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Abstract

Deep kernel learning and related techniques
promise to combine the representational power of
neural networks with the reliable uncertainty esti-
mates of Gaussian processes. One crucial aspect of
these models is an expectation that, because they
are treated as Gaussian process models optimized
using the marginal likelihood, they are protected
from overfitting. However, we identify pathologi-
cal behavior, including overfitting, on a simple toy
example. We explore this pathology, explaining
its origins and considering how it applies to real
datasets. Through careful experimentation on UCI
datasets, CIFAR-10, and the UTKFace dataset, we
find that the overfitting from overparameterized
deep kernel learning, in which the model is “some-
what Bayesian”, can in certain scenarios be worse
than that from not being Bayesian at all. However,
we find that a fully Bayesian treatment of deep
kernel learning can rectify this overfitting and ob-
tain the desired performance improvements over
standard neural networks and Gaussian processes.

1 INTRODUCTION

Gaussian process (GP) models [Rasmussen and Williams,
2006] are popular choices for Bayesian modeling due to
their interpretable nature and reliable uncertainty estimates.
These models typically involve only a handful of kernel
hyperparameters, which are optimized with respect to
the marginal likelihood in an empirical Bayes, or type-II
maximum likelihood, approach. However, for most popular
choices the kernel itself is fixed, meaning that GP models
are unable to learn representations from the data that
might aid predictions, and instead act mostly as smoothing
devices. This greatly limits the applicability of GPs to high-
dimensional and highly structured data, such as images.

Deep neural networks [LeCun et al., 2015], on the other
hand, are known to learn powerful representations which are
then used to make predictions on unseen test inputs. While
deterministic neural networks have achieved state-of-the-art
performance throughout supervised learning and beyond,
they suffer from overconfident predictions [Guo et al.,
2017], and do not provide reliable uncertainty estimates.
The Bayesian treatment of neural networks attempts to
address these issues; however, despite recent advances
in variational inference (e.g.Ober and Aitchison [2020],
Dusenberry et al. [2020]) and sampling methods (e.g. Heek
and Kalchbrenner [2019], Zhang et al. [2020]) for Bayesian
neural networks (BNNs), inference in BNNs remains
difficult due to complex underlying posteriors and the large
number of parameters in modern BNNs. Moreover, BNNs
generally require multiple forward passes to obtain multiple
samples of the predictive posterior to average over.

It is natural, therefore, to try to combine the uncertainty-
representation advantages of Gaussian processes with the
representation-learning advantages of neural networks, and
thus obtain the “best of both worlds.” Indeed, many works
have attempted to achieve this. In this paper, we focus on a
line of work that we refer to broadly as deep kernel learning
(DKL) [Calandra et al., 2016, Wilson et al., 2016a,b]. These
works use a neural network to map inputs to points in an
intermediate feature space, which is then used as the input
space for a Gaussian process. The network parameters can
be treated as hyperparameters of the kernel, and thus are
optimized with respect to the (log) marginal likelihood,
as in standard GP inference. This leads to an end-to-end
training scheme that results in a model that hopefully
benefits from the representational power of neural networks
while also enjoying the benefits of reliable uncertainty
estimation from the GP. Moreover, as the feature extraction
done by the neural network is deterministic, inference only
requires one forward pass of the neural net, unlike fully
Bayesian BNNs. Previous works have shown that these
methods can be used successfully [Calandra et al., 2016,
Wilson et al., 2016a,b, Bradshaw et al., 2017].
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 We investigate to what extent DKL is actually able to
achieve flexibility and good uncertainty, and what makes it
successful in practice: for DKL to be useful from a Bayesian
perspective, a higher marginal likelihood should lead to bet-
ter performance. In particular, it is often claimed that opti-
mizing the marginal likelihood will automatically calibrate
the complexity of the model, preventing overfitting. For in-
stance, Wilson et al. [2016a] states “the information capacity
of our model grows with the amount of available data, but its
complexity is automatically calibrated through the marginal
likelihood of the Gaussian process, without the need for
regularization or cross-validation.” This claim is based on
the common decomposition of the log marginal likelihood
into “data fit” and “complexity penalty” terms [Rasmussen
and Williams, 2006], which leads to the belief that a better
marginal likelihood will result in better test performance.

This is generally true when selecting a small number of
hyperparameters. However, in models like DKL which
introduce many hyperparameters, we show that in some
cases, marginal likelihood training can encourage overfitting
that is worse than that from a standard, deterministic neural
network. This is because the marginal likelihood tries to
correlate all the datapoints, rather than just those for which
correlations will be important. As most standard Gaussian
process models typically only have a few hyperparameters,
this sort of overfitting is not usually an issue, but when
many hyperparameters are involved, as in DKL, they can
give the model the flexibility to overfit in this way. As
such, our work has implications for all GP methods which
use highly parameterized kernels, as well as methods
that optimize more than a handful of model parameters
according to the marginal likelihood or ELBO.

In this work, we make the following claims:

• Using the marginal likelihood can lead to overfitting
for DKL models.

• This overfitting can actually be worse than the over-
fitting observed using standard maximum likelihood
approaches for neural networks.

• The marginal likelihood overfits by overcorrelating the
datapoints, as it tries to correlate all the data, not just
the points that should be correlated.

• Stochastic minibatching can mitigate this overfitting,
and helps to explain the success of DKL models in
practice.

• A fully Bayesian treatment of deep kernel learning can
avoid overfitting and obtain the benefits of both neural
networks and Gaussian processes.

We note that some works have discussed that overfitting
can be an issue for Gaussian processes trained with the
marginal likelihood [Rasmussen and Williams, 2006,
Cawley and Talbot, 2010, Lalchand and Rasmussen, 2020],
and Calandra et al. [2016] mentions that overfitting can
be an issue for their DKL model. However, we are not

aware of any work that tries to understand the pathological
behavior that DKL methods can exhibit or the mechanism
with which the marginal likelihood overfits.

2 RELATED WORK

Salakhutdinov and Hinton [2007] used deep belief networks
to pretrain a neural network feature extractor to transform
the inputs to a GP, with subsequent fine-tuning using the
marginal likelihood. Calandra et al. [2016] removed the
deep belief network pretraining and only used the marginal
likelihood to train the model, referring to this as the “man-
ifold GP”. Wilson et al. [2016a] improved the scalability of
this model by using KISS-GP [Wilson and Nickisch, 2015],
coining the term “deep kernel learning”. This was further
extended to non-regression likelihoods and multiple outputs
in Wilson et al. [2016b] by using stochastic variational in-
ference [Hensman et al., 2015] and Kronecker and Toeplitz
structure [Wilson et al., 2015], resulting in stochastic vari-
ational deep kernel learning (SVDKL). These and related
approaches which use the marginal likelihood to optimize
the neural network parameters have been shown to be advan-
tageous in multiple situations, including transfer testing and
adversarial robustness [Bradshaw et al., 2017]. On the other
hand, Tran et al. [2019] investigated poor calibration in
these models, and proposed using Monte Carlo dropout [Gal
and Ghahramani, 2016] to perform approximate Bayesian
inference over the neural network weights in the model.
However, they did not explain the poor calibration, nor did
they identify the possibility of overfitting in DKL models.

Due to the difficulty of performing full inference over all
BNN parameters, there has been a recent increase in interest
in using deterministic feature extractors for models that only
incorporate uncertainty in an output layer (e.g. Liu et al.
[2020], van Amersfoort et al. [2020]). One of the most popu-
lar models in recent years has been the “neural linear” model
[Riquelme et al., 2018, Ober and Rasmussen, 2019], which
can be viewed as DKL with a linear kernel, or equivalently,
Bayesian inference over the last layer of a neural network. In
particular, Ober and Rasmussen [2019] showed that it is diffi-
cult to get the neural linear model to perform well for regres-
sion without considerable hyperparameter tuning, and that
fully Bayesian approaches for BNNs often require much less
tuning to obtain comparable results. Recent approaches (e.g.
Liu et al. [2020], van Amersfoort et al. [2021]) try to regular-
ize the neural network to mitigate these issues, but in doing
so introduce additional hyperparameters that require tuning.

3 BACKGROUND

3.1 GAUSSIAN PROCESSES

A Gaussian process is a collection of random variables
such that every finite collection of these random variables is
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Figure 1: Results on the toy dataset from Snelson and Ghahramani [2006]. (a) and (b) show plots of the predictive posterior
for squared exponential (SE) and deep kernel learning (DKL) kernels, respectively; below each plot we also plot correlation
functions ρx′(x) = k(x, x′)/σ2

f at two points x′ given by the vertical dashed lines. (c) shows the fit given by the neural
network analogous to the DKL model. Finally, (d) shows training curves of the log marginal likelihood (LML) for 5 different
initializations of DKL.

distributed according to a multivariate normal distribution.
In the regression setting, where we have a dataset consisting
of inputs X = (x1, . . . , xN )T , xn ∈ RD, and outputs
y = (y1, . . . , yN )T , yn ∈ R, we assume that each datapoint
is generated according to

yn = f(xn) + εn, εn ∼ N (0, σ2
n), (1)

where f is drawn from a Gaussian process prior, f ∼
GP(m, k). Here,m : RD → R is the mean function, and k :
RD×RD → R is a symmetric, positive semi-definite covari-
ance (kernel) function. Together, these uniquely define the
Gaussian process prior: for instance, the marginal distribu-
tion indexed byX is distributed according toN (m(X),K),
where m(X) = (m(x1), . . . ,m(xn))T and we define the
kernel matrix K := K(X,X), so that Kij = k(xi, xj).

Predictions of the latent function for a collection of test
points X∗ can be computed in closed form:

f∗|X,y, X∗ ∼ N (µ∗,Σ∗), where (2)

µ∗ = m(X∗) +K(X∗, X)(K + σ2
nIN )−1(y −m(X)),

Σ∗ = K(X∗, X∗)−K(X∗, X)(K + σ2
nIN )−1K(X,X∗).

For the purposes of this work, we take the mean function
to be zero.

Finally, it is typical for the kernel to have a number of
hyperparameters which are learned along with the noise
variance, σ2

n, by maximizing the (log) marginal likelihood
(LML; also known as the model evidence), in an empirical
Bayes, or type-II maximum likelihood approach:

log p(y) = logN (y|0,K + σ2
nIN ) (3)

c
= − 1

2
log |K + σ2

nIN |︸ ︷︷ ︸
(a) complexity

− 1

2
yT (K + σ2

nIN )−1y︸ ︷︷ ︸
(b) data fit

,

where we note that (a) and (b) are often referred to as the
“complexity penalty” and “data fit” terms, respectively. For

the purposes of this work, we use the automatic relevance
determination (ARD) squared-exponential (SE) kernel,
k(x, x′) = σ2

f exp(− 1
2

∑D
d=1(xd − x′d)

2/l2d). Therefore,
the hyperparameters to tune are the noise variance, σ2

n,
signal variance, σ2

f , and lengthscales l2d.

3.2 DEEP KERNEL LEARNING

One of the central critiques of Gaussian process regression
is that it does not actually learn representations of the
data. In an attempt to address this, several works [Calandra
et al., 2016, Wilson et al., 2016a,b, Bradshaw et al., 2017]
have proposed variants of deep kernel learning (DKL),
which maps the inputs xn to intermediate values vn ∈ RQ
through a neural network gφ(·) parameterized by weights
and biases φ. These intermediate values are then used
as inputs to the standard kernel resulting in the effective
kernel kDKL(x, x′) = k(gφ(x), gφ(x′)). In order to learn
the network weights and thereby learn representations
of the data, it was proposed to maximize the marginal
likelihood with respect to the weights φ along with the
kernel hyperparameters. We denote all the hyperparameters
by θ := {φ, σn, σf , {lq}Qq=1}.

3.3 STOCHASTIC VARIATIONAL DEEP KERNEL
LEARNING

The straightforward deep kernel learning model suffers
from two major drawbacks. First, due to the O(N3)
computational complexity of GPs, the standard DKL model
suffers from poor scalability in the number of data.1 Second,
exact GP inference is only possible for Gaussian likelihoods,
and therefore approximate techniques must be used for

1We note that Wilson et al. [2016a], which was the first paper
to use the terminology “DKL”, attempted to address scalability
using KISS-GP [Wilson and Nickisch, 2015]; however, we use
“DKL” to refer to the model with exact GP inference.
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Figure 2: Training curves for the data fit and complexity
penalties of the log marginal likelihood for the toy problem.

classification. To achieve both, we follow Bradshaw et al.
[2017] in using stochastic variational inference (SVI) for
GPs as introduced in Hensman et al. [2015], to result in
stochastic variational DKL (SVDKL).2

Considering the case of C multiple outputs, we first intro-
duce M latent inducing variables uc = (uc1, . . . , ucM )T ,
indexed by M inducing inputs zm ∈ RQ, which lie in the
feature space at the output of the neural network. We assume
the standard variational posterior over the inducing variables,
q(uc) = N (mc,Sc), leading to an approximate posterior
q(f ,u) = p(f |u)q(u). We optimize the variational param-
eters mc and Sc, along with the model hyperparameters θ,
jointly by maximizing the evidence lower bound (ELBO):

L = Eq(u)p(f |u)[log p(y|f)]−DKL(q(u)||p(u)). (4)

Note that there are no restrictions on the likelihood p(y|f)
as the first term can be estimated using Monte Carlo
sampling with the reparameterization trick [Kingma
and Welling, 2014, Rezende et al., 2014]. For Gaussian
likelihoods and bounded inputs, theoretical results show
that the ELBO can be made “tight” enough so it can be used
as a stand-in for the marginal likelihood for hyperparameter
optimization [Burt et al., 2020], if enough inducing points
are given. Empirically, this has been shown to be the case for
non-Gaussian likelihoods as well [Hensman et al., 2015].

4 PATHOLOGICAL BEHAVIOR IN A
TOY PROBLEM

To motivate the rest of the paper, we first consider (exact)
DKL on the toy problem from Snelson and Ghahramani
[2006], a 1-dimensional regression problem consisting of
200 noisy input-output pairs generated from a GP with
squared exponential kernel. We consider DKL using a two
hidden-layer fully-connected ReLU network with layer
widths [100, 50] as the feature extractor, letting Q = 2

2We note again that this is slightly different in exact implemen-
tation to the SVDKL model proposed in Wilson et al. [2016b].

with a squared exponential kernel for the GP.3 We describe
the architecture and experimental details in more detail in
Appendix B.

We plot the predictive posteriors of both a baseline GP with
an SE kernel (corresponding to the ground truth), and DKL
in Figures 1a and 1b, respectively. We observe that DKL
suffers from pathological behavior: the fit is very jagged
and extrapolates wildly outside the training data. On the
other hand, the fit given by the SE kernel is smooth and fits
the data well without any signs of overfitting. We therefore
make the following observation:

Remark 1. DKL models can be susceptible to overfitting,
suggesting that the “complexity penalty” of the marginal
likelihood may not always prevent overfitting.

We next compare to the fit given by the deterministic neural
network which uses the same feature extractor as the DKL
model, so that both models have the same depth. To ensure
a fair comparison, we retain the same training procedure,
using the same learning rates, full batch training, and
number of optimization steps, so that we only change the
model and training loss (from the LML to mean squared
error). We display the fit in Fig. 1c, which shows a nicer
fit than the DKL fit of Fig. 1b: while there is some evidence
of overfitting, it is in general much less than that of DKL.
This leads us to our second observation:

Remark 2. Surprisingly, DKL can exhibit worse overfitting
than a standard neural network trained using maximum
likelihood.

Finally, we plot training curves from five different runs of
DKL in Fig. 1d. From these, we observe that training is
very unstable, with many significant spikes in the marginal
likelihood objective. While we found that reducing the
learning rate does improve stability, but only slightly
(App. C.1). We also observe that each run often ends up
settling in a different local minimum with very different
final values of the log marginal likelihood. We plot different
fits from different initializations in App. C.1, showing that
these different local minima give very different fits with
different generalization properties.

In general, this behavior is very concerning: one would
hope that adding a Bayesian layer to a deterministic network
would improve performance, as introducing Bayesian
principles is often touted as a method to reduce overfitting
(e.g. Osawa et al. [2019]). However, based off this toy
problem performance seems to worsen with the addition of
a Bayesian layer at the output. As this finding is seemingly
at conflict with most of the literature, which has found
that DKL, or variations thereof, can be useful, we devote
the rest of this work to understanding when and why this
pathological behavior arises, including for real datasets.

3We note that this is a smaller feature extractor than that pro-
posed for a dataset of this size in Wilson et al. [2016a]
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Figure 3: Results for the UCI datasets. We report train and test RMSEs and log likelihoods (LLs) for each method, averaged
over the 20 splits. Left is better for RMSEs; right is better for LLs. Error bars represent one standard error.

5 UNDERSTANDING THE PATHOLOGY

To help understand the observed pathological behavior, we
first look at the curves of the “data fit” and “complexity
penalties” for five different initializations on the toy dataset.
We present these curves in Fig. 2. We note that each of the
data fit curves largely stabilize around -100 nats, so that the
complexity terms seem to account for most of the differ-
ences in the final marginal likelihood (Fig. 1d). This behav-
ior is explained by the following proposition, which states
that the data fit term becomes uninteresting for any GPs with
learnable signal variance trained on the marginal likelihood.

Proposition 1. Consider the GP regression model as de-
scribed in Eq. 1. Then, for any valid kernel function that can
be written in the form k(x, x′) = σ2

f k̂(x, x′), where σ2
f is

a learnable hyperparameter along with learnable noise σ2
n

(and any other kernel hyperparameters), we have that the
“data fit” term will equal −N/2 (where N is the number of
datapoints) at the optimum of the marginal likelihood.

The proof (App. A) is achieved by simple differentiation
with respect to σf . This result is far-reaching, applying to
the vast majority of kernel choices that we are aware of.
This proposition therefore implies that the division of the
marginal likelihood into “data fit” and “complexity penalty”
terms is in general unhelpful, as the data fit term becomes
uninteresting after training and the complexity penalty is

responsible for any difference in marginal likelihood for
GPs with different kernels.

However, we can still consider what a lower complexity
penalty means for the learned kernel. Recall that the
complexity penalty is given by

1

2
log |K + σ2

nIN | =
N

2
log σ2

f +
1

2
log |K̂ + σ̂2

nIN |. (5)

Maximizing the marginal likelihood encourages this term
to be minimized, which can be done in at least two ways:
minimizing σf , or minimizing the |K̂ + σ̂2

nIN |. However,
there is little freedom in minimizing σf , because that would
compromise the data fit. Therefore, the main mechanism
for minimizing the complexity penalty would be through
minimizing the second term. One way of doing this is to
correlate the input points as much as possible: if there are
enough degrees of freedom in the kernel, it is possible
to “hack” the Gram matrix so that it can do this while
minimizing the impact on the data fit term. We see this by
looking at the correlation plots for the SE and DKL fits in
Fig. 1: below the plots of the predictive posteriors, we have
plotted correlation functions ρx′(x) = k(x, x′)/σ2

f at two
points x′ given by the vertical dashed lines. We see that,
while Fig. 1a shows the expected Gaussian bump for the SE
kernel, Fig. 1b shows near-unity correlation functions for all
values. Furthermore, in Appendix C.1 we show empirically
that for fits that do not show as much correlation, the final



 
Table 1: LMLs/ELBOs per datapoint for UCI datasets.

SVGP (V)DKL SVDKL

BOSTON -1.66 ± 0.06 2.47± 0.00 0.47 ± 0.01
ENERGY -0.07 ± 0.01 3.01± 0.02 1.21 ± 0.00
KIN40K 0.14 ± 0.00 1.41 ± 0.00 2.62± 0.00
POWER 0.01 ± 0.00 0.57± 0.00 0.25 ± 0.00

PROTEIN -1.06 ± 0.00 -0.32± 0.01 -0.35 ± 0.00

marginal likelihood is worse, suggesting that increasing
the correlation is indeed the main mechanism by which the
model increases its marginal likelihood.

We summarize our findings in the remark:

Remark 3. Adding flexibility to a GP can lead to patho-
logical results, as the GP will use that flexibility to try to
correlate all input points in the prior, not only the points
where we would like correlations to appear.

We now investigate how these observations relate to real,
complex datasets, as well as to the prior literature which
has shown that DKL can obtain good results.

6 DKL FOR REAL DATASETS

Despite these findings, multiple works have shown that DKL
methods can perform well in practice [Wilson et al., 2016b,
Bradshaw et al., 2017]. We now consider experiments on
various datasets and architectures to further investigate the
observed pathological behavior and how DKL succeeds.
We provide full experimental details in Appendix B and
additional experimental results in Appendix C.

6.1 DKL FOR UCI REGRESSION

We first consider DKL applied to a selection of regression
datasets from the UCI repository [Dua and Graff, 2017]:
BOSTON, ENERGY, KIN40K, POWER, PROTEIN. These
represent a range of different sizes and dimensions:
ENERGY, POWER, and PROTEIN were chosen specifically
because we expect that they can benefit from the added
depth to a GP [Salimbeni and Deisenroth, 2017].

We consider a range of different models, and we report
train and test root mean square errors (RMSEs) and log
likelihoods (LLs) in Fig. 3, and tabulate the log marginal
likelihoods (LMLs) or ELBOs in Table 1. First, we consider
a baseline stochastic variational GP (SVGP) model with an
ARD SE kernel. As this is a GP model with few hyperparam-
eters, we would not expect significant differences between
training and testing performances. Indeed, looking at Fig. 3,
this is exactly what we observe: the test performance is
comparable to, and sometimes even slightly better than, the
training performance for both RMSEs and LLs.

We compare to a neural network trained with mean squared
error loss and DKL using the same neural network archi-
tecture for feature extractor (so that the depths are equal).
We first consider DKL models where we use full-batch
training, compared to a neural network with full-batch
training, which we refer to as fNN. As full-batch training
for DKL is expensive for larger datasets, for the KIN40K,
POWER, and PROTEIN we instead use SVDKL trained with
1000 inducing points but full training batches, which we
term variational DKL (VDKL). For both methods we use
a small weight decay to help reduce overfitting, and we
use the same number of gradient steps are used for each to
ensure a fair comparison. Looking at the results for fNN and
(V)DKL in Fig. 3, we see that both of these methods overfit
quite drastically. This mirrors our observations in Remark 1
that DKL models can be susceptible to overfitting. In most
cases the overfitting is noticeably worse for (V)DKL than
it is for fNN, reflecting our observation in Remark 2. This
is particularly concerning for the log likelihoods, as one
would hope that the ability of DKL to express epistemic
uncertainty through the last-layer GP would give it a major
advantage over the neural network, which cannot do so.

In practice, however, many approaches for DKL and neural
networks alike make use of stochastic minibatching during
training. In fact, it is well-known that minibatch training in-
duces implicit regularization for neural networks that helps
generalization [Keskar et al., 2017]. We therefore investi-
gate this for both DKL and neural networks: we refer to
the stochastic minibatched network as sNN and compare
to SVDKL, using the same batch sizes for both. Referring
again to Fig. 3, we see that minibatching generally reduces
overfitting compared to the full-batch versions, for both
model types. Moreover, the difference between the full batch
and stochastic minibatch performances of DKL seem to be
greater than the corresponding differences for the standard
neural networks, suggesting that the implicit regularization
effect is stronger. The exception to this trend is KIN40K,
which appears to be low-noise and simple for a deep model
to predict for. We also note that with the exception of protein,
SVDKL now performs the best of the deep models in terms
of log likelihoods, and generally performs better than SVGP.

Finally, we consider Table 1, which shows the EL-
BOs/LMLs for each of the GP methods. SVGP has by far
the worse ELBOs, whereas (V)DKL generally has by far
the best. It is important to note that the ELBOs for SVDKL
are worse than those for (V)DKL despite its generally
better test performance. This suggests that improving the
marginal likelihood for DKL models does not improve test
performance, as one would desire for a Bayesian model.
We summarize our findings in the following remark:

Remark 4. The reason for DKL’s successful performance is
not an improved marginal likelihood, but rather that stochas-
tic minibatching provides implicit regularization that pro-
tects against overfitting with the marginal likelihood.



 
Table 2: Results for the UTKFace age regression task and CIFAR-10 classification, without data augmentation. We report
means plus/minus one standard error, averaged over three runs.

Batch size: 100 Batch size: 200/500

NN SVDKL pNN fSVDKL pSVDKL pNN fSVDKL pSVDKL

UTKFace - ELBO - 0.92± 0.01 - 1.05± 0.30 1.03± 0.10 - 0.75± 0.34 1.43±0.04
Train RMSE 0.04±0.00 0.04±0.00 0.04±0.00 0.08± 0.03 0.04±0.00 0.04± 0.00 0.12± 0.03 0.04± 0.00
Test RMSE 0.40± 0.00 0.40± 0.01 0.41± 0.00 0.31± 0.07 0.38± 0.02 0.39± 0.01 0.23± 0.07 0.34± 0.02

Train LL 1.81± 0.01 1.30± 0.01 1.83± 0.01 1.16± 0.31 1.20± 0.08 1.83± 0.01 0.82± 0.34 1.60± 0.03
Test LL -48.73± 1.64 -6.88± 0.38 -53.72± 1.71 -7.55± 3.42 -4.74± 1.35 -48.48± 2.07 -5.36± 4.78 -10.43± 2.94

CIFAR-10 - ELBO - -0.76± 0.28 - -0.02± 0.00 -0.00± 0.00 - -0.02± 0.00 -0.00± 0.00
Train Acc. 1.00± 0.00 0.76± 0.09 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
Test Acc. 0.79± 0.00 0.63± 0.03 0.79± 0.00 0.78± 0.00 0.79± 0.00 0.79± 0.00 0.79± 0.00 0.79± 0.00
Train LL -0.00± 0.00 -0.71± 0.28 -0.00± 0.00 -0.01± 0.00 -0.00± 0.00 -0.00± 0.00 -0.00± 0.00 -0.00± 0.00
Test LL -2.05± 0.03 -1.37± 0.10 -2.30± 0.11 -1.14± 0.00 -1.13± 0.01 -2.88± 0.04 -1.07± 0.01 -1.45± 0.00

Inc. Test LL -8.87± 0.10 -3.38± 0.77 -9.48± 0.30 -5.10± 0.01 -5.24± 0.05 -10.77± 0.07 -4.73± 0.03 -6.63± 0.03
ECE 0.18± 0.00 0.10± 0.05 0.19± 0.00 0.14± 0.00 0.15± 0.00 0.19± 0.00 0.13± 0.00 0.15± 0.00

Therefore, we observe again that the Bayesian benefits
of the marginal likelihood do not apply in the overparam-
eterized regime: indeed, we find that using the marginal
likelihood can be worse than not being Bayesian at all.

6.2 DKL FOR IMAGE DATASETS

We now explore how these findings relate to high-
dimensional, highly structure image datasets. We might
expect that the benefits of DKL would be stronger for
images than in the previous regression datasets, as the
design of kernels for these high-dimensional spaces remains
an open question despite numerous recent advances [van der
Wilk et al., 2017, Dutordoir et al., 2020], and neural
networks generally perform far better than kernel methods.

We first consider a regression problem using image inputs:
an age regression task using the UTKFace dataset [Zhang
et al., 2017]. The dataset consists of 23,708 images of size
200× 200× 3 containing aligned and cropped faces. These
images are annotated with age, gender and race, of which
we focus on the task of predicting the subject’s age.

We consider several models, all based on a ResNet-18 [He
et al., 2016]: we take the standard ResNet-18 with 10-
dimensional output, to which we add a ReLU nonlinearity
and then either a linear output layer or an ARD SE GP,
corresponding to the baseline neural network and SVDKL,
respectively. We consider different feature widths Q in Ap-
pendix C. This construction ensures that both models have
the same depth, so that any improvement observed for ei-
ther cannot be attributed to the fact that the models have
different depths. We consider the baseline neural network
(NN) and SVDKL models. Additionally, as both Wilson
et al. [2016b] and Bradshaw et al. [2017] use a pretraining
and finetuning procedure for their models, we compare to
this as well. We take the trained baseline NNs, and first learn
the variational parameters and GP hyperparameters, keep-
ing the network fixed. We refer to the result as the fixed net
SVDKL (fSVDKL) model; we then train everything jointly

for a number of epochs, resulting in the pretrained SVKDL
(pSVDKL) model. Finally, so that any improvement for
f/pSVDKL is not just from additional gradient steps, we also
train the neural networks for the same number of epochs,
resulting in the pretrained NN (pNN) model. We average all
results over 3 independent runs using a batch size of 100, and
we refer the reader to App. B.3 for full experimental details.

We report ELBOs, train and test RMSEs, and train and
test log likelihoods for the normalized data in the top left
portion of Table 2 (batch size 100). We see that SVDKL,
the method without pretraining, obtains lower ELBOs than
either fSVDKL or pSVDKL, which obtain largely similar
ELBOs. We suspect that this is because of the difficulty
in training large DKL models from scratch, as noted in
Bradshaw et al. [2017]; this is also consistent with our
earlier observation that training can be very unstable. We
see that each method, except fSVDKL (with the fixed
pretrained network), achieves similar train RMSE, but
the test RMSEs are significantly worse, with fSVDKL
obtaining the best. Unsurprisingly, the NN models perform
poorly in terms of LL, as they are unable to express
epistemic uncertainty. However, we also observe that
additional training of the NNs worsens both test RMSEs
and LLs. pSVDKL (where the network is allowed to change
after pretraining) obtains the best test LL of all methods,
as well as better test RMSE than the neural networks,
showing that SVDKL can yield improvements consistent
with the prior literature. We note, however, that there is
still a substantial gap between train and test performance,
indicating overfitting in a way consistent with Remark 1.

6.2.1 Increasing the Batch Size

From our UCI experiments, we hypothesized that implicit
regularization from minibatch noise was key in obtaining
good performance for SVDKL (Remark 4). We therefore
consider increasing the batch size from 100 to 200 for the
pretrained methods, keeping the pretrained neural networks
the same; these results are also shown in the top right portion



 
Table 3: Results for the image datasets with data augmentation. We report means plus/minus one standard error, averaged
over three runs.

Batch size: 100 Batch size: 200/500

NN pNN fSVDKL pSVDKL pNN fSVDKL pSVDKL

UTKFace - ELBO - - 0.16± 0.03 0.14± 0.03 - 0.12± 0.06 0.45± 0.03
Train RMSE 0.19± 0.01 0.18± 0.00 0.19± 0.00 0.17± 0.01 0.13± 0.00 0.20± 0.01 0.12± 0.01
Test RMSE 0.36± 0.00 0.36± 0.00 0.36± 0.00 0.35± 0.00 0.35± 0.00 0.31± 0.04 0.35± 0.01

Train LL 0.25± 0.03 0.31± 0.01 0.25± 0.03 0.30± 0.03 0.65± 0.02 0.20± 0.06 0.63± 0.04
Test LL -1.03± 0.07 -1.22± 0.05 -0.92± 0.07 -0.76± 0.03 -2.72± 0.21 -0.63± 0.30 -1.55± 0.17

CIFAR-10 - ELBO - - -0.07± 0.00 -0.03± 0.00 - -0.06± 0.01 -0.01± 0.00
Train Acc. 0.98± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 1.00± 0.00 0.98± 0.00 1.00± 0.00
Test Acc. 0.86± 0.00 0.86± 0.00 0.86± 0.00 0.86± 0.00 0.87± 0.00 0.86± 0.00 0.86± 0.00
Train LL -0.05± 0.00 -0.02± 0.00 -0.05± 0.00 -0.03± 0.00 -0.01± 0.00 -0.05± 0.01 -0.01± 0.00
Test LL -0.70± 0.01 -0.90± 0.00 -0.68± 0.00 -0.64± 0.00 -1.38± 0.03 -0.67± 0.02 -0.84± 0.00

Inc. Test LL -4.83± 0.12 -6.31± 0.00 -4.65± 0.00 -4.58± 0.00 -8.97± 0.07 -4.66± 0.13 -6.06± 0.01
ECE 0.09± 0.00 0.11± 0.00 0.09± 0.00 0.09± 0.00 0.12± 0.00 0.09± 0.00 0.11± 0.00

of Table 2. We make a few key observations. First, this leads
to a significantly improved ELBO for pSVDKL, which ends
up helping the test RMSE. However, we see that instead
of improving the test LL, it becomes significantly worse,
whereas the train LL becomes better: clear evidence of over-
fitting. Moreover, fSVDKL, where the network is kept fixed,
now outperforms pSVDKL, which has a better ELBO. Fi-
nally, we note that the behavior of pNN does not change
significantly, in fact slightly improving with increased batch
size: this suggests that the implicit regularization from mini-
batching is stronger for SVDKL than for standard NNs. All
of these observations are consistent with our findings sur-
rounding Remark 4, which argues that stochastic minibatch-
ing is crucial to the success of DKL methods, and a better
marginal likelihood is associated with worse performance.

6.2.2 Image Classification

Our theory in Section 5 only applies directly to regression.
As one of the main successes of current deep learning is in
classification, it is therefore natural to wonder whether the
trends we have observed also apply to classification tasks.
We consider CIFAR-10 [Krizhevsky and Hinton, 2009], a
popular dataset of 32× 32× 3 images belonging to one of
10 classes. We again consider a modified ResNet-18 model,
in which we have ensured that the depths remain the same
between NN and DKL models. We consider training the
models with batch sizes of 100 and 500. We look at ELBOs,
accuracies, and LLs, as well as the LL for incorrectly
classified test points, which can indicate overconfidence in
predicting wrongly. We also look at expected calibration
error (ECE; Guo et al. [2017]), a popular metric evaluating
model calibration; results are shown in the lower portion
of Table 2. Here, we see that plain SVDKL struggles even
more to fit well, indicating the importance of pretraining.
For the batch size 100 experiments, pSVDKL generally
performs the best, reflecting the experience of Wilson et al.
[2016b] and Bradshaw et al. [2017]. However, we again
observe that increasing the batch size hurts pSVDKL, and

fSVKDL outperforms it despite worse ELBOs.

6.3 DATA AUGMENTATION

It is common practice for image datasets to perform data
augmentation, which effectively increases the size of the
training dataset by using modified versions of the images.
We briefly consider whether this affects our analysis by
repeating the same experiments (without plain SVDKL,
as it struggles to fit) with random cropping and horizontal
flipping augmentations; see Table 3. Overall, we once
again find that increasing the batch size still significantly
hurts the performance of pSVDKL: whereas pSVDKL
outperforms the fixed-network version for batch size
100, larger batch sizes reverse this, so that finetuning the
network according to the ELBO hurts, rather than helps,
performance. Therefore, in this case, using last-layer
Bayesian inference is worse than not being Bayesian at all.
These results reflect our findings in the previous remarks
that using the marginal likelihood can be worse than using
a standard likelihood, and that stochastic minibatching is
one of the main reasons that DKL can be successful.

7 ADDRESSING THE PATHOLOGY

We have seen that the empirical Bayesian approach to over-
parameterized Gaussian processes can lead to pathological
behavior. In particular, we have shown that methods that
rely on the marginal likelihood to optimize a large number
of hyperparameters can overfit, and that learning is unstable.
While minibatching can help mitigate these issues, the over-
all performance is sensitive to the batch size, leading to a sep-
arate hyperparameter to tune. It is therefore natural to won-
der whether we can address this by using a fully Bayesian
approach, which has been shown to improve the predictive
uncertainty of GP models [Lalchand and Rasmussen, 2020].
Indeed, Tran et al. [2019] showed that using Monte Carlo
dropout to perform approximate Bayesian inference over
the network parameters in DKL can improve calibration.
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Figure 4: Predictive posteriors for fully Bayesian DKL using
HMC for both the original toy dataset and the subsampled
version from Titsias [2009].

Table 4: Results for the image datasets with SGLD.

NN SVDKL

UTKFace - Test RMSE 0.16± 0.00 0.16± 0.00
Test LL 0.39 ± 0.04 0.42± 0.03

CIFAR-10 - Test Acc. 0.79± 0.00 0.78 ± 0.00
Test LL -1.89 ± 0.02 -1.11± 0.02

Inc. Test LL -8.78 ± 0.11 -4.94± 0.10
ECE 0.18 ± 0.00 0.13± 0.00

We test this hypothesis using sampling-based methods. We
first consider the toy problem from earlier, using HMC
[Neal, 2011] to sample the neural network weights along
with the other GP hyperparameters, using the marginal
likelihood as the potential. We plot the resulting predictive
posterior in Fig. 4a, and see that this completely resolves
the problems observed earlier: in fact, the uncertainty in the
outer regions is even greater than that given by the standard
SE fit in Fig. 1a, while still concentrating where there is
data. We additionally consider the subsampled version of
the dataset, as introduced in Titsias [2009], in Fig. 4b. We
see that there is still no overfitting despite the small dataset
size: for a comparison to the baseline SE kernel and DKL,
see Fig. 1 in the Appendix.

Unfortunately, HMC in its standard form does not scale
to the larger datasets considered in Sec. 6.2, due to the
necessity of calculating gradients over the entire dataset
and the calculation of the acceptance probability. Therefore,
we consider stochastic gradient Langevin dynamics (SGLD;
Welling and Teh [2011]), which allows us to use mini-
batches. We note that SGLD has relatively little additional
training cost compared to SGD, as it simply injects scaled
Gaussian noise into the gradients; the main cost is in
memory and at test time. While we do not necessarily
expect that this will be as accurate to the true posterior as
HMC (see e.g. Johndrow et al. [2020]), we hope that it will
give insights into what the performance of a fully Bayesian
approach would be. We select a batch size of 100, and
give test results for the NN and SVDKL for both UTKFace

and CIFAR-10 without data augmentation in Table 4.
We see that for both datasets, the additional uncertainty
significantly helps the NN models. The improvement is
significant for SVDKL for the UTKFace dataset, and while
not so significant for CIFAR-10, we still observe slight
improvements in log likelihoods and ECE, although at the
expense of slightly lower test accuracy. Moreover, the fully
Bayesian SVDKL outperforms the Bayesian NN in nearly
every metric, and significantly so for the uncertainty-related
metrics. In fact, for CIFAR-10, the original version of
SVDKL (i.e. pSVDKL) outperforms the Bayesian NN
for the uncertainty metrics, even for the larger batch size
experiments. Therefore, we arrive at our final remark:

Remark 5. A fully Bayesian approach to deep kernel learn-
ing can prevent overfitting and obtain the benefits of both
neural networks and Gaussian processes.

8 CONCLUSIONS

We have focused this work on exploring the performance
of DKL in different regimes. We have shown that, while
DKL models can achieve good performance, this is
mostly because of implicit regularization due to stochastic
minibatching rather than a better marginal likelihood. Based
off our experiments, this stochastic regularization appears
to be stronger than that for plain neural networks. Moreover,
we have shown that when this stochastic regularization is
limited, the performance can be worse than that of standard
neural networks, with more overfitting and unstable training.
This is surprising, because DKL models are more Bayesian
than deterministic neural networks, and so one might
expect that they would be less prone to overfitting due
to the training objective being the marginal likelihood.
However, we have shown that for highly parameterized
models, the marginal likelihood is actually a poor objective,
as it tries to correlate all the datapoints rather than those
which should be correlated: therefore, a higher marginal
likelihood does not improve performance as expected.
This means that when the number of hyperparameters is
large, the marginal likelihood cannot be relied upon for
model selection, just as the standard maximum likelihood
training loss cannot be used for model selection. Finally,
we showed that a fully Bayesian approach to the neural
network hyperparameters can overcome this limitation and
improve the performance over the less Bayesian approach,
fully showing the advantages of DKL models.
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