βji
to be zero. Put differently, each model is associated to a
directed graph G and constrains βji = 0 whenever G does
not contain edge i → j. As in related work, we assume G
to be a directed acyclic graph (DAG). Then the matrix B is
permutation similar to a strictly lower triangular matrix, and
system (1) admits the unique solution X = (Id − B)−1ε,
where Id is the identity. Hence, X has covariance matrix

E[XXT ] = σ2(Id −B)−1(Id −B)−T . (3)

2.2 TOTAL CAUSAL EFFECT

In the causal interpretation of LSEMs the equations in (1)
are viewed as making assignments, with the variable on the
left-hand side being assigned the value specified on the right-
hand side. In this framework, the effect of an experimental
intervention that externally sets the value of Xi to xi is then
captured by replacing the ith equation in (1) by Xi = xi. In
probabilistic notation this is expressed as do(Xi = xi), see
Pearl [2009].

Our interest is in the total causal effect that an intervention
on variable Xi has on another variable Xj . In linear models
we may quantify this effect by considering a unit change in
the intervention value xi. The total effect of Xi on Xj is
then

C(i→ j) :=
d

dxi
E[Xj | do(Xi = xi)] = (Id −B)−1

ji .

Note that C(i → j) = 0 if there does not exist a directed
path from i to j in the underlying DAG G.

Our goal in this article is to construct confidence intervals for
C(i→ j) when the underlying causal structure is unknown
and has to be learned. We emphasize that this is a well-
defined problem when the causal structure is identifiable, as
in the homoscedastic setting laid out in Section 2.1. Indeed,
in such a setting, every feasible distribution (or here simply,
covariance matrix) uniquely determines a minimal causal
graph which entails a unique value for C(i→ j).

Lacking alternative methods, a commonly used “naive” ap-
proach is to form confidence intervals by splitting the two
involved tasks: First, the model, i.e., pattern of zero-entries
of B, is estimated and, second, confidence intervals for the
causal effects within the model are derived. This procedure,
however, tacitly conditions away the uncertainty that arises
from the data-driven model choice. For this reason, such
naive confidence intervals often have poor coverage prob-
abilities, especially under high uncertainty with respect to
the model. For example, consider a bivariate example with
a small true causal effect in one of the two possible causal
directions. If the wrong causal ordering is learned, which
happens with probability close to 0.5, one concludes with
certainty yet wrongly that the causal effect is zero or for-
mally one concludes, no matter the significance level, the
confidence interval is the singleton set 0. Hence, almost
half the time the confidence interval will not cover the true
non-zero parameter.

In the remainder of the paper we propose methods to address
this issue.

2.3 RESAMPLING

Bootstrapping, subsampling and other resampling proce-
dures are often applied to construct confidence intervals



 based on estimators whose sampling distribution is diffi-
cult to derive. Resampling also offers a seemingly straight-
forward solution to the problem considered here. This at-
tempted solution proceeds by computing for each resampled
data set a causal effect estimate that is obtained by con-
catenating a consistent model selection method that learns
the graph and a consistent estimator of the causal effect
in the learned model. This concatenation is well defined
by the identifiability of homoscedastic LSEMs [Peters and
Bühlmann, 2014, Chen et al., 2019], and it yields a function
Tij such that Tij(Σ) = C(i → j) for all covariance matri-
ces Σ = Var[X1, . . . , Xd] that come from a homoscedastic
LSEM specified by (1) and (2). However, bootstrap proce-
dures that evaluate Tij on resampled data are not valid when
there is non negligible uncertainty about the model. Indeed,
bootstrap/subsampling procedures may fail drastically when
the mapping Tij lacks smoothness [Andrews and Guggen-
berger, 2010, Drton and Williams, 2011]. Our simulations
in Section 3.4 validate those problems as can be seen in
Table 1, even in our simplified two-variable setting with
generous sample size bootstrap methods do not achieve the
required coverage probability. We emphasize that Drton and
Williams [2011] demonstrate that for complex composite
hypotheses settings (as in our case), the asymptotic behav-
ior of bootstrap tests and confidence intervals is difficult to
predict, even in low dimensions.

The subtleties for homoscedastic LSEMs stem from the fact
that the set of covariance matrices that are associated to
at least one possible DAG is a union of smooth manifolds
and singular at the intersections of the manifolds. Figure 1
depicts this for d = 2 variables, where the two largest
graphs 1 → 2 and 1 ← 2 each define a 2-dimensional
subset of the 3-dimensional cone of covariance matrices.
The singular points are where the two models meet, and
their existence invalidates bootstrapping as a method for
correctly capturing model uncertainty. This fact is again
underlined by our simulations in Section 3.4, see Table 1.
Coverage failure occurs for small true causal effects and
therefore further discredits bootstrapping as a method for
calculating reliable confidence intervals for causal effects in
practice.

Let the cone of positive definite matrices be denoted by

M := {Σ ∈ Rd×d : ΣT = Σ, Σ positive definite}.

It is possible to define continuous extensions T̃ :M→ R
for Tij . However, in our exploration of such continuous
extensions for d = 2 variables, we were unable to give ex-
tensions for which there exists a unique scaling sequence τn
such that τn(T̃ (Σ̂)− T̃ (Σ)) always converges to a nonde-
generate limit – here, Σ̂ is the empirical covariance matrix.
Convergence to nondegenerate limits is required for sub-
sampling methods [Politis et al., 1999].

Figure 1: The set of 2× 2 covariance matrices coming from
LSEMs with homoscedastic errors.

2.4 INVERSION OF TESTS

In order to circumvent the difficulties posed by the non-
smooth nature of the causal effect of interest, we develop in
the following sections an approach that leverages the duality
between statistical hypothesis tests and confidence regions.
Let α ∈ (0, 1) be a fixed significance level. Suppose that
for each attainable value ψ of the causal effect C(i→ j) we
have a level α test of the hypothesis that the effect is indeed
ψ. Let A(ψ) be the acceptance region, i.e., the set of all data
sets for which the test does not reject ψ as a hypothesized
causal effect. Then a (1−α)-confidence region for C(i→ j)
given the data set x is obtained as

C(x) := {ψ : x ∈ A(ψ)}.

This approach shifts the burden to the construction of suit-
able tests of a hypothesized causal effect. Without knowl-
edge of the precise model, this remains challenging. In the
next section we present three concrete solutions based on
likelihood ratio tests of order constraints [Silvapulle and
Sen, 2005], and the recent theory of universal inference
[Wasserman et al., 2020].

2.5 GAUSSIAN LIKELIHOOD

In our construction of test statistics, we will assume the data
to consist of random vectors X(1), . . . , X(n) drawn inde-
pendently from a (centered) multivariate normal distribution
N(0,Σ) with density p(x|Σ). Let Σ̂ = 1

n

∑n
i=1X

(i)X(i)T ,
and let M0 ⊂ M be a subset of covariance matrices. In
order to test

H0 : Σ ∈M0 against H1 : Σ ∈M \M0,

we use the likelihood-ratio statistic

λn = 2
(

sup
Σ∈M

`n(Σ)− sup
Σ∈M0

`n(Σ)
)



 based on the log-likelihood `n(Σ) =
∑n
i=1 log p(X(i)|Σ)

with
2
n`n(Σ) = − log det(2πΣ)− tr(Σ−1Σ̂).

3 BIVARIATE CASE

This section develops the details of our approach in the
two-dimensional setting, with two variables X1 and X2.

3.1 REPRESENTATION OF CAUSAL EFFECT

For d = 2, the model uncertainty boils down to uncertainty
about the direction of the single edge, 1→ 2 versus 1← 2,
and we maintain the two possible LSEMs

(M1) X1 = ε1, X2 = β21X1 + ε2,

(M2) X1 = β12X2 + ε1, X2 = ε2.

The mere assumption of a homoscedastic LSEM imposes
structure on the covariance matrix Σ of X = (X1, X2)T .
Under model (M1), we obtain

Σ =

(
Σ11 Σ12

Σ12 Σ22

)
= σ2

(
1 β21

β21 β2
21 + 1

)
,

which leads to the relations

β21 =
Σ12

Σ11
, β2

21 + 1 =
Σ22

Σ11
, Σ2

11 = det(Σ), (4)

with det(Σ) = Σ11Σ22 − Σ2
12. Analogously, for model

(M2),

β12 =
Σ12

Σ22
, β2

12 + 1 =
Σ11

Σ22
, Σ2

22 = det(Σ). (5)

Hence, the set of 2× 2 covariance matrices Σ that are pos-
sible under homoscedastic LSEMs isMr =Mr1 ∪Mr2,
where

Mra :=
{

Σ ∈M : Σ2
aa = det(Σ)

}
, a = 1, 2. (6)

By symmetry, when considering total causal effects we may
focus on the effect of X1 on X2, which is β21 under model
(M1) and zero under model (M2). So, by (4),

C(1→ 2) =
Σ12

Σ11
1{Σ ∈Mr1}. (7)

3.2 CONSTRAINED LIKELIHOOD-RATIO TESTS

Our construction of confidence sets inverts tests of hypothe-
ses that specify C(1→ 2) = ψ. We now present two ap-
proaches to perform likelihood ratio tests. Likelihood ratio
statistics are easily defined but their probability distributions
are generally difficult to determine at singularities, as en-
countered here where the alternative Mr is a union, and
thus non-smooth. To simplify distribution theory, we will
relax the alternative to be the entire positive definite cone
M.

3.2.1 Testing Inequality Constraints

Our first approach exploits that model selection for ho-
moscedastic LSEMs can be achieved by ordering variances
[Chen et al., 2019]. Indeed, if Σ ∈ Mr, then Σ ∈ Mr1

precisely when Σ11 ≤ Σ22. We will use this fact to set up
hypotheses that encode C(1→ 2) = ψ for given ψ. Three
cases arise: ψ = 0, 0 < |ψ| < 1 and |ψ| ≥ 1.

Case ψ = 0. Given Σ ∈Mr, we have C(1→ 2) = 0 if and
only if Σ11 ≥ Σ22. Hence, we conduct the test of

H0 : Σ11 ≥ Σ22 against H1 : Σ ∈M.

In this scenario, the asymptotic null distribution of λn de-
pends on the unknown value of Σ, but it is easy to see that
the stochastically largest asymptotic distribution arises when
Σ11 = Σ22, in which case

λn
D−→ 0.5χ2

0 + 0.5χ2
1, as n→∞,

where χ2
d denotes a chi-square distribution with d degrees

of freedom and χ2
0 ≡ 0; see Silvapulle and Sen [2005].

Case 0 < |ψ| < 1. When ψ 6= 0, it must be that X2

is the causally dependent variable which corresponds to
Σ11 ≤ Σ22 and Σ12/Σ11 = ψ, according to (7). Hence, we
test

H0 : Σ12 = ψΣ11, Σ11 ≤ Σ22 against H1 : Σ ∈M.

For the least favorable covariance matrix in H0, it holds that

λn
D−→ 0.5χ2

1 + 0.5χ2
2, as n→∞.

Case |ψ| ≥ 1. Again the two constraints Σ11 ≤ Σ22

and Σ12 = ψΣ11 have to be satisfied. However, the Cauchy-
Schwarz inequality yields Σ22 ≥ Σ2

12/Σ11 = ψ2Σ11 ≥
Σ11, since |ψ| ≥ 1. Consequently, the inequality condition
is automatically fulfilled and it suffices to test

H0 : Σ12 = ψΣ11 against H1 : Σ ∈M.

The likelihood ratio statistic satisfies

λn
D−→ χ2

1, as n→∞.

We remark that in the first and second case one may also
follow a two-step procedure that uses a suitably calibrated
pretest to decide which asymptotic distribution to employ
[Silvapulle, 1996]. We report no details on this approach
here as we found the power gains to be only very slight.

Based on the above suite of tests, we may form a confidence
interval from the accepted values of ψ, which we determine
in practice by inspecting a fine grid of choices. In our simu-
lations in Section 3.4 we refer to this method as LRT1. We
will also consider a heuristic variant in which we compute
the likelihood ratio statistics by restricting the null and the
alternative to the union of the two LSEMs, i.e., toMr, but
still set critial values based on the asymptotic distributions
given above. We refer to this method as LRT1b.



 3.2.2 Testing Polynomial Constraints

The previous method encodes membership in model (M1)
via the key inequality Σ11 ≤ Σ22. As an alternative we may
directly work with the set of covariance matricesMr1 given
in (6) when specifying null hypotheses. However, to retain
simple distributional approximations we continue to relax
the alternative to be the entire p.d.-coneM.

Recall that the causal effect C(1 → 2) is non-zero only
under model (M1), i.e., if Σ ∈Mr1. In this case the effect
is C(1→ 2) = Σ12/Σ11. All matrices with C(1→ 2) = 0
belong toMr2. Thus, we test the null hypotheses

H0 :

{
Σ12 = ψΣ11 and Σ ∈Mr1, if ψ 6= 0,

Σ ∈Mr2, if ψ = 0.

We write Θ
(ψ)
0 for the respective sets of covariance matrices.

Case ψ 6= 0. If ψ 6= 0, the set Θ
(ψ)
0 is a one-dimensional

submanifold of the three-dimensional p.d.-cone M. The
likelihood ratio statistic in this case is found to be

λ(ψ)
n =2n log

{
1

2 det(Σ̂)1/2
tr
[(

1 + ψ2 −ψ
−ψ 1

)
Σ̂
]}
,

and for Σ ∈ Θ
(ψ)
0 we have

λ(ψ)
n

D−→ χ2
2, as n→∞.

Case ψ = 0. The set Θ
(0)
0 is a two-dimensional submanifold

ofM and yields the likelihood ratio statistic

λ(0)
n = 2n log

{
1

2 det(Σ̂)1/2

(
Σ̂11 −

Σ̂2
12

Σ̂22

+ Σ̂22

)}
.

Here, for Σ ∈ Θ
(0)
0 ,

λ(0)
n

D−→ χ2
1, as n→∞.

Given the explicit form of the likelihood ratio statistics we
can explicitly determine an asymptotic confidence set for
the total causal effect.

Theorem 1. Let α ∈ (0, 1). Then an asymptotic (1 − α)
confidence set for the causal effect C(1→ 2) is given by

C = {ψ 6= 0 : λ(ψ)
n ≤ χ2

2,1−α} ∪ {0 : λ(0)
n ≤ χ2

1,1−α}.

Furthermore, if we define

K := 2 Σ̂11 det(Σ̂)1/2 exp
( 1

2n
χ2

2,1−α

)
− Σ̂2

11 − det(Σ̂)

and K ≥ 0, then

{ψ 6= 0 : λ(ψ)
n ≤ χ2

2,1−α} =

[
Σ̂12 −

√
K

Σ̂11

,
Σ̂12 +

√
K

Σ̂11

]
.

Remark. Since the dimension of Θ
(0)
0 exceeds that of Θ

(ψ)
0

for ψ 6= 0, we are led to consider two different degrees of
freedom for chi-square limits. As a result there exist data for
which we reject a zero effect but accept positive and negative
effects that are arbitrarily small in magnitude. However, this
case arises very rarely. If it does, it may be preferable to
simply include zero in the confidence interval.

Proof. If ψ 6= 0, it is easy to see that λ(ψ)
n ≤ χ2

2,1−α if and
only if

ψ2Σ̂11 − 2ψΣ̂12 + Σ̂11 + Σ̂22

− 2 det(Σ̂)1/2 exp
( 1

2n
χ2

2,1−α

)
≤ 0.

The inequality features a strictly convex quadratic poly-
nomial in ψ. The confidence interval is nonempty if the
quadratic has real roots, which occurs for K ≥ 0. The roots
are (Σ̂12 ±

√
K)/Σ̂11 and give the claimed explicit lower

and upper end of the confidence interval. The confidence set
is then completed by checking whether we accept (and thus
include) ψ = 0.

In our simulations, we refer to this method as LRT2.

3.3 SPLIT LIKELIHOOD RATIO TESTS

Wasserman et al. [2020] introduced the framework of univer-
sal inference, a general method for constructing hypothesis
tests and confidence regions that are conservative but valid
in finite samples. Universal inference employs a modifica-
tion of the classical likelihood-ratio statistic termed the split
likelihood ratio (SLR), which is especially appealing for
irregular composite hypotheses where asymptotic distribu-
tions are intractable. As its name indicates, the SLR statistic
is based on a data splitting approach. Type-I error control is
guaranteed by an application of Markov’s inequality.

The method proceeds by splitting the data into two subsets
D0 = {X(1), . . . , X(k)} and D1 = {X(k+1), . . . , X(n)}.
Let `0(Σ) denote the log-likelihood function based on D0,
that is, `0(Σ) =

∑k
i=1 log p(X(i) | Σ). We then calculate

the profile log-likelihood function

`†(ψ) = max{`0(Σ) : Σ ∈Mr, C(1→ 2) = ψ},

and choose any estimator Σ̃1 based on D1. Then

C = {ψ : `0(Σ̃1)− `†(ψ) ≤ log(1/α)} (8)

is a (conservative) confidence set for the total causal effect
C(1→ 2) with confidence level 1− α.

Let Σ̂0 = 1
k

∑k
i=1X

(i)X(i)T be the empirical covariance
matrix forD0. In each of our two possible LSEMs, (M1) and
(M2), maximizing `0 with respect to the variance parameter



 σ2 is straightforward; recall (3). We find that for fixed B,
the maximum of `0 over σ2 > 0 is

−k log
{
π tr
[
(Id −B)T (Id −B)Σ̂0

]}
− k. (9)

Now we assume that the causal effect C(1 → 2) equals a
fixed value ψ ∈ R and we maximize `0 further over any
remaining parameters.

Case ψ 6= 0. The covariance matrix Σ is inMr1 and in its
parametrization β21 = ψ. From (9), we find that for ψ 6= 0,

`†(ψ) = −k log

{
π tr

[(
1 + ψ2 −ψ
−ψ 1

)
Σ̂0

]}
− k.

(10)

Case ψ = 0. Now, Σ may be any matrix inMr2. Straight-
forward calculations show that

max
β12

tr

[(
1 −β12

−β12 1 + β2
12

)
Σ̂0

]
= Σ̂0

11 −
(Σ̂0

12)2

Σ̂0
22

+ Σ̂0
22.

Inserting this expression in (9) yields the profile `†(0).

With these preparations, we can now explicitly calculate the
boundaries of the confidence set for the total causal effect
given in (8).

Theorem 2. Let α ∈ (0, 1) and define

Ga := 2Σ̂0
aaα
−1/k det(Σ̃1)1/2 exp

(1

2
tr[(Σ̃1)−1Σ̂0]− 1

)
− (Σ̂0

aa)2 − det(Σ̂0), a = 1, 2.

(i) IfG1 ≥ 0, then the nonzero elements of the confidence set
C from (8) are the nonzero elements of the interval [L,U ]
with

L :=
Σ̂0

12 −
√
G1

Σ̂0
11

, U :=
Σ̂0

12 +
√
G1

Σ̂0
11

.

(ii) The set C from (8) contains zero if and only if G2 ≥ 0.

Proof. Expanding the formula from (10), we obtain that a
value ψ 6= 0 satisfies the inequality for the confidence set in
(8) if and only if

ψ2Σ̂0
11 − 2ψΣ̂0

12 + Σ̂0
11 + Σ̂0

22

− 2α−1/k(det Σ̃1)1/2 exp
(1

2
tr
[
(Σ̃1)−1Σ̂0

]
− 1
)
≤ 0.

If G1 ≥ 0, the involved convex quadratic function has
real roots at the claimed values of L and U . If G1 < 0,
the inequality has no solutions and the nonzero part of the
confidence set remains empty.

The inequality that is equivalent to inclusion of ψ = 0 in
the confidence set is similar.

So far we have not made a specific choice for Σ̃1. In (8),
we observe that for small confidence sets it is desirable to
form estimates Σ̃1 that achieve large values of `0(Σ̃1). Since
the universal inference approach poses no problems due to
irregular geometry of hypothesis/alternative, it is natural to
form an estimate that exploits the assumed validity of at
least one of the two LSEMs. In other words, we choose Σ̃1

to be the maximum likelihood estimator under the restriction
that Σ ∈Mr. We refer to this method as SLRT.

For problems with more than two variables determining
the profile log-likelihood is computationally involved in the
sense that higher degree polynomial equations need to be
solved. As an alternative we also report results for a heuristic
in which we take Σ̃1 to be the unrestricted sample covariance
matrix and replace the profile log-likelihood `†(ψ) by `0
evaluated at a consistent moment estimator. To form this
estimator under the constraint of an assumed causal effect
C(i → j) = ψ, we consider every causal ordering that
permits the effect, use the sample variance to estimate the
variance of the first variable in the ordering, use sample
covariances for all covariances of pairs of variables other
than (i, j) and fill the rest of the matrix so that the constraint
C(i→ j) = ψ holds and all error variances are equal. We
then choose the ordering that leads to the maximum value
of `0. We refer to this method as estSLRT.

3.4 SIMULATIONS

In this section we present the results of a simulation study
with the aim to compare the empirical coverage probabilities
and widths of the different proposed confidence intervals
for the causal effect. Our simulation experiment was de-
signed as follows. We generated pseudo random numbers
according to model (M1) (1→ 2) and model (M2) (1← 2),
respectively, with standard normal errors. For a selection of
different values of β ≡ β12 (β ≡ β21) and different sam-
ple sizes n, we simulated 10000 independent data sets, for
which we then determined the confidence sets for α = 0.05.

The resulting empirical coverage probabilities are reported
in Table 1, where all five proposed methods achieve the de-
sired coverage frequency of 0.95. Furthermore, all proposed
methods seem to be particularly conservative if the causal
effect is zero. In general the split likelihood ratio methods
are, as expected, the most conservative. For the purpose of
comparison we included the empirical coverage probabili-
ties of confidence intervals for the causal effect calculated
with two different bootstrapping methods, as explained in
Section 2.3. For each resampled data set Bootstrap1
simply uses the sample covariance to select the direction
(via (M1) if Σ̂11 ≤ Σ̂22, (M2) if Σ̂22 < Σ̂11) and subse-
quently calculates the causal effect based on the selected
model. Bootstrap2 employs an established causal dis-
covery algorithm for the equal variance case GDS, proposed
by Peters and Bühlmann [2014], to estimate the causal effect



 
Table 1: Empirical Coverage of 95%-Confidence Intervals
for the Total Causal Effect of X1 on X2 (10000 Replica-
tions).

X1 → X2 X2 → X1

method n\β 0 0.05 0.1 0.2 0.5 0 0.05 0.1 0.2 0.5

LRT1
100 1.00 0.95 0.95 0.96 0.98 1.00 1.00 0.99 0.98 1.00
500 1.00 0.95 0.95 0.96 0.97 1.00 0.99 0.98 0.98 1.00

1000 1.00 0.96 0.96 0.97 0.98 1.00 0.98 0.97 0.99 1.00

LRT1b
100 1.00 0.97 0.97 0.96 0.95 1.00 1.00 0.99 0.96 0.96
500 1.00 0.97 0.97 0.96 0.98 1.00 1.00 0.99 0.94 1.00

1000 1.00 0.97 0.97 0.95 0.97 1.00 1.00 0.99 0.94 1.00

LRT2
100 0.97 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97
500 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 1.00

1000 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 1.00

SLRT
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

estSLRT
100 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99
500 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99

1000 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99

Bootstrap1
100 0.99 0.89 0.89 0.91 0.94 1.00 1.00 0.99 0.99 1.00
500 0.99 0.89 0.90 0.93 0.95 1.00 0.99 0.99 0.99 1.00

1000 0.99 0.89 0.90 0.94 0.94 1.00 0.99 0.98 0.99 1.00

Bootstrap2
100 1.00 0.56 0.74 0.93 0.95 1.00 1.00 1.00 1.00 1.00
500 1.00 0.63 0.84 0.94 0.95 1.00 1.00 1.00 0.99 1.00

1000 1.00 0.67 0.92 0.95 0.96 1.00 1.00 1.00 0.99 1.00

for each resampled data set. In principle the GDS method
is a greedy search algorithm that maximizes the likelihood.
As expected, and theoretically explained in Section 2.3,
bootstrapping methods do not work in practice and do not
achieve the the required coverage frequency.

Figure 2 displays the mean width of the smallest interval
containing the constructed confidence set. The widths are
plotted against the sample size n for a true causal effect
of size 0.5 (in different directions). We note that while the
confidence sets predominantly are intervals, it is possible
that they are "torn" with {0} as a disconnected component,
reflecting the larger null hypothesis that is associated to
a zero effect. The more conservative split likelihood ratio
methods yield wider confidence intervals. The estSLRT
heuristic outperforms the standard SLRT. As it does not
fully optimize the profile log-likelihood function, estSLRT
produces smaller sets, yet the desired empirical coverage is
(easily) achieved. In the case of no causal effect the confi-
dence intervals converge to zero for all proposed methods.

Figure 3 shows the percentage of times zero is in the cal-
culated confidence sets. The percentages are plotted for a
total causal effect C(1→ 2) = 0.5 against the sample size
and for sample size n = 500 against the size of the causal
effect. All proposed methods are consistent and exclude the
possibility of no causal effect with increasing sample size.
Therefore, all proposed methods not only yield correct con-
fidence sets for the total causal effect but also successfully
help decide whether the effect is nonzero or not. Figure 3
also shows that we exclude the possibility of no causal effect
more frequently the higher the actual causal effect is.

Even though it seems that in Figure 2 and 3 the LRT1b
method seems to perform best, we should stress that we
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Figure 2: Average maximum width of 95%-confidence inter-
vals for the causal effect of X1 on X2 (10000 replications).
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Figure 3: Percentage of times zero contained in the 95%-
confidence intervals for the total causal effect of X1 on X2

(10000 replications). (Left) C(1→ 2) = 0.5 against sample
size. (Right) n = 500 against size of the total causal effect.

only have theoretical guarantees for the methods LRT1,
LRT2 and SLRT. Out of those three methods the LRT2
method seems to perform best, but this method also has to
be handled with care as we will see in the following real
data example.

3.5 DATA EXAMPLES

For a real world data benchmark we used the cause effect
pairs data set presented in Mooij et al. [2016]. It consists
of different cause effect data pairs from various fields, for
which the true causal direction is determined by domain
knowledge. For the application of homoscedastic LSEMs,
we selected the following pairs: pair66 and pair67 con-
taining daily stock returns, pair76 containing the average
annual rate of change of population and total dietary con-
sumption, and pair89 and pair90 which describe the
degree of root decomposition in forests and grasslands, re-
spectively. The first three data sets exhibit a causal effect



 from X1 to X2 while the last two feature a causal effect
from X2 to X1. Before calculating the confidence intervals
for the causal effect of X1 on X2, we centered the data.

The results in Figure 4 show that method LRT2 which per-
formed very well in the simulations produced an empty
confidence set for all five data pairs. In brief, the method is
not able to cope with model misspecification (where we may
still wish to obtain a confidence interval for a well-defined
parameter).1 The method estSLRT similarly suffers from
this problem. Indeed, both LRT2 and estSLRT contrasts a
linear and homoscedastic null hypothesis against a general
Gaussian alternative. Even for normal data, departures from
homoscedasticity may favor the alternative in all testing
problems that correspond to the confidence set, which then
remains empty.

Although it was not the most statistically efficient method
in our simulations, the method LRT1 performs best for the
real world data. As the union of all its tested null hypotheses
coincides with the alternative (the p.d. coneM), it always
produces a nonempty confidence set. Under misspecification
the interval targets the parameter

C̃(1→ 2) =
Σ12

Σ11
1{Σ11 ≤ Σ22};

an extension of the parameter defined in (7). In this sense the
method is less sensitive to departures from homoscedasticity,
or even linearity if the true covariance matrix Σ is defined
as furnishing the KL-best normal approximation to the data-
generating distribution. The interval width for LRT1 is here
similar or even smaller than for the heuristic LRT1b.

The standard split likelihood ratio method SLRT also per-
forms well, but produces considerably wider intervals than
LRT. The width of the estimated confidence intervals with
the split likelihood ratio methods slightly vary depending
on how the real data set is (randomly) split.

Finally, we note that all proposed methods recognize that
there is no causal effect from X1 to X2 in the last two data
pairs. For the first data pair, some uncertainty remains at
the 95%-level about whether an effect is indeed present
(LRT1 and SLRT). For comparison, we also calculated the
confidence intervals for the causal effect of X2 on X1, see
Figure 5, and the results lead to the same conclusions.

1E.g., one could consider the causal effect associated with
the matrix Σ ∈ Mr such that the normal distribution N(0,Σ) is
closest in KL divergence to the data-generating distribution.
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Figure 4: 95%-Confidence intervals for the total causal ef-
fect of X1 on X2 for different real world data pairs.
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Figure 5: 95%-Confidence intervals for the total causal ef-
fect of X2 on X1 for different real world data pairs.

4 HIGHER DIMENSIONS

In this section we give an outlook on how one may ex-
tend the proposed methods to higher dimensional cases.
The asymptotic distribution of the first method LRT1 via
testing inequalities for the conditional variances is a mix-
ture of chi-square distributions. The calculation of those
mixture weights is difficult in higher dimensions. Using
data-dependent critical values as used in Al Mohamad et al.
[2020] may be an option to push the methodology to mod-
erately small dimension, but at this point we have not yet
explored this option.

Calculating asymptotic distributions for the second method
LRT2 remains feasible in any individual LSEM that allows
for a given effect C(i → j) to be nonzero. However, one
has to then address the issue that several LSEM allow for
C(i → j) 6= 0 and the relevant null hypothesis becomes a
union of smooth manifolds. One way to address this problem
would be to form an intersection union test, but this is again
a topic for future work.
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Figure 6: Empirical coverage and average maximum width
of the 95%-confidence interval for the total causal effect of
X1 on X2 (10000 replications).

The approach that is the simplest for extension to higher
dimensional cases are the split likelihood ratio tests. We
illustrate this in the following simulations for the case of
d = 3 variables. The three dimensional case allows for six
possible models based on the ordering of the three involved
variables X1, X2 and X3. Figure 6 displays the average
maximum width and empirical coverage of the estimated
confidence intervals for the total causal effect of X1 on
X2 in the six different models. In the upper three cases
there is a true causal effect of size 0.5, while in the other
cases there is no causal effect of X1 on X2. The constructed
confidence intervals have a high coverage, exceeding the
desired coverage with the method SLRT in all cases and with
the heuristic method estSLRT in five of the six possible
cases.

5 CONCLUSION

We proposed new methods to construct confidence inter-
vals for the total causal effect in problems in which causal
structure is unknown but identifiable. We cope with this un-
certainty in a test inversion approach that accounts for both
types of uncertainty: causal structure and numerical size of
nonzero effects. For two-variable problems the empirical
results for the LRT1 method that tests inequalities among
variances are very promising, but it may prove difficult to
extend this method to higher dimensional cases and settings
other than homoscedastic LSEMs. The second proposed
LRT2 method tests the polynomial constraints imposed by
the LSEM assumption and can be extended to higher dimen-
sional cases. However, it can be sensitive to departures from
the modeling assumptions, as seen in our real data example.
This is due to the fact that the precise model assumptions
were incorporated in the null hypotheses, but for simplicity
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Figure 7: Empirical coverage and average maximum width
of the 95%-confidence interval for the total causal effect of
X1 on X2 in a LiNGAM setting (100 replications).

in distribution theory not in the alternative. An interesting
problem for further research would be to improve our un-
derstanding of possible asymptotic approximations for the
LRT2 statistics when the alternative is not relaxed but kept
as the union of all homoscedastic LSEMs.

The last proposed SLRT methods based on the theory of
universal inference are the most conservative but also easi-
est to apply methods. They can be extended rather directly
not only to higher dimensional cases but also to other mod-
eling frameworks. To illustrate the latter point, we briefly
consider the usage of the split likelihood ratio methods
for LSEMs with non-Gaussian errors (LiNGAM). Shimizu
et al. [2006] showed that under these assumptions unique
identification is possible and the causal structure imposes
constraints on the (conditional) moments, see Wang and
Drton [2020]. We can thus use empirical likelihood methods
[Wang and Drton, 2017] to form a split likelihood ratio and
construct confidence intervals for the causal effect. Figure 7
shows the empirical coverage and average maximum width
of these confidence intervals for the causal effect of X1 on
X2 in the bivariate LiNGAM setting. We simulated the data
with a causal effect of size 0.5 (in different directions) and
uniform(−1, 1) distributed error terms. We observe that the
method is conservative yet informative.
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