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Abstract

Computing the expectation of kernel functions is
a ubiquitous task in machine learning, with appli-
cations from classical support vector machines to
exploiting kernel embeddings of distributions in
probabilistic modeling, statistical inference, causal
discovery, and deep learning. In all these scenar-
ios, we tend to resort to Monte Carlo estimates
as expectations of kernels are intractable in gen-
eral. In this work, we characterize the conditions
under which we can compute expected kernels
exactly and efficiently, by leveraging recent ad-
vances in probabilistic circuit representations. We
first construct a circuit representation for kernels
and propose an approach to such tractable computa-
tion. We then demonstrate possible advancements
for kernel embedding frameworks by exploiting
tractable expected kernels to derive new algorithms
for two challenging scenarios: 1) reasoning under
missing data with kernel support vector regressors;
2) devising a collapsed black-box importance sam-
pling scheme. Finally, we empirically evaluate both
algorithms and show that they outperform standard
baselines on a variety of datasets.

1 INTRODUCTION

Kernel functions have been prominent in the machine learn-
ing community for decades. Kernels provided a conve-
nient notion of inner product for high-dimensional feature
maps [Cortes and Vapnik, 1995, Schölkopf et al., 1998]
and have been extended to represent distributions as ele-
ments in a reproducing kernel Hilbert space (RKHS). They
have contributed to various fundamental tasks including
sample testing [Gretton et al., 2012, Jitkrittum et al., 2017],
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group anomaly detection [Muandet and Schölkopf, 2013]
and causal discovery [Chen et al., 2014].

One fundamental computation that naturally arises in these
kernel-embedding based frameworks is to compute the ex-
pectations of a kernel function w.r.t. distributions over its
inputs. For instance, it arises in integral probability met-
rics (IPMs) [Müller, 1997] when the functional space is
chosen as an RKHS and distributions are characterized by
their kernel embeddings. However, such expectations are
computationally hard in general and most existing methods
resort to Monte Carlo estimators for approximation.

In this paper, we investigate how to derive a tractable algo-
rithm to compute these kernel expectations, thus enabling
the aforementioned frameworks to perform exact inference
without relying on unreliable approximations. We do so by
leveraging recent advances in tractable probabilistic mod-
eling. Specifically, our algorithmic contribution will take
advantage of representing both the kernels and the input
distributions participating in the expectation as circuits.

Circuit representations [Vergari et al., 2019, Choi et al.,
2020] reconcile and abstract from the different graphical
and syntactic representations of both classical tractable
probabilistic models such as mixture models (e.g., mix-
tures of Gaussian distributions), bounded-treewidth graph-
ical models [Koller and Friedman, 2009, Meila and Jor-
dan, 2000] and more recent ones such as probabilistic cir-
cuits [Choi et al., 2020, Vergari et al., 2021] like arithmetic
circuits [Darwiche, 2003], probabilistic sentential decision
diagrams (PSDDs) [Kisa et al., 2014], sum-product net-
works (SPNs) [Poon and Domingos, 2011], and cutset net-
works [Rahman et al., 2014]. As such, our analysis within
the framework of circuit representations will help trace the
boundaries of tractable computations of kernel expectations,
delivering a general and efficient scheme that can be flexibly
applied to many kernel-embedding scenarios and different
tractable probabilistic model formalisms.

For this representation language, we characterize under
which structural constraints on kernel functions and proba-
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 bility distributions the expectations of kernels can be com-
puted exactly and efficiently. We show how kernel functions
can be represented as circuits with the requisite structural
properties, and construct a recursive algorithm that deliv-
ers the tractable computation of their expectation in time
polynomial in the size of the circuit representations.

Moreover, we demonstrate how the tractable computation
of expected kernels can serve as a powerful tool to derive
novel kernel-based algorithms on two challenging tasks
when using kernel embeddings to represent features as well
as distributions. The first is to enable kernel support vector
regressors to deal with missing data by computing their ex-
pected predictions [Anderson and Gupta, 2011, Khosravi
et al., 2019a]. In the second, we derive a novel collapsed
black-box importance sampling scheme using the kernel-
ized Stein discrepancy [Liu and Lee, 2017] for efficient
approximate inference over factor graph models that do not
have a tractable representation. We compare each algorithm
with existing baselines on different real-world datasets and
problems, showing that our exact expected kernels yield
better inference performance.

2 EXPECTED KERNELS

We use uppercase letters X for random variables and lower-
case letters x for their assignments. Analogously, we denote
a set of random variables in bold uppercase X and their
assignments in bold lowercase x. The domain of variables
X is denoted by X . The cardinality of X is denoted by |X |.
We are interested in the modular operation of computing
expected kernels. This task naturally arises in various kernel-
embedding based frameworks.

Definition 2.1 (Expected Kernel). Given two distributions p
and q over variables X on domain X , and a positive definite
kernel function k : X × X → R, the expected kernel, that
is, the expectation of the kernel function k with respect to
the distributions p and q is defined as follows.

Mk(p, q) := Ex∼p,x′∼q[k(x,x′)] (1)

Expected kernels are omnipresent in machine learning. For
instance, one of the most well-known IPMs, the squared
maximum mean discrepancy (MMD) [Gretton et al., 2012]
is defined as MMD2[H, p, q] = Mk(p, p) + Mk(q, q) −
2Mk(p, q) and measures the distance between two distri-
butions p and q whose embeddings via a kernel k live in a
RKHSH. However, the computation cost of expected ker-
nels is prohibitive in general, even for distributions that are
tractable for other inference scenarios, as the next theorem
illustrates.

Theorem 2.2. There exist representations of distributions
p and q that are tractable for computing marginal, condi-
tional, and maximum a-posteriori (MAP) probabilities, yet

computing the expected kernel of a simple kernel k that is
the Kronecker delta is already #P-hard.

Concretely, we show that this is true for probabilistic circuit
representations, which unify several tractable probabilistic
model representations. We defer the proof of the above
statement to Section 4 after circuits are introduced.

The most commonly adopted solution to estimating Equa-
tion 1 and circumventing its computational challenge is
to approximate it by sampling. Instead, we are interested
in defining a large model class guaranteeing its tractable
computation and thus providing an efficient algorithm to
compute it exactly. We will show that this is possible by
leveraging circuit representations of functions. In summary,
we first adopt the probabilistic circuit representations for
distributions, and further build a circuit representation for
kernel functions to allow an exact computation of the ex-
pected kernels to be described in circuit operations. Then,
we exploit the structural constraints on circuits such that the
computational complexity can be bounded to be polytime
in the size of circuits. The necessary background on circuits
is presented in Section 3 and the tractable computation of
expected kernels is demonstrated in Section 4.

Expected Kernels in Action Our proposed tractable com-
putation of expected kernel can be applied to expressive dis-
tribution families and it can potentially lead to new advances
in kernel-based frameworks. To demonstrate this, we show
how tractable expected kernels give rise to novel algorithms
for two challenging tasks, where the kernels serve as em-
beddings for features in one algorithm, and as embeddings
for distributions in the other, covering the two most popular
usages of kernel functions. The first one is to reason about
kernel-based support regression models in the presence of
missing features. The second one is to perform black-box im-
portance sampling with collapsed samples, where expected
kernels are leveraged to obtain the kernelized discrepancy
between collapsed samples, which further gives the optimal
importance weights. We will show the detailed descriptions
of the proposed algorithms in Section 5 and their empirical
evaluation in Section 7.

3 CIRCUIT REPRESENTATION

Circuits are parameterized representations of functions as
computational graphs. They provide a language to char-
acterize the tractability of function operations in terms of
structural constraints over these computational graphs. Next
we first introduce circuits and their properties.

Definition 3.1 (Circuit). A circuit f over variables X is
a parameterized computational graph encoding a function
f(X) and comprising three kinds of computational units:
input, product, and sum. Each inner unit n (i.e., product or
sum unit) receives inputs from some other units, denoted
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Figure 1: Examples of circuit representations. Units in the computational graph include sum units, product units, univariate
input distribution units represented with a circle and labeled by their scopes, and non-linear input function units represented
with a curve and labeled by the input functions. Sum parameters are omitted for visual clarity. The feed-forward evaluation
(input before outputs) is intended from left to right. The rightmost unit is the output of the circuit. All product nodes are
colored according to their scopes: {X1, X2} in pink, {X1, X2, X3} in green, and X in orange.

in(n). Each unit n encodes a function fn as follows:

fn(φ(n)) =


ln(φ(n)) if n is an input unit∏

c∈in(n) fc(φ(c)) if n is a product unit∑
c∈in(n) θcfc(φ(c)) if n is a sum unit

where θc ∈ R are the parameters associated with each
sum node, and input units encode parameterized functions
ln over variables φ(n) ⊆ X, also called their scope. The
scope of an inner unit is the union of the scopes of its inputs:
φ(n) =

⋃
c∈in(n) φ(c). The final output unit (the root of the

circuit) encodes f(X).

Circuits can be understood as compact representations of
polynomials, whose indeterminates are the functions en-
coded by the input units. They are assumed to be simple
enough to allow locally tractable computations which fur-
ther forms global operations with tractability guarantees.

Most well-known circuit classes are various forms of prob-
abilistic circuits (PCs) [Vergari et al., 2019, Choi et al.,
2020]. PCs provide a unified framework where probabilistic
inference operations are cleanly mapped to the circuit repre-
sentations. As such, they abstract from the many graphical
formalism for tractable probabilistic models, from classi-
cal shallow mixtures [Koller and Friedman, 2009, Meila
and Jordan, 2000] to more recent deep variants [Poon and
Domingos, 2011, Peharz et al., 2020]. Specifically, a PC
encodes a (possibly unnormalized) probability distribution
over a collection of variables in a recursive manner.

Definition 3.2 (Probabilistic Circuits). A PC on domain X
is a circuit encoding a non-negative function p : X → R≥0.

A circuit p can be evaluated in time linear in its size denoted
by |p|, i.e., the number of edges in its computational graph.
For example, computing p(X = x) in a PC can be done in a
feedforward way, evaluating input units before outputs, and
hence in time linear in the size of the PC.

W.l.o.g., we will assume that units in circuits alternate layer-
wise between sum and product units and that every product
unit receives only two inputs. Both requirements can be

easily enforced in any circuit structure with a polynomial
increase in its size [Peharz et al., 2020, Vergari et al., 2015].
Furthermore, in this work we focus on discrete variables.
For conciseness, we denote the circuit by the same notation
as the function that it represents, for instance, a PC p refers
to the circuit representation of the distribution p.

Properties of Circuits The tractability of computing
quantities of interest involving the function encoded in a cir-
cuit, also called queries, can be characterized by structural
constraints on the computational graph of its circuit [Dar-
wiche and Marquis, 2002]. Next we introduce the structural
properties that will be sufficient for the tractable computa-
tion of the expected kernels. We refer the interested reader
to Choi et al. [2020] for additional properties enabling other
tractable inference scenarios.

Definition 3.3 (Smoothness). A circuit is smooth, if for
every sum node n, its inputs in(n) share the same scope, i.e.,
∀c, c′ ∈ in(n), φ(c) = φ(c′).

Some examples of smooth circuits are mixture models: they
comprise a single sum node over tractable input distributions
that have to share the same scope. For example, a Gaussian
mixture model (GMM) can be represented as a smooth
circuit with a single sum unit and several input units, each
of which encodes a (multivariate) Gaussian density defined
over the same set of variables.

Definition 3.4 (Determinism). A circuit is deterministic if
the inputs of every sum unit have disjoint supports.

Determinism in PCs enables the tractable computation of
MAP inference. In this work, determinism will play a role in
exactly computing the KSD between discrete distributions
(see Corollary 4.7).

Definition 3.5 (Decomposability). A circuit is decompos-
able, if for every product node n, its inputs in(n) have dis-
joint scopes, i.e., ∀c, c′ ∈ in(n), c 6= c′ : φ(c) ∩ φ(c′) = ∅.

Decomposable product nodes encode local factorizations.
For example, a decomposable product node n over vari-
ables X with inputs from two units can be written as



 fn(X) = fL(XL)fR(XR), where XL and XR form a parti-
tion of X. Taken together, smoothness and decomposability
are sufficient and necessary for performing tractable integra-
tion over arbitrary sets of variables in a single feedforward
pass, which allows to compute marginals and condition-
als in time linear in the circuit size [Choi et al., 2020]. To
characterize tractable kernel expectations, we will need the
multiple circuits participating in it to have product units
that decompose their scopes in a “synchronized” way. This
property, called compatibility, is formalized recursively as
follows.

Definition 3.6 (Compatibility). Two circuits f and g are
compatible if (i) they are smooth and decomposable, and (ii)
for any pair of product units n ∈ f andm ∈ g that share the
same scope, they decompose in the same way, i.e., for every
unit c ∈ in(n), there must exist a unique unit c′ ∈ ch(m)
such that φ(c) = φ(c′).

Definition 3.7 (Structured-decomposability). A circuit is
structured-decomposable if it is compatible with itself.

Notice that structured-decomposable circuits are a strict
subclass of decomposable circuits. An example of a
structured-decomposable PC is shown in Figure 1a. The
way that a structured-decomposable circuit hierarchically
partitions its scope can be compactly represented by a
graph called vtree [Pipatsrisawat and Darwiche, 2008],
pseudo-forest [Jaeger, 2004] or pseudo-tree [Dechter and
Mateescu, 2007]. In a nutshell, compatible structured-
decomposable circuits conform to the same hierarchical
partitioning over their variables. Figure 1a and Figure 1b
show two compatible PCs. This additional requirement en-
ables also the tractable computation of moments of predic-
tive models [Khosravi et al., 2019a] and the probability of
logical constraints [Bekker et al., 2015, Choi et al., 2015].

Construction of PCs As mentioned before, several
classes of tractable probabilistic graphical models (PGMs)
including Chow-Liu trees [Chow and Liu, 1968] and hidden
Markov models (HMMs) [Rabiner and Juang, 1986] can be
represented as compact PCs with certain structural proper-
ties. The process of translating one graphical representation
into a circuit is called compilation and has received much
attention in the literature [Chavira and Darwiche, 2005, Dar-
wiche, 2011]. In particular, Shen et al. [2016] propose a very
efficient compilation scheme that compiles a factor graph
into a structured-decomposable PC by first representing
each factor as a PC and then multiplying them together.

Besides compiling PCs from other tractable models, we can
also directly learn PCs from data [Lowd and Domingos,
2012, Rooshenas and Lowd, 2014, Peharz et al., 2020].
Recently learning algorithms tailored towards structured-
decomposable PCs have been proposed [Liang and Van den
Broeck, 2017, Dang et al., 2020]. For our experiments we
will employ STRUDEL [Dang et al., 2020] for its simplicity

and speed.

4 TRACTABLE COMPUTATION OF
EXPECTED KERNELS

Computing expected kernels is a #P-hard problem in general.
It involves summation over exponentially many states in the
distribution space. We first provide a formal proof for the
hardness statement provided in Theorem 2.2.

Proof. [Theorem 2.2] Consider the case when p and q are
both structured-decomposable and deterministic probabilis-
tic circuits, and the positive definite kernel k is a Kronecker
delta function defined as k(x,x′) = 1 if and only if x = x′.
Then computing the expected kernel Mk(p, q) is equivalent
to computing the quantity

∑
x∈X p(x)q(x), which has been

shown to be #P-hard by Vergari et al. [2021]. Therefore,
computing the expected kernel is #P-hard.

From the proof we can tell that mild structural constraints on
circuits are not enough to reduce the computational complex-
ity. We provide another proof in Appendix where a pair of
probabilistic circuits with different constraints is considered.
Together they show that it is highly challenging to derive
sufficient structural constraints to guarantee tractability.

The aim of this section is to investigate under what structural
constraints on circuits an exact and efficient computation
of expected kernels is possible. But before we character-
ize tractability in the circuit language, we need to consider
whether also kernels can be represented as circuits. To an-
swer this question we define kernel circuits (KCs) to be the
circuit representations of kernel functions that measure sim-
ilarities between input pairs defined on the kernel domain.

Definition 4.1. A KC on domainX×X is a circuit encoding
a symmetric kernel function k : X × X → R+.

Remark. To verify that a given KC is positive definite, it
is sufficient to verify that the input units are positive definite
kernels and that the sum parameters are positive since the
positive definite kernel family is closed under summation
and product. Moreover, it can be done tractably in time
linear in the number of input units in the KC.

Figure 1c shows an example kernel circuit. We further define
the left (resp. right) projection of a KC given x ∈ X to be
k(·,x) : X → R+ (resp. k(x, ·) : X → R+). Intuitively,
for the tractability of expected kernels, the KC should have
its structure conform to the distributions that it measures,
which allows the measurement to be broken down into basic
ones along the circuit. Next, we characterize the structural
constraints on KCs suitable for such a computation.

Definition 4.2 (Kernel Compatibility). Let p and q be a
pair of compatible circuits. A kernel circuit k(X,X′) is
kernel-compatible with the circuit pair p(X) and q(X′) if



 Algorithm 1 Mkl
(pn, qm) — Computing the expected ker-

nel
Require: Two compatible PCs pn and qm, and a KC kl that
is kernel-compatible with the PC pair pn and qm.

1: if n,m, l are input units then
2: return Mkl

(pn, qm)
3: else if n,m, l are sum units then . cf. Prop. 4.4
4: return

∑
i∈in(n),j∈in(m),c∈in(l) θiδjγcMkc(pi, qj)

5: else if n,m, l are product units then . cf. Prop. 4.5
6: return MkL

(pnL
, qmL

) ·MkR
(pnR

, qmR
)

i) the kernel circuit k is smooth and decomposable, and
ii) the left and right projections of k are compatible with

circuit p and q respectively for any x ∈ X .

For example, the KC shown in Figure 1c is kernel-
compatible with the circuit pair shown in Figure 1a and
Figure 1b. Intuitively, a KC with kernel compatibility mea-
sures the similarity between the two probability distributions
in a hierarchical way.

Note that many commonly used kernels have a circuit rep-
resentations that exhibits kernel compatibility. These in-
clude several exponentiated forms such as the radial ba-
sis function kernel (RBF) and the exponentiated Hamming
kernel. To see how, consider an RBF kernel k(X,X′) =

exp(−∑4
i=1 |Xi − X ′i|2). It can be represented by a KC

with one product unit connected to four input units each
of which represents the basic function exp(−|Xi −X ′i|2).
Given a pair of compatible PCs p and q as in Figure 1a and
Figure 1b, we can always transform the KC of an RBF ker-
nel into a circuit compatible with p and q by “splitting” its
product unit into intermediate products that are compatible
with the product units in p and q and by introducing dummy
sum units receiving single inputs and with parameter θ = 1.
The resulting KC is shown in Figure 1c.

Next we show our main result: kernel compatibility is suffi-
cient to guarantee the tractability of expected kernels.

Theorem 4.3. Let p and q be a pair of compatible PCs, and
k be a kernel circuit. If k is kernel-compatible with p and
q, the expected kernel Mk(p, q) can be computed exactly in
O(|p||q||k|) time.1

The proof is by construction. Intuitively, the computation of
expected kernels can be recursively “broken down” along
the circuit structures, until we reach collections of input
units for which we can assume the integrals in the expecta-
tions to be tractably computed. The next proposition shows
this recursion over circuits whose outputs are sums.

1As the algorithm will show, this is not a tight bound and
in practice the effective number of recursive calls will be much
smaller than |p||q||k|.

Proposition 4.4. Let pn and qm be two smooth probabilis-
tic circuits over variables X whose output units n and m
are sum units, denoted by pn(X) =

∑
i∈in(n) θipi(X) and

qm(X) =
∑

j∈in(m) δjqj(X) respectively. Let kl be a ker-
nel circuit with its output unit being a sum unit l, denoted
by kl(X) =

∑
c∈in(l) γckc(X). Then it holds that

Mkl
(pn, qm) =

∑
i∈in(n)

θi
∑

j∈in(m)

δj
∑

c∈in(l)

γcMkc(pi, qj).

(2)

This way, the expected kernel can be computed by the
weighted sum of a number of simpler expected kernel com-
putations over the input units. Analogously, the expected
kernel computation can be broken down at the product units
as follows thanks to compatibility.

Proposition 4.5. Let pn and qm be two compatible prob-
abilistic circuits over variables X whose output units
n and m are product units, denoted by pn(X) =
pnL

(XL)pnR
(XR) and qm(X) = qmL

(XL)qmR
(XR). Let

kl be a kernel circuit that is kernel-compatible with the cir-
cuit pair pn and qm with its output unit being a product unit
denoted by kl(X,X′) = kL(XL,X

′
L)kR(XR,X

′
R). Then it

holds that

Mkl
(pn, qm) = MkL

(pnL
, qmL

) ·MkR
(pnR

, qmR
).

Lastly, for the base cases of the recursion we can have that
either both p and q comprise a single input distribution (shar-
ing the same scope), or one of them is an input distribution
and the other a sum unit.2 The first case is easily computable
in polytime by the assumption in Theorem 4.3. Note that this
assumption is generally easy to meet as the double summa-
tion in Mk(pn, qm) for input distributions can be computed
in polytime by enumeration, since input distributions have
limited scopes (generally univariate) and p(x)q(x′)k(x,x′)
can be computed in closed form for decomposable kernels
k and commonly used distributions such as discrete distribu-
tions as in our case. The second corner case reduces to the
first when noting that computing Mk(pn, qm) for an input
distribution and a mixture of input distributions reduces to
computing a weighted sum of expectations followed by ap-
plying Proposition 4.4. Algorithm 1 summarizes the whole
computation of the expected kernelMk, which requires only
polynomial complexity when caching repeated calls.

As direct results of Theorem 4.3, we show that two com-
mon kernelized discrepancies in reproducing kernel Hilbert
space (RKHS) can be tractably computed if the same struc-
tural constraints apply to the distributions and kernels.

Corollary 4.6. Following the assumptions in Theorem 4.3,
the squared maximum mean discrepancy MMD [H, p, q] in

2The other unit cannot be a product unit otherwise compatibil-
ity would be violated.



 RKHSH associated with kernel k as defined in Gretton et al.
[2012] can be tractably computed in time O(|p||q||k|).

Corollary 4.7. Following the assumptions in Theorem 4.3,
if the probabilistic circuit p further satisfies determinism, the
kernelized discrete Stein discrepancy (KDSD) D2(q ‖ p) =
Ex,x′∼q[kp(x,x′)] in the RKHS associated with kernel k as
defined in Yang et al. [2018] can be tractably computed.

The computation of expected kernels by circuit operations
allows us to compute the kernel-embedding based statistics
exactly and efficiently. This further gives rise to interesting
applications part of which will be shown in the next section.
We leave the further explorations on what other statistics will
benefit from the proposed computation of expected kernels
and what more applications will be inspired as future work.

5 EXPECTED KERNELS IN ACTION

In this section we will show how the tractable computation
of expected kernels can be leveraged in 1) kernel embedding
for features to derive an inference algorithm for support
vector regression (SVR) under missing data; 2) kernel em-
bedding for distributions to derive a collapsed estimator
in black-box importance sampling (IS). We further demon-
strate the effectiveness of both proposed expected-kernel
based algorithms empirically in Section 7.

5.1 SVR FOR MISSING DATA

Support vector machines (SVMs) for classification and re-
gression are widely used in machine learning [Noble, 2006].
SVMs’ foundations have great theoretical appeal, and they
are still widely used in practice. How to deal with missing
features in SVMs has been an active area of research [Ay-
dilek and Arslan, 2013, Saar-Tsechansky and Provost, 2007,
Marlin, 2008].

In this section, we aim to tackle missing features in SVR at
deployment time from a principled probabilistic perspective,
like in Anderson and Gupta [2011], but for a larger model
class represented as circuits. We propose to leverage PCs to
learn the joint feature distribution, and then exploit tractable
expected kernels to efficiently compute the expected predic-
tions of SVR models. More formally, given a set of input
variables X (features) with domain X and a variable Y (tar-
get) with domain Y , and a kernel function k, a kernelized
SVR learns from a dataset {(x(i), y(i))}ni=1 to predict for
new inputs with a function f taking the form

f(X) =

n∑
i=1

wik(x(i),X) + b. (3)

Existing works to handle missing features at deployment
time include imputation strategies that substitutes missing

values with reasonable alternatives such as the mean or me-
dian, estimated from training data. The imputation methods
are typically heuristic and model-agnostic, and sometimes
make strong distributional assumptions such as total inde-
pendence of the feature variables. As demonstrated in Khos-
ravi et al. [2019b], computing expected predictions is not
only theoretically principled but practically effective.

Definition 5.1 (Expected prediction). Given a predictive
model f : X → Y , a distribution p(X) over features X and
a partial assignment xs for variables Xs ⊂ X, the expected
prediction of f w.r.t. p is:

Exc∼p(Xc|xs)[f(x)], (4)

where Xc = X\Xs and where x is the completed feature
vector consisting of both xc and xs.

Intuitively, the expected prediction of a SVR given a partial
feature vector can be thought of as reweighting all possi-
ble completions by their probability. Expected prediction
enjoys the theoretical guarantee that it is consistent under
both missing completely at random (MCAR) and missing
at random (MAR) mechanisms, if f has been trained on
complete data and is Bayes optimal [Josse et al., 2019].

Proposition 5.2. Given a SVR model f with a KC k, and a
structured-decomposable PC p for the feature distribution,
the expected prediction of f can be tractably computed in
time O(|k||p|).

Proof. The expected prediction of f w.r.t. p can be rewritten
as a linear combination of expected kernels.

Exc∼p(Xc|xs)[f(x)] =

n∑
i=1

wiExc∼p(Xc|xs)[k(x,x(i))]+b.

Note that the task of computing the doubly expected kernel
in Definition 2.1 subsumes the task of computing a singly
expected kernel where one of the inputs to the kernel func-
tion is a constant vector xi instead of a variable and both
Theorem 4.3 and Algorithm 1 apply here.

5.2 COLLAPSED BLACK-BOX IMPORTANCE
SAMPLING

Black-box importance sampling (BBIS) [Liu and Lee, 2017]
is a recently introduced algorithm to flexibly perform ap-
proximate probabilistic inference on intractable distribu-
tions. By weighting samples from an arbitrary proposal as
to minimize a kernelized Stein discrepancy (KSD), BBIS
can accurately estimate continuous target distributions.

In this section, we first show that the BBIS algorithm can be
extended to discrete distributions by adopting a recently pro-
posed kernelized discrete Stein discrepancy (KDSD) [Yang
et al., 2018] that serves as the discrete counterpart for KSD.



 We further show that the BBIS algorithm can be improved
by using collapsed samples, which is made possible by the
tractable computation of expected kernels.

We start with a brief overview of how to construct the
KDSD. For a finite domain X , a cyclic permutation de-
noted by ¬ is a bijection associated with some ordering of
elements in X that maps an element in X to the next one
according to the ordering. A partial difference operator ∆∗

for any function f on domain X is defined as ∆∗f(x) :=
(∆∗1f(x), · · · ,∆∗Df(x)), with ∆∗i f(x) := f(x)− f(¬ix)
for i = 1, 2, · · · , D with D = |X|. Now we are ready to
define the (difference) score function, an important tool for
determining a probability distribution. The score function
is defined as sp(x) := ∆∗p(x)/p(x), a vector-valued func-
tion with its i-th dimension being sp,i(x) := ∆∗i p(x)/p(x).
Then the KDSD between two distributions p and q is defined
as

D(q ‖ p) := sup
f∈F

Ex∼q(X)[Tpf(x)], (5)

with the functional space F being RKHS associated with a
strictly positive definite kernel k, and the operator Tp being
the Stein difference operator defined as Tpf := sp(x)f>−
∆f(x). The KDSD is a proper divergence measure in the
sense that for any strictly positive distribution p and q, the
KDSD D(q ‖ p) = 0 if and only if p = q [Yang et al.,
2018]. Moreover, a nice property of the KDSD is that even
though it involves a variational optimization problem in its
definition, it admits a closed-form representation as

S(q ‖ p) := D2(q ‖ p) = Ex,x′∼q[kp(x,x′)], (6)

with the kernel function kp defined as

kp(x,x′) = sp(x)>k(x,x′)sp(x′)− sp(x)>∆x′
k(x,x′)

−∆xk(x,x′)>sp(x′) + tr(∆x,x′
k(x,x′)),

where the superscript x and x′ of the difference operator
specifies the variables that it operates on.

We can now proceed to propose a BBIS algorithm for cat-
egorical distributions. Given a set of samples {x(i)}ni=1

generated from some unknown proposal q possibly from
some black-box mechanism, Categorical BBIS computes
the importance weights for the samples by minimizing the
KDSD between q and target distribution p formulated as

w∗ = arg min
w

{
w>Kpw

∣∣∣∣∣
n∑

i=1

wi = 1, wi ≥ 0

}
, (7)

where Kp is a Gram matrix with entries [Kp]ij =
kp(x(i),x(j)) and w = (w1, · · · , wn) is the weight vec-
tor. We prove that the BBIS for categorical distributions
enjoys the same convergence guarantees as its continuous
counterpart. Due to space constraints, we defer both the
algorithm details and convergence proofs to the Appendix.

However, a computational bottleneck in BBIS limits its scal-
ability, the construction of the Gram matrix. We therefore
propose a collapsed variant of BBIS to accelerate it by deliv-
ering equally good approximations with fewer samples. Col-
lapsed samplers, also known as cutset or Rao-Blackwellised
samplers [Casella and Robert, 1996], improve over classical
particle-based methods by limiting sampling to a subset of
the variables while pairing it with some closed-form repre-
sentation of a conditional distribution over the rest.

Specifically, let (Xs,Xc) be a partition for variables X. A
weighted collapsed sample for variables X takes the form
of a triplet (xs, p(Xc | xs), w) where xs is an assignment
for the sampled variables Xs, p(Xc | xs) is a conditional
distribution over the collapsed set Xc, andw the importance
weight. We now show how to distill a conditional KDSD,
in order to extend BBIS to the collapsed sample scenario.

Definition 5.3 (Conditional KDSD). Assume given a strictly
positive distribution p and a strictly positive proposal dis-
tribution of the sampled set qs, where the variable subset
Xs defines the samples. The full distribution defined by the
collapsed samples is q(x) = qs(xs)p(xc | xs). The con-
ditional KDSD (CKDSD) is defined as the KDSD between
distributions p and q, i.e., Ss(qs ‖ p) := S(q ‖ p).

Proposition 5.4. The CKDSD between the two positive
distributions p and q admits a closed form as

Ss(qs ‖ p) = Exs,x′
s∼qs(Xs)[kp,s(xs,x

′
s)], (8)

where kp,s denotes a conditional kernel function defined as

kp,s(xs,x
′
s) = E

xc∼p(Xc|xs),x
′
c∼p(Xc|x′

s)
[kp(x,x′)] . (9)

Similar to the optimization in Equation 7 for BBIS, given
a set of collapsed samples {(xs

(i), p(Xc | xs
(i)))}ni=1, the

problem of computing importance weights can be cast as
minimizing the empirical CKDSD between the collapsed
samples and the target distribution p as follows.

Ss({xs
(i), wi} ‖ p) = w>Kp,sw (10)

where w is the vector of sample weights and Kp,s is the
Gram matrix with entries [Kp,s]ij = kp,s(xs

(i),xs
(j)).

Now the key question is whether the conditional kernel
function kp,s can be computed tractably. We show that this
is possible with the tractable computation of expected ker-
nels.

Proposition 5.5. Let p(Xc | xs) be a PC that encodes
a conditional distribution over variables Xc conditioned
on Xs = xs, and k be a KC. If the PC p(Xc | xs) and
p(Xc | xs

′) are compatible and k is kernel-compatible with
the PC pair for any xs, xs

′, then the conditional kernel
function kp,s can be tractably computed.

This finishes the construction of a BBIS scheme using the
collapsed samples, which we name CBBIS. The complete
algorithmic recipe for CBBIS is presented in Algorithm 2
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Figure 2: Evaluating RMSE (y-axis) of the predictions of SVR under different percentages of missing features (x-axis) over
four real-world regression datasets. Overall, our expected predictions outperform median imputation and MAP.

Algorithm 2 CBBIS(p, qs, k, n)
Input: target distribution p over variables X, black-box
mechanism qs, kernel function k, number of samples n
Output: a set of weighted collapsed samples

1: Sample {xs
(i)}ni=1 from qs

2: for i = 1, . . . , n do
3: Compile p(Xc | xs

(i)) into a PC . cf. Sec. 7.2
4: for i = 1, . . . , n do
5: for j = 1, . . . , n do
6: [Kp]ij = kp,s(xs

(i),xs
(j)) . cf. Prop. 5.5

7: w∗ = arg minw

{
w>Kpw

∣∣∑n
i=1 wi = 1, wi ≥ 0

}
8: return {(xs

(n), p(Xc | xs
(n)), w∗i )}ni=1

6 RELATED WORK

The idea of composing kernels with sums and products first
emerged in the literature of the automatic statistician, and
is applied to structure discovery for Gaussian processes
and nonparametric regression tasks [Duvenaud et al., 2013].
Compositional kernel machines [Gens and Domingos, 2017]
further leverage sum-product functions [Friesen and Domin-
gos, 2016] for a tractable instance-based method for object
recognition. Instead, we provide the general theoretical foun-
dations for the tractable computation of expected kernels.

Our proposed BBIS scheme extends the original black-box
importance sampling to discrete domains, which have not
been explored yet, contrary to the continuous case [Cock-
ayne et al., 2019, Oates et al., 2014]. Alternatives to black-
box optimization include directly approximating the pro-
posal distribution to compute the importance weights [De-
lyon et al., 2016]. The KSD [Liu and Wang, 2016, Liu
et al., 2016] and its variants [Yang et al., 2018, Wang et al.,
2019, 2018, Singhal et al., 2019], when applied to particle-
based inference, consider the particles to be fully instanti-
ated while our proposed conditional KDSD generalizes it to
collapsed particles.

Closely related, works in probabilistic graphical models
represent collapsed particles by circuits. The approximate
compilation proposed by Friedman and Van den Broeck
[2018] employs online collapsed importance sampling (CIS)
partially compiling the target distribution into a sentential

decision diagram (SDD) [Darwiche, 2011]. Rahman et al.
[2019] propose to use a cutset network, a smooth, decom-
posable and deterministic PC to distill a collapsed Gibbs
sampling (CGS) scheme for Bayesian networks. Arithmetic
circuits [Darwiche, 2003], other kinds of PCs that can be
compiled from Bayesian networks have been used in the
context of variational approximations [Lowd and Domingos,
2010, Vlasselaer et al., 2015, Shih and Ermon, 2020].

7 EMPIRICAL EVALUATION

In this section, we empirically evaluate our two novel algo-
rithms, and show how tractable expected kernels can benefit
scenarios where the kernels serve as embedding for features
and embedding for distributions.3 We provide preliminary
experiments to answer the following questions: (Q1) Do ex-
pected predictions at deployment time improve predictions
over common imputation techniques to deal with missing-
ness for SVR? (Q2) How is the performance of CBBIS
when compared to other IS methods? (Q3) How much does
collapsing more variables improve estimation quality?

7.1 REGRESSION UNDER MISSING DATA

We compare our expected prediction with median impu-
tation techniques and another natural and strong baseline:
imputing missing values by MAP inference over the learned
data distribution. We evaluate all competitors on four com-
mon regression benchmarks from several domains following
Khosravi et al. [2019a]. For each benchmark, we adopt the
STRUDEL algorithm [Dang et al., 2020] to learn structured-
decomposable and deterministic PCs from data to represent
the data distributions. STRUDEL initializes from a Chow-
Liu tree [Chow and Liu, 1968]. Then the structure learn-
ing is performed by doing heuristic-based greedy search
over possible structures. Intuitively, it iteratively models the
data with variable heuristic and edge heuristic. Recall from
Section 3 that deterministic PCs can perform exact MAP
inference in polytime and thus the MAP imputation can be
done tractably.

3Code for reproducing our empirical evaluation can be found
at github.com/UCLA-StarAI/ExpectedKernels

github.com/UCLA-StarAI/ExpectedKernels
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Figure 3: Log average marginal Hellinger distance (y-axis) vs. different sample sizes (N , x-axis), evaluated on an Ising
or ASIA model as a target distribution (p) with Gibbs chain as a proposal distribution (q). The target distribution and the
percentage of collapsed variables are (from left to right): (Ising, 25%); (Ising, 50%); (ASIA, 25%); (ASIA, 50%).

For the missingness setting, we assume data to be MCAR
with missing probability π ∈ {0.1, 0.2, . . . , 0.9}, each of
which reports the average result over five independent trials.
We employ RBF kernels, which are naturally compatible
with any structured-decomposable PCs (see Section 4).

Figure 2 summarizes our results: we can answer Q1 in
a positive way since expected prediction performs equally
well or better than other imputation methods. This is because
expected prediction computes the exact expectation over
expressive distributions while other imputation techniques
consider a single possible completion and make additional
restrictive distributional assumptions.

7.2 APPROXIMATE INFERENCE VIA CBBIS

We empirically evaluate our CBBIS scheme against different
baselines on some synthetic benchmarks where we can ex-
actly measure approximation quality. For each baseline, we
measure the quality of the estimated marginals for each vari-
able against a ground truth target distribution represented
as an Ising model on a 4 × 4 grid whose potentials have
been randomly generated. To show our methods are suitable
for different graph structures, we also test on the Bayesian
network ASIA [Lauritzen and Spiegelhalter, 1988]. We re-
port in log scale the average Hellinger distance between
estimated marginals and ground-truth marginals across all
variables over five runs.

We compare our proposed CBBIS in Algorithm 2 against
the following baselines: a vanilla Gibbs sampler (VS), a
collapsed Gibbs sampling scheme (CVS), Categorical black-
box importance sampling (BBIS), and online collapsed im-
portance sampling (CIS) proposed by Friedman and Van den
Broeck [2018],4 cf. Section 6. For both BBIS and CBBIS
we use Gibbs chains as proposal mechanisms. Note that CIS
employs a different and adaptive proposal scheme where
new samples and variables to be collapsed are heuristically
selected by computing marginals via the SDD that compiles
the collapsed distribution.

For the kernel function in KDSD, we follow the kernel
4github.com/UCLA-StarAI/

Collapsed-Compilation

choice in Yang et al. [2018], that is, the exponential Ham-
ming kernel. The quadratic programming problem to re-
trieve the optimal weights in BBIS and CBBIS is solved
by CVXOPT [Vandenberghe, 2010]. To obtain the PC rep-
resentation of collapsed samples, we use the compilation
algorithm by Shen et al. [2016] for collapsed samples in both
CBBIS and CVS. The compilation step is fast. For each col-
lapsed sample, the compilation algorithm translates the con-
ditional Ising model and the conditional Bayesian networks
in our case to structured decomposable PCs within seconds.
For CIS, we adopt the default compilation algorithm in its
implementation. We collapse 25% and 50% of the variables
for methods exploiting collapsed samples: CVS, CIS and
CBBIS. Figure 3 summarizes our results: we can answer
Q2 in a positive way since CBBIS performs equally well
or better than other baselines. Moreover, for Q3, we can
see that methods with collapsed samples, CBBIS and CVS,
outperform their non-collapsed counterparts, BBIS and VS
respectively, i.e., collapsing helps boosting estimation. It is
more evident when collapsing half of the variables.

8 CONCLUSION

We introduced kernel circuits which enable us to derive
the sufficient structural constraints for a tractable compu-
tation of expected kernels. We further demonstrate how
this tractable computation gives rise to two novel kernel-
embedding based algorithms.
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