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Abstract

Deep Neural Networks (DNNs), despite their
tremendous success in recent years, could still cast
doubts on their predictions due to the intrinsic un-
certainty associated with their learning process.
Ensemble techniques and post-hoc calibrations are
two types of approaches that have individually
shown promise in improving the uncertainty cali-
bration of DNNs. However, the synergistic effect
of the two types of methods has not been well ex-
plored. In this paper, we propose a truth discovery
framework to integrate ensemble-based and post-
hoc calibration methods. Using the geometric vari-
ance of the ensemble candidates as a good indica-
tor for sample uncertainty, we design an accuracy-
preserving truth estimator with provably no ac-
curacy drop. Furthermore, we show that post-hoc
calibration can also be enhanced by truth discovery-
regularized optimization. On large-scale datasets
including CIFAR and ImageNet, our method shows
consistent improvement against state-of-the-art cal-
ibration approaches on both histogram-based and
kernel density-based evaluation metrics. Our code
is available at https://github.com/horsepurve/truly-
uncertain.

1 INTRODUCTION

We live in an uncertain world. With the increasing use of
deep learning in the real world, quantitative estimation of
the predictions from deep neural networks (DNNs) must not
be neglected, especially when it comes to medical imaging
[Esteva et al., 2017] [Ma et al., 2019], disease diagnosis
[De Fauw et al., 2018] [Ma et al., 2018], and autonomous
driving [Kendall et al., 2017]. Uncertainty also plays an
important role in differentially private data analysis [Bassily

*Co-corresponding authors.

et al., 2013].

Modern deep neural networks, despite their extraordinary
performance, are oft-criticized as being poorly calibrated
and prone to be overconfident, thus leading to unsatisfied
uncertainty estimation. The process of adapting deep learn-
ing’s output to be consistent with the actual probability is
called uncertainty calibration [Guo et al., 2017], and has
drawn a growing attention in recent years.

For a better calibration of the uncertainty of DNNs, the ef-
forts to date have been concentrated on developing more
effective calibration and evaluation methods. Existing cali-
bration methods roughly fall into two categories, depending
on whether an additional hold-out calibration dataset is used.
(1) Post-hoc calibration methods use a calibration dataset to
learn a parameterized transformation that maps from clas-
sifiers’ raw outputs to their expected probabilities. Quite a
few techniques in this category can be used to learn the map-
ping, such as Temperature Scaling (TS) [Guo et al., 2017]
[Kull et al., 2019], Ensemble Temperature Scaling (ETS)
[Zhang et al., 2020], and cubic spline [Gupta et al., 2021],
etc. However, the expressivity of the learnable mapping
could still be limited in all of them. This is evidenced by the
fact that in TS a single temperature parameter T is tuned,
while ETS brings in three additional ensemble parameters.
Thus, it is desirable to explore a more sophisticated form of
the mapping function. (2) Another line of methods adapt the
training process so that the predictions are better calibrated.
Techniques in this category include mixup training [Thulasi-
dasan et al., 2019], pre-training [Hendrycks et al., 2019a],
label-smoothing [Müller et al., 2019], data augmentation
[Ashukha et al., 2020], self-supervised learning [Hendrycks
et al., 2019b], Bayesian approximation [Gal and Ghahra-
mani, 2016] [Gal et al., 2017], and Deep Ensemble (DE)
[Lakshminarayanan et al., 2017] with its variants (Snapshot
Ensemble [Huang et al., 2017a], Fast Geometric Ensem-
bling (FGE) [Garipov et al., 2018], SWA-Gaussian (SWAG)
[Maddox et al., 2019]). Methods from these two categories
thrive in recent years, and a natural idea is to combine them
together. Recently, Ashukha et al. [2020] points out the
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 necessity of TS when DE is miscalibrated out-of-the-box.
However, due to the intrinsic uncertainty and stochasticity
of the learning process, it is possible that the ensemble mem-
bers are not created equal, and simply averaging over all
members may lead to a suboptimal ensemble result. Further-
more, when TS is appended after DE, the original ensemble
members are all neglected. As a matter of fact, we still lack
a method that can bridge the divide and make the most of
the ensemble members.

A plethora of metrics have been developed during the past
few years for the evaluation of calibration performance, such
as Expected Calibration Error (ECE) [Naeini et al., 2015]
and kernel density estimation-based ECE (ECEKDE) [Zhang
et al., 2020], Log-Likelihood (LL) [Guo et al., 2017] and
calibrated LL [Ashukha et al., 2020], Kolmogorov-Smirnov
(KS) test [Gupta et al., 2021], etc. Every such metrics has
its strengths and weaknesses. For example, ECE could be
easily biased by the binning scheme; LLs have also shown
themselves to be closely correlated with accuracy (ρ ∼
0.9) [Ashukha et al., 2020]. Moreover, current post-hoc
calibration methods usually restrict themselves to only one
specific metric (e.g. LL), and it is believed that some metrics
(e.g. ECE) can hardly be optimized directly [Ashukha et al.,
2020]. Thus, there is a crucial need for an optimization
framework that allows multiple metrics, including ECEs, to
be considered at the same time.

To address these challenges, we propose in this paper a
truth discovery-based framework and an accompanying geo-
metric optimization strategy that is (a) more expressive, (b)
metric-agnostic, and (c) beneficial to both ensemble-based
and post-hoc calibration of DNNs.

Truth discovery, concerning about finding the most trust-
worthy information from a number of unreliable sources, is
a well-established technique in data mining and theoretic
computer science, with firm theoretic foundation [Ding and
Xu, 2020, Huang et al., 2019, Li et al., 2020]. It finds appli-
cations in resolving disagreements from possibly conflicting
information sources e.g., crowdsourcing aggregation. In this
paper, we intend to answer the following question: Can
truth discovery be used to aggregate information from Deep
Ensemble, and in turn to help uncertainty calibration? This
is conceivable because the perturbation within the opinions
made by multiple classifiers may reflect the intrinsic uncer-
tainty level of data: if an unanimity of opinion is reached by
all classifiers, then the uncertainty level should be relatively
low. More importantly, this unanimity has nothing to do
with whether the opinions, i.e. predictions, are correct or
not. Since the collections of classifiers may provide orthog-
onal information beyond a single classifier itself, we expect
that this information could be unearthed via truth discovery.

Accordingly, in this paper, we propose truth discovery as
an ideal tool for improving uncertainty calibration of deep
learning, and make several contributions as follows:

1. We propose Truth Discovery Ensemble (TDE) that
improves Deep Ensemble, and show that model uncer-
tainty can be easily derived from truth discovery.

2. Considering that uncertainty calibration approaches
may potentially cause a diminished accuracy, we fur-
ther develop a provably accuracy-preserving Truth
Discovery Ensemble (aTDE) via geometric optimiza-
tion.

3. We propose an optimization approach that directly
minimizes ECEs, works for both histogram-based and
KDE-based metrics, and integrates multiple metrics
via compositional training.

4. We further incorporate the discovered information (i.e.
Entropy based Geometric Variance) into the post-hoc
calibration pipeline (pTDE) and elevate the perfor-
mance to a higher level.

To summarize, we show how truth discovery can benefit
both ensemble-based and post-hoc uncertainty calibrations,
and validate our proposed methods via experiments upon
large-scale datasets, using both binning-based and binning-
free metrics, along with comprehensive ablation studies.

2 PRELIMINARIES OF UNCERTAINTY
CALIBRATION

For an arbitrary multi-class classifier (not necessarily neural
network) fθ : D ⊆ Rd → Z ⊆ 4L that can make L
predictions for L classes, its outputs (in any scale) can be
transformed into a "probability vector" z ∈ Z such that:

L∑
l=1

zl = 1, 0 ≤ zl ≤ 1. (1)

This can be done by the softmax function, which usually
tails the last layer of a deep neural network. Here,4L is the
probability simplex in L dimensional space. Note that the
classifier parameters can also be drawn from a distribution
θ ∼ q(θ), e.g., ResNets with random initialization being the
only difference.

Although z is in the probability simplex4L, its components
may not necessarily have anything to do with, but sometimes
are misinterpreted as, the probability of each class. Similarly,
the maximum value of the L outputs, maxl zl, was used
to represent the "confidence" that the classifier has on its
prediction. To avoid possible misleading, maxl zl is referred
to as winning score v (i.e., v = maxl zl) [Thulasidasan et al.,
2019] hereinafter.

For both ensemble-based and post-hoc calibration methods,
the model is trained based on a set of Nt training samples
(x(i), y(i))Nt

i=1,x
(i) ∈ D, y(i) ∈ {1, ..., L}. Let random vari-

ablesX,Y represent input data and label, respectively. Then,



 another random variable Z = fθ(X) stands for the proba-
bility vector. If zl indeed represents the actual probability of
class l (which usually not), then, the following should hold:

P (Y = l|Z = z) = zl. (2)

At this time, we also call the classifier fθ to be perfectly
calibrated. It is well known that the probabilities P (Y =
l|Z = z) are hard to evaluate, since there is no ground-truth
for the probability of an input x(i) being misclassified as
class l 6= y(i). In this paper, we focus on a variant of Eq. (2),
which only measures the probability of the sample being
correctly classified:

P (Y = y(i)|Z = z(i)) = v(i) (3)

where v(i) is the winning score which is also the only
value taken into consideration when evaluate top-1 accu-
racy (ACC).

Ensemble of Deep Neural Networks. Although it is
computationally demanding, ensemble (Deep Ensemble
[Lakshminarayanan et al., 2017], Snapshot Ensemble
[Huang et al., 2017a], etc.) remains as a popular approach
for uncertainty calibration. Formally, for a classifier fθ with
parameter distribution q(θ), the prediction of sample x(i) is
given by:

z(i)ens =

∫
fθ(x

(i))q(θ)dθ (4)

which can be approximated by S independently trained clas-
sifiers as 1

S

∑S
s=1 fθ(s)(x

(i)), θ(s) ∼ q(θ). The S classifiers
can be obtained either by independent random initialization
(Deep Ensemble) or periodically convergence into local min-
imum via learning rate decay (Snapshot Ensemble). Since
each z

(i)
θ ∈ 4L, z(i)ens is also on the probability simplex.

Post-hoc Calibration of Deep Neural Networks. Until
now, we have not yet introduced the concept of confidence,
since all non-post-hoc approaches take the winning score
as a representation of the confidence, based on which the
calibration error is subsequently measured. In post-hoc cal-
ibration, on the other hand, a set of hold-out calibration
samples (x(i), y(i))Nc

i=1 is required to learn a mapping from
z to another probability vector π = T (z) with a learnable
function T : 4L → 4L, and maxl πl is referred to as
confidence w in this paper, i.e. w = maxl πl. Note that
arg maxl πl is not necessarily equal to arg maxl zl, and at
this time the calibration may potentially decrease the ac-
curacy, if the latter is the correct class. With this, our goal
Eq. (3) now becomes P (Y = y(i)|Z = z(i)) = w(i). Since
we tackle both post-hoc and non-post-hoc calibrations in
this paper, we distinguish winning score and confidence ex-
plicitly in that the former directly comes from the classifier
fθ while the latter is derived from a mapping deliberately
learned for confidence modeling.

Calibration Error Evaluation. For the evaluation of a
calibration algorithm, the calibration function T is applied
on another evaluation dataset (x(i), y(i))Ne

i=1 of size Ne
which has no overlapping with neither the training nor the
calibration datasets. In histogram-based evaluation metric,
the Ne samples are split into B predefined bins. Formally,
we define B pairs of endpoints {(µb, νb)}Bb=1, νb = µb+1,
and B point sets {Pb}Bb=1 : Pb ⊆ {wi}Ne

i=1 such that
µb ≤ w < νb,∀w ∈ Pb. Then, the Expected Calibration
Error (ECE) is defined as:

ECE(fθ) =

B∑
b=1

|Pb|
K
|ACC(Pb)− conf(Pb)|, (5)

which measures the empirical deviation of the
sample accuracy in the bth bin: ACC(Pb) =
1
|Pb|

∑|Pb|
j=1 1(arg maxl z

(j)
l = y(j)) and the average

confidence in it: conf(Pb) = 1
|Pb|

∑|Pb|
j=1 w

(j). The
indicator function 1 : B → {0, 1} returns 1 if the Boolean
expression is true and otherwise 0.

The ECE metric can be easily affected by the number of
binsB and the positions of the endpoints. Without the use of
binning, ECEKDE estimates the calibration error by a kernel
function K : R → R≥0 with bandwidth h > 0. Based on
Bayesian rule, ECEKDE is given as:

ECEKDE(fθ) =

∫
|w − ÃCC(w)|P̃ (w)dw (6)

in which ÃCC(w) is the expected accuracy if the sample
confidence is w. P̃ (w) and ÃCC(w) are determined by
kernel density estimation as:

P̃ (w) =
h−1

Ne

Ne∑
i=1

Kh(w − w(i)),

ÃCC(w) =

∑Ne

i=1 1(arg maxl z
(i)
l = y(i))Kh(w − w(i))∑Ne

i=1Kh(w − w(i))
.

3 TRUTH DISCOVERY ENSEBMLE

Existing ensemble techniques in deep learning take the av-
erage of predictions made by multiple classifiers derived
either from random initialization (Deep Ensemble [Laksh-
minarayanan et al., 2017]), periodically learning rate decay
(Snapshot Ensemble [Huang et al., 2017a]), or from con-
nected optima on the loss functions (Fast Geometric Ensem-
bling [Garipov et al., 2018]), but scarcely utilize the sample
level variance among the members of an ensemble. To make
use of such information, we first introduce a vanilla truth
discovery algorithm in Deep Ensemble context, and then
extend it to one with accuracy-preserving guarantee.



 3.1 TRUTH DISCOVERY WITHIN PROBABILITY
SIMPLEX

To be consistent with truth discovery literature, we use
sources to denote the S independently trained models. For
every sample (x(i), y(i)) in the evaluation dataset, S inde-
pendent predictions z(i,s) = fθ(s)(x

(i)) are made from all
S sources (denoted by zs hereinafter for brevity). Since
the classifiers were trained with stochastic gradient descent
(SGD), they may make wrong decisions on every x(i). To
model such a behavior, we assign a reliability value ωs to
each classifier fθ(s) .

Definition 3.1 (Truth discovery [Li et al., 2014]). Given
the set of points {zs}Ss=1 ⊆ 4L from S classifiers, truth
discovery aims at finding the truth probability vector z∗ ∈
4L and meanwhile the reliability ωs for the sth classifier,
such that the following objective function is minimized:

minimize
z∗,{ωs}Ss=1

S∑
s=1

ωs||z∗ − zs||2

s.t.
S∑
s=1

e−ωs = 1.

(7)

With this definition, interestingly, we can show a direct
relationship between truth discovery and model uncertainty.
We additionally define uncertainty of source, υs, as the
opposite of source reliability, i.e. υs = e−ωs . Then, (7) can
be written as:

minimize
z∗,{υs}Ss=1

S∑
s=1

−||z
∗ − zs||2

2
ln υs

s.t.
S∑
s=1

υs = 1.

(8)

This is essentially the Cross Entropy (CE) of source un-
certainty υs and ||z∗ − zs||/2, which is the similarity be-
tween the optimum probability vector to each source vector
(0 ≤ υs ≤ 1, 0 ≤ ||z∗ − zs||/2 ≤ 1). Thus, the mini-
mization process is to ensure that the solution resolves the
ambiguity of the system as much as possible. Hence, truth
discovery can ideally benefit uncertainty calibration through
finding the truth vector.

Algorithms for approximating the global optimum exist
[Ding and Xu, 2020, Huang et al., 2019]. But here with
the assumption Eq. (1) that all the possible truth vectors
fall on the probability simplex 4L, we adopt a simpler
solution. Since both the truth vector z∗ and source relia-
bilities are unknown, we can alternatively update the reli-
ability/uncertainty and the truth vector. Specifically, if z∗

is temporarily fixed, the optimum reliability values can be
found through Lemma 3.1:

Lemma 3.1 ([Li et al., 2014]). If z∗ is fixed, the following
reliability value for each source ωs minimizes the objective

Figure 1: Geometric optimization of accuracy-preserving
truth vector in R3. Here, 2 is the predicted class, and the
accuracy-preserving simplex of class 2 is highlighted with
red boundary.

function (7),

ωs = ln(

∑S
t=1 ||z∗ − zt||2

||z∗ − zs||
). (9)

After the reliabilities have been fixed, the new truth vec-
tor can be updated by simply taking the average of source
vectors weighted by the found reliabilities, i.e.,

∑S
s=1 ωszs.

It can be easily justified that the updated vector is still on
the probability simplex. Initially, the ensemble vector zens
can be an educated guess of z∗. The iterative updating of
the truth vector and the source reliability can be terminated
if the position of the truth vector changed by less than ε
within maximum I iterations. The process is summarized in
Algorithm 1 (ignore line #5 at this time).

Algorithm 1: Optimization of the truth vector.

Data: {zs}Ss=1

Result: z∗
1 z∗(0) ← zens;
2 for i← 1, ..., I do
3 ω

(i)
s ←
ln(

∑S
t=1 ||z∗(i−1) − zt||2/||z∗(i−1) − zs||);

4 z∗(i) ←
∑S
s=1 ω

(i)
s zs ; / update truth vector

5 z∗(i) ← Algorithm 2(z∗(i)) ; / preserve accuracy
6 if ||z∗(i) − z∗(i−1)||2 < ε then
7 return z∗(i)

3.2 ACCURACY-PRESERVING TRUTH
DISCOVERY

Post-hoc calibration methods may potentially cause a de-
crease of the prediction accuracy, if the ranks of the scores
for each class cannot be maintained. Hence, we usually an-
ticipate the calibration algorithm to be accuracy-preserving
[Zhang et al., 2020]. In the vanilla truth discovery algorithm,
however, this requirement may not be satisfied, since z∗

could change the predictions. Suppose that c is the predicted
class derived from ensemble zens, i.e., c = arg maxl(zens)l.



 After the truth vector z∗ is found, we want to at least
maintain the accuracy of ensemble. Thus, Eq. (7) can be
retrofitted to be an accuracy-preserving version.

Definition 3.2 (Accuracy-preserving truth discovery).
Given the set of points {zs}Ss=1 ⊆ 4L and the ensemble
vector zens, find the truth vector z∗ ∈ 4L and reliabili-
ties {ωs}Ss=1 such that the following objective function is
minimized:

minimize
z∗,{ωs}Ss=1

S∑
s=1

ωs||z∗ − zs||2

s.t.
S∑
s=1

e−ωs = 1

arg max
l

z∗l = arg max
l

(zens)l.

(10)

It can be formulated as a geometric optimization problem.
See Figure 1 for an illustration when L = 3. The con-
straint arg maxl z

∗
l = arg maxl(zens)l introduces a sub-

space Ω : zl > zm,∀m 6= l. The discovery of the truth
vector must be performed within the accuracy-preserving
simplex4a = 4L ∩Ω. Intuitively, when z∗ falls outside of
the accuracy-preserving simplex4a in one iteration, we can
find the projection of z∗ onto4a to pull it back to4a. This
projection can be found by Algorithm 2 which is proved
in Theorem 3.1. When the projection is done, Algorithm 1
continues until the desired truth vector is found.

Theorem 3.1. Algorithm 2 preserves the accuracy of the
prediction.

Proof. The theorem can be proved using Lagrange Mul-
tipliers with Karush-Kuhn-Tucker (KKT) Conditions, see
supplementary material Sec. A.1 for details.

Algorithm 2: Projection from truth vector z onto
accuracy-preserving simplex4a.

Data: z
Result: z̃

1 c← arg maxl(zens)l; z̃← z;
2 M ← ARGSORT({z1, ..., zL});
3 if M [1] = c then
4 return z
5 else
6 for l← 1, ..., L do
7 z̃ ← 1

l+1 (zc + zM [1] + ...+ zM [l]);
8 if z̃ > zM [l+1] then
9 z̃c ← z̃; z̃M [n] ← z̃,∀n ≤ l;

10 return z̃

4 TRUTH DISCOVERY-REGULARIZED
POST-HOC CALIBRATION

Although ECE-like scores are difficult to be optimized di-
rectly, recent works have attempted to minimize ECE either
by using maximum mean calibration error (MMCE), a ker-
nelized version of the ECE [Kumar et al., 2018], or by rank
preserving transforms [Bai et al., 2021]. To provide a better
solution, we formulate the minimization of ECE (and also
ECEKDE) as an optimization problem in high dimensions,
and show how it can be easily extended to incorporate the
information gained from truth discovery.

Optimization of ECEs. For simplicity, we only consider
the confidence for the ground-truth (namely, top-1) class,
which is essentially the probability of a sample being cor-
rectly predicted. Then, our learnable mapping becomes
w = T (z) : 4L → R. One step further, if only the winning
score is considered, then w = T (v) : R → R. Next, we
find the specific form of T . It has been shown that deep
neural networks tends to be overconfident on most of the
predictions [Guo et al., 2017]. Inspired by this, we impose
an attenuation factor ϕ(v) on every sample, which is a func-
tion of the winning score v so that the adjusted confidence
becomes w = v − ϕ(v). The simplest form of ϕ(v) is to
use a constant within a bin Pb. Thus, we define an attenu-
ation weight ψb for the bin Pb. All the attenuation weights
{ψb}Bb=1 can be viewed as a point ψ ∈ RB . Now we have
the definition of the mapping function:

w = v − ϕ(v) = v − ψκ (11)
s.t. µκ ≤ v < νκ. (12)

Notice that for consistency we call ϕ(v) the attenuation
factor, but it can also enhance the confidence w if ϕ(v) < 0
somewhere.

Now our goal is to find the location of ψ in RB such that
the expected calibration error is minimized:

minimize
{ψb}Bb=1

ECE({Pb}Bb=1), (13)

where ECE is shown in Eq. (5). Since all the computations
in ECE (and ECEKDE) are differentiable, the minimization
of ECEs can be done by gradient descent methods. Here, a
mini-batch Stochastic Gradient Descent (SGD) approach is
used. In each epoch, a subset of calibration data is sampled,
based on which the attenuation weights are updated. The
optimization process is encapsulated in Algorithm 3, in
which ECE and ECEKDE can be used interchangeably. The
algorithm can be easily implemented by virtue of automatic
differentiation libraries e.g. PyTorch [Paszke et al., 2019].

Compositional Approach for the Optimization of ECEs.
Even an accelerated method for KDE computation is used
[O’Brien et al., 2016], KDE-based metric is still much more



 
Table 1: Comparison of TDE/aTDE with Deep Ensemble (DE) before post-hoc calibration.

CIFAR100 CIFAR10

50 sources 100 sources 50 sources 100 sources

Model Method ECEKDE↓ ECE↓ ACC↑ ECEKDE↓ ECE↓ ACC↑ ECEKDE↓ ECE↓ ACC↑ ECEKDE↓ ECE↓ ACC↑

DE 2.88 2.50 82.83 3.06 2.58 83.02 1.31 0.48 96.38 1.15 0.43 96.41
TDE 1.60 1.98 82.89 1.81 1.94 83.01 1.05 0.75 96.38 1.01 0.59 96.42PreResNet110

aTDE 1.55 1.92 82.83 1.78 1.95 83.02 1.07 0.75 96.38 1.02 0.60 96.41

DE 2.39 2.09 83.52 2.46 2.00 83.55 1.32 0.34 96.68 1.31 0.35 96.67
TDE 1.31 1.72 83.49 1.44 1.61 83.54 1.14 0.65 96.66 1.08 0.52 96.68PreResNet164

aTDE 1.33 1.76 83.52 1.42 1.62 83.55 1.13 0.63 96.68 1.08 0.53 96.67

DE 6.45 5.85 84.38 6.40 5.78 84.28 1.06 0.35 97.17 1.20 0.41 97.20
TDE 5.48 5.03 84.37 5.58 5.07 84.29 1.14 0.49 97.15 1.10 0.40 97.17WideResNet

aTDE 5.49 5.05 84.38 5.57 5.06 84.28 1.13 0.47 97.17 1.12 0.41 97.20

ImageNet ImageNet (Snapshot Ensemble)

25 sources 50 sources 25 sources 50 sources

DE/SE 3.11 3.12 79.25 3.24 3.17 79.37 1.85 2.11 78.46 1.73 2.03 78.52
TDE 2.16 2.42 79.22 2.41 2.58 79.35 1.69 2.08 78.45 1.66 2.10 78.50ResNet50

aTDE 2.19 2.45 79.25 2.43 2.60 79.37 1.70 2.10 78.46 1.69 2.13 78.52

Algorithm 3: Optimization of ECEs.

Data: {(v(i), y(i))}Nc
i=1

Result: {ψb}Bb=1

1 for epoch← 1, ..., #epoch do
2 sample {(v(j), y(j))}nc

j=1 ∼ {(v(i), y(i))}Nc
i=1;

3 w = v − ϕ(v) ; / apply attenuation factor
4 loss← ECE or ECEKDE ; / forward propagation
5 update {ψb}Bb=1 ; / backward propagation
6 return {ψb}Bb=1

time-consuming compared to histogram-based metrics. A
natural question that arises here is whether the minimization
of ECEKDE can be speeded up by the minimization of ECE.
To answer this, we first find the attenuation weights by
using ECE as the loss function, and then use the obtained
{ψb}Bb=1 as an initial guess for the minimization of ECEKDE.
This approach enables the compositional optimization of
histogram-based and KDE-based calibration errors.

ECE Optimization Regularized by Truth Discovery.
Given a discovered truth vector z∗, let V denote the to-
tal squared distance to z∗ (i.e., V =

∑S
s=1 ||z∗ − zs||2)

and qs denote the contribution of each zs to V (i.e., qs =
||z∗ − zs||2/V ). Then, the entropy induced by {qs}Ss=1 is:

H = −
S∑
s=1

qs log qs =
1

V

S∑
s=1

||z∗−zs||2 log
V

||z∗ − zs||2
.

(14)
Based on these, we can define the Entropy based Geometric
Variance (HV ):

Definition 4.1 (Entropy based Geometric Variance [Ding
and Xu, 2020]). Given the point set {zs}Ss=1 and a point

z∗, the Entropy based Geometric Variance (HV ) is H × V
where H and V are defined as shown above.

With this definition, it is easy to see that the objective func-
tion of truth discovery (7) is exactly the entropy based geo-
metric variance (HV ) and the optimization problem (7) is
equivalent to finding a point z∗ to minimize HV .

If the truth vector z∗ has been determined, then HV is an
indicator of the ambiguity of the system, and can be bor-
rowed as an external information for our ECE optimization.
Despite being in the same bin and overconfident, the sam-
ple confidences should not be attenuated at the same scale.
Instead, the sample with higher HV (i.e. higher variance
and uncertainty) is to be attenuated by a larger magnitude.
Consequently, the mapping function can be reshaped as:

w(i) = v(i) − ϕ(v(i)) = v(i) − α1ψκ − α2HV
(i), (15)

where α1, α2 are hyperparameters, and HV (i) is essentially
the value of the objective function of truth discovery as
computed in Section 3.2 for each sample (x(i), y(i)) in a
total of Nc + Ne calibration and evaluation samples. The
learning of the mapping function T from the calibration data
is a supervised learning problem. Hence, T is expected to be
overfitted to calibration data. By incorporating orthogonal
information (i.e. HV ) acquired from the truth discovery of
multiple ensemble classifiers, we can learn a mapping T
that generalizes better on the evaluation datasets.

5 EXPERIMENTS

The main goals of our experiments are to: (1) compare
Truth Discovery Ensemble (TDE), especially the accuracy-
preserving version (aTDE), with ensemble-based calibration
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Figure 2: Results of DE/TDE/aTDE on PreResNet164 trained upon CIFAR100 in an unsupervised manner (i.e. no hold-out
calibration set). The number of sources is increased from 10 to 100. Our method works favorably with various metrics for
the evaluation of calibration.

Table 2: Comparison of post-hoc calibration methods. The best results are highlighted in bold. We also underline the best
results excluding our method. ECEs are reported in terms of mean±standard deviation obtained from 5 random replications.

ECE↓ ECEKDE↓

Dataset Model DE TS ETS IRM pTDE DE TS ETS IRM pTDE

CIFAR100 ResNet18 2.86±0.42 2.70±0.36 2.31±0.30 2.52±0.35 1.64±0.37 2.41±0.35 2.37±0.37 2.25±0.33 2.09±0.36 1.63±0.37
CIFAR100 DenseNet121 1.69±0.15 1.68±0.14 1.45±0.15 1.70±0.19 1.29±0.19 1.67±0.07 1.66±0.08 1.65±0.12 1.66±0.15 1.49±0.12
CIFAR100 ResNeXt29 1.92±0.26 1.93±0.27 1.54±0.22 1.88±0.36 1.20±0.34 1.89±0.12 1.86±0.07 1.87±0.11 1.74±0.24 1.63±0.12

CIFAR10 ResNet18 0.94±0.14 0.65±0.13 0.65±0.13 0.67±0.24 0.75±0.10 1.50±0.11 1.48±0.06 1.48±0.06 1.35±0.08 1.21±0.18
CIFAR10 DenseNet121 0.88±0.11 0.65±0.13 0.65±0.13 0.55±0.06 0.50±0.14 1.78±0.17 1.76±0.16 1.76±0.16 1.56±0.15 1.45±0.20
CIFAR10 ResNeXt29 0.46±0.09 0.33±0.10 0.34±0.10 0.45±0.13 0.39±0.15 1.38±0.06 1.43±0.09 1.43±0.09 1.42±0.10 1.36±0.06

#sources DE/SE TS ETS IRM pTDE DE/SE TS ETS IRM pTDE

ImageNet 10 (DE) 3.06±0.12 1.59±0.09 0.96±0.07 1.93±0.16 0.88±0.11 3.13±0.11 1.16±0.14 1.06±0.11 1.79±0.11 0.93±0.08
ImageNet 30 (DE) 3.19±0.06 1.47±0.15 0.87±0.10 1.89±0.12 0.81±0.16 3.26±0.05 1.10±0.12 0.97±0.09 1.75±0.07 0.95±0.11
ImageNet 10 (SE) 2.32±0.09 1.56±0.05 1.04±0.10 1.74±0.04 0.71±0.17 2.18±0.09 1.14±0.06 1.07±0.08 1.51±0.07 0.95±0.07
ImageNet 30 (SE) 2.13±0.07 1.57±0.07 0.95±0.15 1.70±0.07 0.76±0.22 1.89±0.09 1.16±0.08 0.95±0.17 1.43±0.11 0.87±0.22

Table 3: Ablation Study of the proposed truth discovery-regularized post-hoc calibration (pTDE). For the four variants of
pTDE, the blue/red color denotes if compositional training (Comp.)/truth-discovery regularization (Truth. Reg.) is utilized.

ECE↓ ECEKDE↓

Dataset Model opthist optKDE pTDEhist pTDEKDE opthist optKDE pTDEhist pTDEKDE

Comp. Truth. Reg. 8 8 4 8 8 4 4 4 8 8 4 8 8 4 4 4

CIFAR100 ResNet18 1.74±0.22 1.68±0.38 1.59±0.37 1.64±0.37 1.76±0.33 1.73±0.31 1.71±0.35 1.63±0.37
CIFAR100 DenseNet121 1.29±0.17 1.31±0.15 1.29±0.20 1.29±0.19 1.56±0.09 1.53±0.11 1.52±0.09 1.49±0.12
CIFAR100 ResNeXt29 1.27±0.33 1.24±0.35 1.19±0.35 1.20±0.34 1.68±0.12 1.67±0.12 1.64±0.11 1.63±0.12

CIFAR10 ResNet18 0.65±0.20 0.72±0.15 0.65±0.17 0.75±0.10 1.33±0.12 1.26±0.18 1.31±0.12 1.21±0.18
CIFAR10 DenseNet121 0.45±0.06 0.46±0.16 0.44±0.04 0.50±0.14 1.54±0.16 1.46±0.17 1.55±0.18 1.45±0.20
CIFAR10 ResNeXt29 0.41±0.10 0.41±0.13 0.40±0.11 0.39±0.15 1.37±0.07 1.36±0.07 1.37±0.06 1.36±0.06

#sources opthist optKDE pTDEhist pTDEKDE opthist optKDE pTDEhist pTDEKDE

ImageNet 10 (DE) 0.76±0.13 0.83±0.13 0.81±0.09 0.88±0.11 0.99±0.08 0.92±0.07 1.01±0.08 0.93±0.08

ImageNet 30 (DE) 0.88±0.13 0.85±0.11 0.87±0.16 0.81±0.16 1.09±0.12 1.02±0.09 1.03±0.10 0.95±0.11
ImageNet 10 (SE) 0.80±0.19 0.73±0.19 0.75±0.19 0.71±0.17 1.04±0.12 0.96±0.09 1.01±0.11 0.95±0.07
ImageNet 30 (SE) 0.81±0.16 0.76±0.20 0.78±0.17 0.76±0.22 0.98±0.19 0.90±0.22 0.95±0.22 0.87±0.22



 methods; (2) for post-hoc calibration scheme, compare truth
discovery-regularized calibration (pTDE) with state-of-the-
art methods on a wide range of network architectures and
datasets; investigate if different components of our meth-
ods collaboratively contribute to the overall elevation of
performance by ablation studies.

5.1 IMPROVED DEEP ENSEMBLE BY TRUTH
DISCOVERY

Experimental Setup. For a fair comparison, we down-
loaded the trained models* of Ashukha et al. [2020] in-
cluding PreResNet110/164 [He et al., 2016] and WideRes-
Net28x10 [Zagoruyko and Komodakis, 2016] trained on
CIFAR10/100 [Krizhevsky, 2009] (10/100 classes), and
ResNet50 trained on ImageNet [Deng et al., 2009] (10000
classes). All 3 network architectures on CIFAR10/100 were
trained 100 times (i.e. S = 100) following the Deep En-
semble (DE) workflow, while ResNet50 was trained on
ImageNet resulting in 50 models either by Deep Ensemble
or by Snapshot Ensemble (i.e. S = 50). For every sam-
ple in the standard testing dataset, S ensemble members
were generated from the S models. While looking for the
truth vector, for both the vanilla Truth Discovery Ensemble
(TDE) and its accuracy-preserving counterpart (aTDE), we
set ε = e−8 in all experiments, and observed a convergence
within typically 5 iterations.

Results. The comparison of truth discovery ensemble
methods with Deep Ensemble on CIFARs (S = 50 or 100),
and with Deep Ensemble/Snapshot Ensemble on ImageNet
(S = 25 or 50) is shown in Table 1. Clearly, TDE amelio-
rates either ECE or ECEKDE by a large margin in most of
the experimental settings, especially on datasets with higher
complexity (i.e., CIFAR100 and ImageNet), but fails at
maintain accuracy. The accuracy-preserving version aTDE,
on the other hand, successfully preserves the accuracy, with
nearly the same capability of lowering the ECEs, which val-
idates the correctness of our accuracy-preserving Algorithm
2. It can also be concluded from Table 1 that higher ACC
and lower ECEs are hard to be reached simultaneously, but
the metrics contributed to by the two variants TDE/aTDE
are usually very similar. The KS metric recently proposed
by [Gupta et al., 2021] which measures the maximal dis-
tance between the accumulated output probability to the
actual probability, is a binning-free calibration evaluator
that different from ECEs. The KS error is also measured for
all the experiments. By leveraging truth discovery, our TDE
method lowers the KS to as low as 0.6% (100 sources) as
shown in Figure 2(e), even without any hold-out calibration
sample.

Further, we investigate the stability of TDE/aTDE with dif-

*downloaded from https://github.com/
bayesgroup/pytorch-ensembles.

ferent number of sources by changing S by an interval of
10 for CIFARs and 5 for ImageNet, as illustrated in Fig-
ure 2 and Tables A1, A2, A3, and A4. Interestingly, Deep
Ensemble tends to be overconfident with larger number of
sources, i.e., ensemble members, while TDE/aTDE works
favorably with even larger amount of available sources, and
this is when a high accuracy is usually reached (Figure 2c),
suggesting TDE and aTDE’s superior ability in utilizing
information from multiple sources than Deep Ensemble.

5.2 IMPROVED POST-HOC CALIBRATION BY
TRUTH DISCOVERY-REGULARIZED
OPTIMIZATION

Experimental Setup. In this section, we evaluate the per-
formance of our truth discovery-regularized post-hoc cali-
bration methods (pTDE), to which the information elicited
from ensemble-based methods is incorporated. To this end,
we train ResNet18, DenseNet121 [Huang et al., 2017b] and
ResNeXt29 [Xie et al., 2017] on CIFAR10/100 datasets
with Snapshot Ensemble scheme and obtain 200 ensemble
members as the sources (i.e., S = 200). See Section A.2 for
details. The pre-trained ImageNet models are also used with
source numbers set at 10 and 30 for both DE and SE. We
first train the vanilla optimization method using histogram-
based ECE as the loss function (opthist) as described in
Section 4 with batch size at 1000 for CIFARs and 10000
for ImageNet for 70 epochs. Then, we apply compositional
training by switching to KDE-based loss function (optKDE)
for 5 additional epochs. To leverage the information gained
from truth discovery, the entropy based geometric variance
(HV) values are computed for all (Nc + Ne) samples. By
taking HV into the training process, opthist is promoted to
truth discovery-regularized post-hoc calibration pTDEhist,
which is subsequently optimized for 5 additional epochs
using ECEKDE as the loss function to be pTDEKDE. Finally,
pTDEKDE (or pTDE for short) is compared with several
state-of-the-art post-hoc calibration methods, namely, Tem-
perature Scaling (TS) [Guo et al., 2017], Ensemble Temper-
ature Scaling (ETS) [Zhang et al., 2020], and multi-class
isotonic regression (IRM) [Zhang et al., 2020].

Results. The attenuation/enhancement factor we apply
in Eq. (11) enables an iterative rearrangement of samples
across bins, until a small discrepancy between confidence
and actual accuracy is achieved within every bin. Figure 3
shows how this recalibration (vanilla opthist) affects confi-
dence distribution. From Table 2, we can see that our method
(pTDE) significantly outperforms all competing methods
(except on CIFAR10 with ECE). It is worth noting that
when pTDE is excluded, there is no sweeping method under
every circumstances, but pTDE overall shows better con-
sistency especially with the ECEKDE metric which is not
susceptible to the binning strategy, e.g., the number and
positions of the bins. To inspect the individual contributions

https://github.com/bayesgroup/pytorch-ensembles
https://github.com/bayesgroup/pytorch-ensembles
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Figure 3: Winning score/confidence vs. actual accuracy on
the unseen ImageNet evaluation dataset for Deep Ensemble
(a, b) and Snapshot Ensemble (c, d), both with 10 sources,
before (a, c) and after (b, d) the post-hoc calibration. The
initial bins in (a, c) are selected such that all samples are
evenly distributed over the bins, as suggested by [Zhang
et al., 2020]. Then we fix the positions of bins in (b, d) for a
better illustration. The color temperature of each bin reflects
the number of samples that fall into that bin. The warmer
the color is, the more samples the bin contains, and vice
versa.

of compositional training and truth discovery regularization
to the total performance, we conduct ablation study for the
two components as shown in Table 3. Generally, the truth
discover-regularized methods (pTDEhist and pTDEKDE) per-
form better. Depending on which kind of calibration error
is used as loss function, it is purposefully minimized. This
indicates that pTDEhist performs better with ECE metric,
while pTDEKDE favors ECEKDE metric. Notably, although
ECEKDE is targeted by pTDEKDE, ECE can still be decreased
on ImageNet, for example, when 30 sources from Deep En-
semble is used, showing the effectiveness of our proposed
compositional training and truth discovery regularization. To
get more insight into why truth discovery improves calibra-
tion performance, we show the relationship of the computed
Entropy based geometric variance (HV) with the winning
score in Figures A1 A2 A3 showing that truth discovery
indeed provides information that orthogonal to winning
score itself, and thus to prevent overfitting to the calibration
dataset.

Finally, all the calibration results are further measured upon
KS, shown in Table 4, and surprisingly, although pTDE is
not specifically designed for the optimization of KS, its fully-
fledged version pTDEKDE is competitive, or even better than
Spline, showing that the truth discovery-based regularizer is

Table 4: KS error (in %) on ImageNet evaluation dataset by
various post-hoc calibration methods including four variants
of our proposed method. The best results are shown in bold.

Deep Ensemble Snapshot Ensemble

Method S = 10 S = 30 S = 10 S = 30

DE/SE 2.71±0.10 2.86±0.03 1.83±0.08 1.52±0.09

TS 0.88±0.13 1.03±0.09 1.02±0.12 1.12±0.15

ETS 0.59±0.13 0.42±0.10 0.50±0.11 0.49±0.15

IRM 0.97±0.13 0.93±0.10 0.75±0.09 0.66±0.14

Spline 0.38±0.09 0.34±0.07 0.27±0.08 0.30±0.11

opthist 0.43±0.20 0.39±0.16 0.41±0.06 0.36±0.17

optKDE 0.37±0.15 0.33±0.11 0.31±0.07 0.33±0.14

pTDEhist 0.42±0.18 0.36±0.19 0.26±0.06 0.34±0.18

pTDEKDE 0.37±0.14 0.27±0.12 0.25±0.04 0.31±0.13

also beneficial to the minimization of the KS metric.

6 CONCLUSION

In this work, we first present Truth Discovery Ensemble
(TDE) that neither requires hold-out calibration data nor
alters any training process, but significantly surpasses the
original ensemble result, and in the meanwhile preserves
the accuracy (aTDE). For post-hoc calibration, the supe-
riority of our final methods (pTDE) is attributed not only
to truth discovery, but also to the compositional training
strategy. In conclusion, truth discovery is well positioned
to assist both ensemble-based and post-hoc calibration. We
hope that the proposed calibrators augmented by truth dis-
covery can enlarge the arsenal of uncertainty calibration
methods for deep learning. Our source code is available at
https://github.com/horsepurve/truly-uncertain.
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