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Abstract

We develop operators for construction of propos-
als in probabilistic programs, which we refer to
as inference combinators. Inference combinators
define a grammar over importance samplers that
compose primitive operations such as application
of a transition kernel and importance resampling.
Proposals in these samplers can be parameterized
using neural networks, which in turn can be trained
by optimizing variational objectives. The result is
a framework for user-programmable variational
methods that are correct by construction and can
be tailored to specific models. We demonstrate the
flexibility of this framework by implementing ad-
vanced variational methods based on amortized
Gibbs sampling and annealing.

1 INTRODUCTION

One of the major ongoing developments in probabilistic
programming is the integration of deep learning with ap-
proaches for inference. Libraries such as Edward (Tran et
al., 2016), Pyro (Bingham et al., 2018), and Probabilistic
Torch (Siddharth et al., 2017), extend deep learning frame-
works with functionality for the design and training of deep
probabilistic models. Inference in these models is typically
performed with amortized variational methods, which learn
an approximation to the posterior distribution of the model.

Amortized variational inference is widely used in the train-
ing of variational autoencoders (VAEs). While standard
VAEs employ an unstructured prior over latent variables,
such as a spherical Gaussian, in probabilistic programming,
we are often interested in training a neural approximation
to a simulation-based model (Baydin et al., 2019), or more
generally to perform inference in models that employ pro-
grammatic priors as inductive biases. This provides a path
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to incorporating domain knowledge into methods for learn-
ing structured representations in a range of applications,
such as identifying objects in an image or a video (Greff
et al., 2019), representing users and items in reviews (Es-
maeili et al., 2019), and characterizing the properties of
small molecules (Kusner et al., 2017).

While amortized variational methods are very general, they
often remain difficult to apply to structured domains, where
gradient estimates based on a small number of (reparameter-
ized) samples are often not sufficient. A large body of work
improves upon standard methods by combining variational
inference with more sophisticated sampling schemes based
on Markov chain Monte Carlo (MCMC) and importance
sampling (e.g. Naesseth et al. (2018); Le et al. (2019); Wu et
al. (2020); see Appendix A for a comprehensive discussion).
However to date, few of these methods have been imple-
mented in probabilistic programming systems. One reason
for this is that many methods rely on a degree of knowledge
about the structure of the underlying model, which makes it
difficult to develop generic implementations.

In this paper, we address this difficulty by considering a de-
sign that goes one step beyond that of traditional probabilis-
tic programming systems. Instead of providing a language
for the definition of models in the form of programs, we
introduce a language for the definition of sampling strate-
gies that are applicable to programs. This is an instance of a
general idea that is sometimes referred to as inference pro-
gramming (Mansinghka et al., 2014). Instantiations of this
idea include inference implementations as monad transform-
ers (Ścibior et al., 2018), inference implementations using
low-level primitives for integration (Obermeyer et al., 2019),
and programming interfaces based on primitive operations
for simulation, generation, and updating of program traces
(Cusumano-Towner et al., 2019).

Here we develop a new approach to inference programming
based on constructs that we refer to as inference combi-
nators, which act on probabilistic programs that perform
importance sampling during evaluation. A combinator ac-

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).



 cepts one or more programs as inputs and returns a new
program. Each combinator denotes an elementary operation
in importance sampling, such as associating a proposal with
a target, composition of a program and a transition kernel,
and importance resampling. The result is a set of constructs
that can be composed to define user-programmable impor-
tance samplers for probabilistic programs that are valid by
construction, in the sense that they generate samples that are
properly weighted (Liu, 2008; Naesseth et al., 2015) under
the associated target density of the program. These samplers
in turn form the basis for nested variational methods (Zim-
mermann et al., 2021) that minimize a KL divergence to
learn neural proposals.

We summarize the contributions of this paper as follows:

• We develop a language for inference programming in
probabilistic programs, in which combinators define a
grammar over properly-weighted importance samplers
that can be tailored to specific models.

• We formalize semantics for inference and prove that
samplers in our language are properly weighted for the
density of a program.

• We demonstrate how variational methods can be used
to learn proposals for these importance samplers,
and thereby define a language for user-programmable
stochastic variational methods.

• We provide an implementation of inference combi-
nators for the Probabilistic Torch library1. We evalu-
ate this implementation by using it to define existing
state-of-the-art methods for probabilistic programs that
improve over standard methods.

2 PRELIMINARIES

The combinators in this paper define a language for samplers
that operate on probabilistic programs. We will refer to this
language as the inference language. The probabilistic pro-
grams that inference operates upon are themselves defined
in a modeling language. Both languages require semantics.
For the inference language, semantics formally define the
sampling strategy, whereas the semantics of the modeling
language define the target density for the inference problem.

We deliberately opt not to define semantics for a specific
modeling language. Our implementation is based on Prob-
abilistic Torch, but combinators are applicable to a broad
class of modeling languages that can incorporate control
flow, recursion, and higher-order functions. Our main tech-
nical requirement is that all sampled and observed vari-
ables must have tractable conditional densities. This re-
quirement is satisfied in many existing languages, including
Church (Goodman et al., 2008), Anglican (Wood et al.,
2014), WebPPL (Goodman, Stuhlmüller, 2014), Turing (Ge

1Code is available at github.com/probtorch/combinators.

et al., 2018), Gen (Cusumano-Towner et al., 2019), Pyro
(Bingham et al., 2018), and Edward2 (Tran et al., 2016)2.

To define semantics for the inference language, we assume
the existence of semantics for the modeling language. Con-
cretely, we postulate that there exist denotational measure
semantics for the density of a program. We will also postu-
late that programs have corresponding operational sampler
semantics equivalent to likelihood weighting. In the next
section, we will use these axiomatic semantics to define
operational semantics for inference combinators such that
samplers defined by these combinators are valid by construc-
tion, in the sense that evaluation yields properly weighted
samples for the density denoted by the program. Below, we
discuss the preliminaries that we need for this exposition.

2.1 LIKELIHOOD WEIGHTING

Probabilistic programs define a distribution over variables
in a programmatic manner. As a simple running example,
we consider the following program in Probabilistic Torch

ηv , ηx = ... # (initialize generator networks)

def f(s, x):

# select mixture component

z = s.sample(Multinomial (1, 0.2* ones (5)),"z")

# sample image embedding

v = s.sample(Normal(ηvµ(z), ηvσ(z)),"v")
# condition on input image

s.observe(Normal(ηx(v), 1), x,"x")

return s, x, v, z

Program 1: A deep generative mixture model

This program corresponds to a density p(x, v, z), in which z
and v are unobserved variables and x is an observed variable.
We first define a multinomial prior p(z), and then define
conditional distributions p(v | z) and p(x | v) using a set
of generator networks η. The goal of inference is to reason
about the posterior p(v, z | x). We refer to the object s as
the inference state. This data structure stores variables that
need to be tracked as side effects of the computation, which
we discuss in more detail below.

In this paper, the base case for evaluation performs like-
lihood weighting. This is a form of importance sampling
in which unobserved variables are sampled from the prior,
and are assigned an (unnormalized) importance weight ac-
cording to the likelihood. In the example above, we would
typically execute the program in a vectorized manner; we
would input a tensor of B samples xb ∼ p̂(x) from an
empirical distribution, generate tensors of B × L samples
vb,l, zb,l ∼ p(v, z) from the prior, and compute

wb,l =
p(xb, vb,l, zb,l)

p(vb,l, zb,l)
= p(xb | vb,l, zb,l).

2See Appendix A for an extensive discussion of related work.
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 These weights serve to compute a self-normalized approxi-
mation of a posterior expectation of some function h(x, v, z)

Ep̂(x) p(v,z|x) [h(x, v, z)] ' 1

B

∑
b,l

wb,l∑
l′ w

b,l′
h(xb, vb,l, zb,l).

(1)

Self-normalized estimators are consistent, but not unbiased.
However, it is the case that each weight wb,l is a unbiased
estimate of the marginal likelihood p(xb).

2.2 TRACED EVALUATION

Probabilistic programs can equivalently denote densities
and samplers. In the context of specific languages, these two
views can be formalized in terms of denotational measure
semantics and operational sampler semantics (Ścibior et
al., 2017). To define operational semantics for inference
combinators, we begin by postulating sampler semantics
for programs that perform likelihood weighting. We assume
these semantics define an evaluation relation

c, τ, ρ, w ;f(c′).

In this relation, f is a program, c′ are its input arguments,
and c are its return values. Evaluation additionally outputs a
weight w, a density map ρ, and a trace τ .3

A trace stores values for all sampled variables in an execu-
tion. We mathematically represent a trace as a mapping,

τ = [α1 7→ c1, . . . , αn 7→ cn].

Here each αi is an address for a random variable and ci is its
corresponding value. Addresses uniquely identify a random
variable. In Probabilistic Torch, as well as in languages
like Pyro and Gen, each sample or observe call accepts an
address as the identifier. In the example above, evaluation
returns a trace ["v" 7→ v, "z" 7→ z], where z, v ∼ p(z, v).

The density map stores the value of the conditional density
for all variables in the program,

ρ = [α1 7→ r1, . . . , αn 7→ rn], ri ∈ [0,∞).

Whereas the trace only stores values for unobserved vari-
ables, the density map stores probability densities for both
observed and unobserved variables. In the example above,
evaluation of a program would output a map for the variables
with addresses "x", "v" and "z",

["x" 7→ p(x | v), "v" 7→ p(v|z), "z" 7→ p(z)],

in which conditional densities are computed using the traced
values v = τ("v"), z = τ("z"), and the observed value x,
which is an input to the program.

3In Probabilistic Torch, we return τ , ρ, and w by storing them
in the inference state s during evaluation.

We define the weight in the evaluation as the joint proba-
bility of all observed variables (i.e. the likelihood). Since
the density map ρ contains entries for all variables, and the
trace only contains unobserved variables, the likelihood is

w =
∏

α∈dom(ρ)\dom(τ)

ρ(α).

To perform importance sampling, we will use a trace from
one program as a proposal for another program. For this
purpose, we define an evaluation under substitution

c, τ, ρ, w ;f(c′)[τ ′].

In this relation, values in τ ′ are substituted for values of
unobserved random variables in f. This is to say that eval-
uation reuses τ(α) = τ ′(α) when a value exists at address
α, and samples from the program prior when it is not. This
is a common operation in probabilistic program inference,
which also forms the basis for traced Metropolis-Hastings
methods (Wingate et al., 2011).

When performing evaluation under substitution, the set of
reused variables is the intersection dom(τ)∩ dom(τ ′). Con-
versely, the newly sampled variables are dom(τ) \ dom(τ ′).
We define the weight of an evaluation under substitution as
the joint probability of all observed and reused variables

w =
∏

α∈dom(ρ)\
(

dom(τ)\dom(τ ′)
) ρ(α). (2)

2.3 DENOTATIONAL SEMANTICS

To reason about the validity of inference approaches, we
need to formalize what density a program denotes. For this
purpose, we assume the existence of denotational semantics
that define a prior and unnormalized density

Jf(c′)Kγ(τ) = γf (τ ; c′), Jf(c′)Kp(τ) = pf (τ ; c′).

Given an unnormalized density, the goal of inference is to
approximate the corresponding normalized density

πf (τ ; c′) =
γf (τ ; c′)

Zf (c′)
, Zf (c′) =

∫
dτ γf (τ ; c′).

The reason that we specify a program as a density over
traces, rather than as a density over specific variables, is
that programs in higher-order languages with control flow
and/or recursion may not always instantiate the same set of
variables. A program could, for example, perform a random
search that instantiates different variables in every evalua-
tion (van de Meent et al., 2016). We refer to van de Meent
et al. (2018) for a more pedagogical discussion of this point.

Formal specification of denotational semantics gives rise



 to substantial technical questions4, but in practice the un-
normalized density is computable for programs in most
probabilistic languages. In the languages that we consider
here, in which conditional densities for all random variables
are tractable, the unnormalized density is simply the joint
probability of all variables in the program. Concretely, we
postulate the following relationship between the sampler
and the measure semantics of a program

c, τ, ρ, w ;f(c′)

Jf(c′)Kγ(τ) =
∏

α∈dom(ρ)

ρ(α) Jf(c′)Kp(τ) =
∏

α∈dom(τ)

ρ(α)

In this notation, the top of the rule lists conditions, and
the bottom states their implications. This rule states that,
for any trace τ and density map ρ that can be generated
by evaluating f(c′), the unnormalized density Jf(c′)Kγ(τ)
evaluates to the product of the conditional probabilities in
ρ, whereas the prior density Jf(c′)Kp(τ) corresponds to the
product for all unobserved variables. This implies that the
trace is distributed according to the prior, and that the weight
is the ratio between the unnormalized density and the prior

w = γf (τ ; c′)/pf (τ ; c′), τ ∼ pf (τ ; c′).

The above rule implicitly defines the support Ωf of the
density, in that it only defines the density for traces τ that
can be generated by evaluating f(c′). In the languages that
we are interested in here, Ωf may not be statically deter-
minable through program analysis, but our exposition does
not require its explicit characterization.

Finally, we define the density that a program denotes under
substitution. We will define the unnormalized density to be
invariant under substitution, which is to say that

Jf(c′)[τ ′]Kγ(τ) = γf [τ ′](τ ; c′) = γf (τ ; c′).

For the prior under substitution we use the notation

Jf(c′)[τ ′]Kp(τ) = pf [τ ′](τ ; c′),

to denote a density over newly sampled variables, rather
than over all unobserved variables,

c, τ, ρ, w ;f(c′)[τ ′]

Jf(c′)[τ ′]Kp(τ) =
∏

α∈dom(τ)\dom(τ ′)

ρ(α)

This construction ensures that w =
γf [τ ′](τ ; c′)/pf [τ ′](τ ; c′), as in the case where no
substitution is performed.

4Traditional measure theory based on Borel sets does not sup-
port higher-order functions. Recent work addresses this problem
using a synthetic measure theory for quasi-Borel spaces, which in
turn serves to formalize denotational semantics for a simply-typed
lambda calculus (Ścibior et al., 2017). In practice, these technical
issues do not give rise to problems, since existing languages cannot
construct objects that give rise to issues with measurability.

Figure 1: Inference combinators denote fundamental oper-
ations in importance sampling, which can be composed to
define a sampling strategy. See main text for details.

As previously, the support Ωf [τ ′] is defined implicitly as
the set of traces that can be generated via evaluation under
substitution, which is a subset of the original support

Ωf [τ ′] = {τ ∈ Ωf : τ(α)=τ ′(α) ∀ α ∈ dom(τ) ∩ dom(τ ′)} .

3 INFERENCE COMBINATORS

We develop a domain-specific language (DSL) for impor-
tance samplers in terms of four combinators, with a grammar
that defines their possible compositions

f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q′, q) | propose(p, q)

We distinguish between three expression types. We use f

to refer to a primitive program in the modeling language,
with sampler semantics that perform likelihood weighting
as described in the preceding section. We use p to refer to
a target program, which is either a primitive program, or a
composition of primitive programs that defines a density on
an extended space. Finally, we use q to refer to an inference
program that composes inference combinators.

Figure 1 shows a simple program that illustrates the use
of each combinator, for which we will formally specify
semantics below. The first step defines a program q1 that
generates samples from a primitive program f1, which are
equally weighted (i.e. f1 does not have observed variables).
The second step defines a program q2 = propose(f2, q1)

that uses samples from q1 as proposals for the primitive
program f2, which results in weights that are proportional
to the ratio of densities. The third step q3 = resample(q2)

performs importance resampling, which replicates samples
with probability proportional to their weights. In the fourth
step, we use compose(f3, q3) to apply a program f3 that
denotes a transition kernel, and use the resulting samples
as proposals for a program extend(f2, f4), which defines
a density on an extended space. To illustrate this extended
space construction, we will consider a more representative
example of an inference program.



 3.1 EXAMPLE: AMORTIZED GIBBS SAMPLING

Figure 2 shows a program that makes use of a combinator
DSL that is embedded in Python. This code implements
amortized population Gibbs (APG) samplers (Wu et al.,
2020), a recently developed method that combines stochas-
tic variational inference with sequential Monte Carlo (SMC)
samplers to learn a set of conditional proposals that approxi-
mate Gibbs updates. This is an example where combinators
are able to concisely express an algorithm that would be
non-trivial to implement from scratch, even for experts.

We briefly discuss each operation in this algorithm. The
function pop_gibbs (Figure 2, left) accepts programs that
denote a target density, an initial proposal, and a set of
kernels. It returns a program q that performs APG sampling.
This program is evaluated in the right column to generate
samples, compute an objective, and perform gradient de-
scent to train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.
To understand the weight computation in this sampler, we
consider Program 1 as a (non-representative) example. Here
updates could take the form of block proposals q(v | x, z)
and q(z | x, v). At each step, we construct an outgoing
sample by either updating v or z given an incoming sample
(w, v, z). Here we consider an update of the variable v,

w′ =
p(x, v′, z) q(v | x, z)
q(v′ | x, z) p(x, v, z)

w, v′ ∼ q(· | x, z).

This weight update makes use of an auxiliary variable con-
struction, in which we compute the ratio between a target
density and proposal on an extended space

p̃(x, v′, z, v) = p(x, v′, z) q(v | x, z),
q̃(v′, z, v | x) = q(v′ | x, z) p(x, v, z).

In the inner loop for each sweep, we use the extend com-
binator to define the extended target p̃(x, v′, z, v). To gen-
erate the proposal, we use the compose combinator to com-
bine the incoming sampler with the kernel, which defines
the extended proposal q̃(v′, z, v | x). Since the marginal
p̃(x, v′, z) = p(x, v′, z), the outgoing sample (w′, v′, z) is
properly weighted for the target density as long as the in-
coming sample is properly weighted.

3.2 PROGRAMS AS PROPOSALS

When we use a program as a proposal for another program,
it may not be the case that the proposal and target instantiate
the same set of variables. Here two edge cases can arise:
(1) the proposal contains superfluous variables that are not
referenced in the target, or (2) there are variables in the
target that are missing from the proposal.

To account for both cases, we define an implicit auxiliary
variable construction. To illustrate this construction, we
consider a proposal that defines a density q(u, z | x)

λu, λz = ... # (initialize encoder networks)

def g(s, x):

u = s.sample(Normal(λuµ(x), λuσ(x)),"u")
z = s.sample(Multinomial (1, λz(u), "z")

return s, x, u, z

Suppose that we use propose(f, g) to associate this pro-
posal with the target in Program 1, which defines a density
p(x, v, z). We then have a superfluous variable with address
"u", as well as a missing variable with address "v". To deal
with this problem, we implicitly extend the target using the
conditional density q(u | x) from the inference program,
and conversely extend the proposal using the conditional
density p(v | z) from the target program,

p̃(x, v, z, u) = p(x, v, z) q(u | x),

q̃(v, z, u | x) = q(u, z | x) p(v | z).

Since, by construction, the conditional densities for u and v
are identical in the target and proposal, these terms cancel
when computing the importance weight

w =
p̃(x, v, z, u)

q̃(v, z, u | x)
=

p(x, v, z) q(u | x)

q(u, z | x) p(v | z)
=
p(x | v) p(z)

q(z | u)
.

This motivates a general importance sampling computation
for primitive programs of the following form

c1, τ1, ρ1, w1 ;g(c0), c2, τ2, ρ2, w2 ;f(c0)[τ1].

We generate τ1 from the proposal, and then use substitution
to generate a trace τ2 that reuses as many variables from τ1
as possible, and samples any remaining variables from the
prior. Here the set of missing variables is dom(τ2)\dom(τ1)
and the set of superfluous variables is dom(τ1) \ dom(τ2).
Hence, we can define the importance weight

w =
γf (τ2; c0) pg[τ2](τ1; c0)

γg(τ1; c0) pf [τ1](τ2; c0)
w1,

=
w2∏

α∈dom(ρ1)\(dom(τ1)\dom(τ2))
ρ1(α)

w1.
(3)

In the numerator, we take the product over all terms in the
target density, exclusive of missing variables. Note that this
expression is identical to w2 (Equation 2). In the denomina-
tor, we take the product over all terms in the proposal density
ρ1, exclusive of superfluous variables dom(τ1) \ dom(τ2).

3.3 PROPERLY WEIGHTED PROGRAMS

The expression in Equation 3 is not just valid for a composi-
tion propose(f, g) in which f and g are primitive programs.
As we will show, this expression also applies to any compo-
sition propose(p, q), in which p is a target program, and
q is itself an inference program. While this distinction may
seem subtle, it is fundamental; it allows us to use any sam-
pler q as a proposal, which yields a new sampler that can
once again be used as a proposal.



 def pop_gibbs(target , proposal , kernels , sweeps ):

q = propose(partial(target , suffix =0),

partial(proposal , suffix =0))

for s in range(sweeps ):

for k in kernels:

q = propose(

extend(partial(target , suffix=s+1),

partial(k, suffix=s)),

compose(partial(k, suffix=s+1),

resample(q, dim =0)))

return q

data , opt = ...

target , proposal , kernels = ...

q = pop_gibbs(target , proposal , kernels)

for _ in range (10000):

s0 = State(sample_size =[40, 20],

objective=inc_kl)

s, *outputs = q(s0, data.next_batch (20))

s.loss.backward ()

opt.step()

opt.zero_grad ()

Figure 2: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020) in python, along
with a procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.
In this example partial is the partial application function from Python 3’s functools library.

To demonstrate the validity of combinator composition, we
make use of the framework of nested importance samplers
and proper weighting (Liu, 2008; Naesseth et al., 2015),
which we extend to evaluation of probabilistic programs.

Definition 1 (Properly Weighted Evaluation). Let q(c′)
denote an unnormalized density Jq(c′)K = γq(· ; c′). Let
πq(·; c′) denote the corresponding probability density and
let Zq(c′) denote the normalizing constant such that

πq(τ ; c′) :=
γq(τ ; c′)

Zq(c′)
, Zq(c

′) :=

∫
dτ γq(τ ; c′).

We refer to the evaluation of c, τ, ρ, w ;q(c′) as properly
weighted for its unnormalized density γq(· ; c′) when, for all
measurable functions h

Eq(c′)[w h(τ)] = Cq(c′)
∫
dτ γq(τ ; c′) h(τ),

= Cq(c′) Zq(c′) Eπq(·;c′)[h(τ)],

for some constant Cq(c′) > 0. When Cq(c′) = 1, we refer to
the evaluation as strictly properly weighted.

A properly weighted evaluation can be used to define self-
normalized estimators of the form in Equation 1. Such es-
timators are strongly consistent, which is to say that they
converge almost surely in the limit of infinite samples L

1
L

∑L
l=1 w

l h(τ l)
1
L

∑L
l=1 w

l

a.s.−→ Eπq(·;c′) [h(τ)] .

Proposition 1 (Proper Weighting of Primitive Programs).
Evaluation of a primitive program f(c′) is strictly properly
weighted for its unnormalized density Jf(c′)Kγ .

Proof. This holds by definition, since in a primitive program
w is uniquely determined by τ , which is a sample from the

prior density Jf(c′)Kp = pf (· ; c′),

Ef(c′) [w h(τ)] = Epf (·;c′)
[
γf (τ ; c′)

pf (τ ; c′)
h(τ)

]
,

= Zf (c′) Epf (·;c′)
[
πf (τ ; c′)

pf (τ ; c′)
h(τ)

]
,

= Zf (c′) Eπf (·;c′) [h(τ)] .

3.4 OPERATIONAL SEMANTICS

Given a modeling language for primitive programs whose
evaluation is strictly properly weighted, our goal is to show
that the inference language preserves strict proper weighting.
To do so, we begin by formalizing rules for evaluation of
each combinator, which together define big-step operational
semantics for the inference language.

Compose. We begin with the rule for compose(q2,q1),
which performs program composition.

c1, τ1, ρ1, w1 ;q1(c0) c2, τ2, ρ2, w2 ;q2(c1)

dom(ρ1) ∩ dom(ρ2) = ∅
c2, τ2 ⊕ τ1, ρ2 ⊕ ρ1, w2 · w1 ;compose(q2, q1)(c0)

This rule states that we can evaluate compose(q2, q1)(c0)
by first evaluating q1(c0) and using the returned values c1 as
the inputs when evaluating q2(c1). We return the resulting
value c2 with weight w2 · w1. We combine traces τ2 ⊕ τ1
and density maps ρ2 ⊕ ρ1 using the operator ⊕, which we
define for maps µ1 and µ2 with disjoint domains as

(µ1 ⊕ µ2)(α) =

{
µ1(α) α ∈ dom(µ1),

µ2(α) α ∈ dom(µ2).

Extend. The combinator extend(p, f) performs a com-
position between a target p and a primitive f which defines
a density on an extended space.

c1, τ1, ρ1, w1 ;p(c0) c2, τ2, ρ2, w2 ;f(c1)

dom(ρ1) ∩ dom(ρ2) = ∅ dom(ρ2) = dom(τ2)

c2, τ1 ⊕ τ2, ρ1 ⊕ ρ2, w1 · w2 ;extend(p, f)(c0)



 The program f defines a “kernel”, which may not con-
tain observed variables. We enforce this by requiring that
dom(ρ2) = dom(τ2).

Propose. The extend operator serves to incorporate aux-
iliary variables into a target density. When evaluating
propose(p, q), we discard auxiliary variables to continue
the inference computation. For this purpose, we define
a transformation marginal(p) to recover the original un-
extended program. We define this transformation recursively

f = marginal(f)

f′ = marginal(p)

f′ = marginal(extend(p, f))

We now define the operational semantics for propose as

c1, τ1, ρ1, w1 ;q(c0) c2, τ2, ρ2, w2 ;p(c0)[τ1]

c3, τ3, ρ3, w3 ;marginal(p)(c0)[τ2]

u1 =
∏

α∈dom(ρ1)\(dom(τ1)\dom(τ2))

ρ1(α)

c3, τ3, ρ3, w2 · w1/u1 ;propose(p, q)(c0)

In this rule, the outgoing weight w2 · w1/u1 corresponds
precisely to Equation 3, since w2 is equal to the numerator,
whereas u1 is equal to the denominator in this expression.

Evaluation of p(c0)[τ1] applies substitution recursively to
sub-expressions (see Appendix C). Note that, by construc-
tion, evaluation of marginal(p)(c0)[τ2] is deterministic,
and that τ3 and ρ3 correspond to the entries in τ2 and ρ2 that
are associated with the unextended target.

Resample. This combinator performs importance resam-
pling on the return values, the trace, and the density map.
Since resampling is an operation that applies to a collection
of samples, we use a notational convention in which cl, τ l,
ρl, wl refer to elements in vectorized objects, and ~c, ~τ , ~ρ, ~w
refer to vectorized objects in their entirety5. Resampling as
applied to a vectorized program has the semantics

~c1, ~τ1, ~ρ1, ~w1 ;q(~c0) ~a1 ∼ RESAMPLE(~w1)

~c2, ~τ2, ~ρ2 = REINDEX(~a1,~c1, ~τ1, ~ρ1) ~w2 = MEAN(~w1)

~c2, ~τ2, ~ρ2, ~w2 ;resample(q)(~c0)

In this rule, we make use of three operations. The first sam-
ples indices with probability proportional to their weight
using a random procedure ~a1 ∼ RESAMPLE(~w1)6. We then
use a function ~c2, ~τ2, ~ρ2 = REINDEX(~a1,~c1, ~τ1, ~ρ1) to repli-
cate objects according to the selected indices,

cl2 = c
al1
1 , τ l2 = τ

al1
1 , ρl2 = ρ

al1
1 . (4)

5For simplicity we describe resampling with a single indexing
dimension. The Probabilistic Torch implementation supports ten-
sorized evaluation. For this reason, we specify a dimension along
which resampling is to be performed in Figure 2.

6We use systematic resampling in our implementation. For a
comparison of methods see (Murray et al., 2016)

Finally, we use ~w2 = MEAN(~w1) to set outgoing weights to
the average of the incoming weights, wl2 =

∑
l′ w

l′

1 /L.

Denotational Semantics. To demonstrate that program
q are (strictly) properly weighted, we need to define the
density that programs p and q denote. Owing to space limita-
tions, we relegate discussion of these denotational semantics
to Appendix B. Definitions follow in a straightforward man-
ner from the denotational semantics of primitive programs.

Proper Weighting. With this formalism in place, we now
state our main claim of correctness for samplers that are
defined in the inference language.

Theorem 1 (Strict Proper Weighting of Inference Programs).
Evaluation of an inference program q(c) is strictly properly
weighted for its unnormalized density Jq(c)Kγ .

We provide a proof in Appendix E, which is by induction
from lemmas for each combinator.

4 LEARNING NEURAL PROPOSALS
To learn a proposal q, we use properly-weighted samples
to compute variational objectives. We consider three objec-
tives for this purpose. The first two minimize a top-level
reverse or forward KL divergence, which corresponds to per-
forming stochastic variational inference (Wingate, Weber,
2013) or reweighted wake-sleep style inference (Le et al.,
2019). The third implements nested variational inference
(Zimmermann et al., 2021) by defining an objective at each
level of recursion. We describe the loss and gradient com-
putations at a high level, and provide details in Appendix D
and Appendix F respectively.

Objective computation. To optimize the parameters of
proposal programs, we slightly modify the operational se-
mantics (for details see Appendix D) such that a user-defined
objective function ` : (ρq, ρp, w, v)→ R can be evaluated
in the context of the propose combinator. Objective func-
tions are defined in terms of the density maps of the proposal
and target program ρq , ρp and the incoming and incremental
importance weights w, v at the current level of nesting. The
local losses computed at the individual levels of nesting are
accumulated to a global loss in the inference state which
consecutively can be used to compute gradients w.r.t. pa-
rameters of the target and proposal and programs.

Stochastic Variational Inference (SVI). Suppose that we
have a program q2 = propose(p, q1) in which the target
and proposal have parameters θ and φ,

Jp(c0)Kγ = γp(· ; c0, θ), Jq1(c0)Kγ = γq(· ; c0, φ). (5)

The target program p and the inference program q2
denote the same density Jp(c0)Kγ = Jq2(c0)Kγ and
hence, as a result of Theorem 1, the evaluation of q2 is



 strictly properly weighted for γp. Hence, we can evaluate
c2, τ2, ρ2, w2 ;q2(c0) to compute a stochastic lower bound
(Burda et al., 2016),

L(θ, φ) := Eq2(c0) [logw2] (6)

≤ log
(
Eq2(c0) [w2]

)
= logZp(c0, θ),

where the penultimate equality holds by Definition 1.
The gradient ∇θL of this bound is a biased estimate of
∇θ logZp. The gradient ∇φL can be approximated using
likelihood-ratio estimators (Wingate, Weber, 2013; Ran-
ganath et al., 2014), reparameterized samples (Kingma,
Welling, 2013; Rezende et al., 2014), or a combination of
the two (Ritchie et al., 2016). In the special case where
q1 = f is a primitive program, the gradient of the reverse
KL-divergence between p and q1 is

∇φL(θ, φ) = Eq2(c0)
[
∂ logw2

∂τ̃2

∂τ̃2
∂φ

+
∂

∂φ
logw2

]
,

= −∇φKL(πf ||πp).

Reweighted Wake-sleep (RWS) Style Inference. To im-
plement variational methods inspired by reweighted wake-
sleep, we use samples cl2, τ

l
2, ρ

l
2, w

l
2 ;q2(c0) to compute a

self-normalized estimate of the gradient

∇θ logZp(c0, θ) = Eπp(τ ;c0,θ) [∇θ log γp(τ ; c0, θ)] ,

'
∑
l

wl2∑
l′ w

l′
2

∇θ log γp(τ
l
2; c0, θ).

(7)

Notice that here we compute the gradient w.r.t. the non-
extended density γp, which does not include auxiliary vari-
ables and hence density terms which would integrate to one.
When approximating gradient this allows us to compute
lower variance estimates.

Similarly, we approximate the gradient of the forward KL
divergence with a self-normalized estimator that is defined
in terms of the proposals cl1, τ

l
1, ρ

l
1, w

l
1 ;q1(c0),

−∇φKL(πp||πq) = Eπp(τ ;c0,θ)[∇φ log πq(τ ; c0, φ)] ,

(8)

'
∑
l

(
wl2∑
l′ w

l′
2

− wl1∑
l′ w

l′
1

)
∇φ log γq(τ

l
1; c0, φ).

In the special case where the proposal q1 = f is a primitive
program without observations (i.e. wl1 = 1), we can drop
the second term to recovers the standard RWS estimator.

Nested Variational Inference. A limitation of both SVI
and RWS is that they are not well-suited to learning param-
eters in samplers at multiple levels of nesting. To see this,
let us consider a program

q3 = propose(p3, propose(p2, f1))

Figure 3: Samples from the initial proposal q1, learned in-
termediate proposal q4, final proposal q8, and final target.
Definitions can be found in Figure 2, Appendix G.1.

Inference on Tracking

Reconstruction

Figure 4: Qualitative results for the tracking task: Top row
shows inferred positions of objects, bottom row shows re-
construction of the video frames.

We denote Jq3Kγ = Jp3Kγ = γ3, Jp2K = γ2, and
Jf1K = γ1. For simplicity, we consider densities with con-
stant support Ωp = Ω2 = Ω1. The top-level evaluation
c3, τ3, ρ3, w3 ;q3(c0) then yields a trace τ3 = τ1 that
contains samples from the prior Jf1(c0)K = p1(· ; c0) with
weight

w3 =
γ3(τ1; c0, θ)

((((((γ2(τ1; c0, φ2)
((((((γ2(τ1; c0, φ2)

((((((γ1(τ1; c0, φ1)
((((((γ1(τ1; c0, φ1)

p1(τ1; c0, φ1)
. (9)

For this program, the lower bound from Equation 6 does not
depend on φ2. Conversely, the RWS-style estimator from
Equation 8 does not depend on φ1. Analogous problems
arise in non-trivial inference programs that incorporate tran-
sition kernels and resampling. One such example are SMC
samplers, where we would like to learn a sequence of inter-
mediate densities, which impacts the variance of the final
sampler. We consider this scenario Section 5.

Nested Variational Inference (NVI) (Zimmermann et al.,
2021) replaces the top-level objectives in SVI and RWS
with an objective that contains one term at each level of
nesting. In the example above, this objective has the form

D = D3(π2 ||π3) +D2(π1 ||π2) +D1(p1 ||π1),

where each Di is a forward or a reverse KL divergence
or a corresponding stochastic upper or lower bound. The
individual terms can be optimized as described above, but
additional care has to be taken when optimizing the interme-
diate target densities, as their normalizing constants might
not be tractable. For details on the computation of the nested
variational objective and corresponding gradients we refer
to Appendix F. When we apply an NVI objective using
an upper bound based on the forward KL divergence to the
program in Figure 2, we recover the gradient estimators of
APG samplers.



 
Table 1: AVO and NVI variants trained for different numbers
of annealing steps K and samples per step L for a fixed
sampling budget of K · L = 288 samples.

log Ẑ = log
(

1
L

∑
l w

l
)

ESS

K=2 K=4 K=6 K=8 K=2 K=4 K=6 K=8
AVO 1.88 1.99 2.05 2.06 426 291 285 295
NVI 1.88 1.99 2.06 2.07 427 341 308 319
NVIR 1.88 2.05 2.07 2.08 418 828 934 961
NVI* 1.88 2.03 2.08 2.08 427 304 414 481
NVIR* 1.88 1.99 2.08 2.08 418 981 978 965

5 EXPERIMENTS
We evaluate combinators in two experiments. First, we learn
proposals in an annealed importance sampler that addition-
ally learns intermediate densities. Second, we use an APG
sampler to learn proposals and a generative model for an
unsupervised multi-object tracking task.

Annealed Variational Inference. We consider the task
of generating samples from a 2-dimensional unnormalized
density consisting of 8 modes, equidistantly placed along a
circle. For purposes of evaluation we treat this density as a
blackbox, which we are only able to evaluate pointwise.

We implement an annealed importance sampler (Neal, 2001)
(Figure 2 in Appendix G.1) for a sequence of unnormalized
densities γk(τk; c0) = γK(τk; c0)βkγ1(τk; c0)1−βk that in-
terpolate between an initial proposal γ1 and the final target
γK . The sampler employs forward kernels qk(τk; ck−1, φk)
and reverse kernels rk(τk−1; ck, θk) to define densities on
an extended space at each level of nesting. We train the
sampler using NVI by optimizing the kernel parameters θk
and φk, and parameters for the annealing schedule βk.

We compare NVI and NVI*, which additionally learns the
annealing schedule for the intermediate targets, and cor-
responding versions, NVIR and NVIR*, which additional
employ resampling at every level of nesting, to annealed
variational objectives (AVO) (Huang et al., 2018). Learning
the annealing schedule (NVI(R)*) results in improved sam-
ple quality, in terms of the log expected weight (logẐ) and
the effective sample size (ESS). We report results in Table 1
and refer to Appendix G.1 for additional details.

Amortized Population Gibbs. In this task, the data is
a corpus of simulated videos that each contain multiple
moving objects. Our goal is to learn both the target program
(i.e. the generative model) and the inference program using
the APG sampler that we introduced in Section 3.1. See
Appendix G.2 for implementation details.

Figure 4 shows that the APG sampler can (fully unsuper-
vised) identify, track, and reconstruct individual object in
each frame. In Table 2 we compare the APG sampler against
an RWS baseline and a hand-coded HMC-RWS method,

Table 2: log pθ(x, z) on test sets that contain D objects and T
time steps. L is the number of particles and K is the number
of sweeps. We run APG and RWS with computational bud-
get L ·K = 200, and run HMC-RWS with L ·K = 4000.

D=3 D=4

Model Budget T=10 T=20 T=10 T=20

RWS L=200, K=1 -5247 -9396 -8275 -16070
HMC-RWS L=200, K=20 -5137 -9281 -8124 -15087
APG L=100, K=2 -2849 -5008 -4411 -8966
APG L=40, K=5 -2300 -4646 -3529 -6879
APG L=20, K=10 -2267 -4606 -3516 -6827

which improves upon RWS proposals using Hamiltonian
Monte Carlo. Table 2 shows that APG outperforms both
baselines. Moreover, for a fixed computational budget, in-
creasing the number of sweeps improves sample quality.

6 RELATED WORK
This paper builds directly on several lines of work, which
we discuss in detail in Appendix A.

Traced evaluation (Section 2) has a long history in sys-
tems that extend general-purpose programming languages
with functionality for probabilistic modeling and inference
(Wingate et al., 2011; Mansinghka et al., 2014; Goodman,
Stuhlmüller, 2014; Tolpin et al., 2016), including recent
work that combines probabilistic programming and deep
learning (Tran et al., 2016; Ritchie et al., 2016; Siddharth
et al., 2017; Bingham et al., 2018; Baydin et al., 2018).

The idea of developing abstractions for inference program-
ming has been around for some time (Mansinghka et al.,
2014), and several instantiations of such abstractions have
been proposed in recent years (Cusumano-Towner et al.,
2019; Ścibior et al., 2017; Obermeyer et al., 2019). The
combinator-based language that we propose here is inspired
directly by the work of Naesseth et al. (2019) on nested
importance sampling, as well as on a body of work that
connects importance sampling and variational inference.

7 DISCUSSION
We have developed a combinator-based language for im-
portance samplers that are valid by construction, in the
sense that samples are properly weighted for the density
that a program denotes. We define semantics for these
combinators and provide a reference implementation in
Probabilistic Torch. Our experiments demonstrate that user-
programmable samplers can be used as a basis for sophisti-
cated variational methods that learn neural proposals and/or
deep generative models. Inference combinators, which can
be implemented as a DSL that extends a range of existing
systems, hereby open up opportunities to develop novel
nested variational methods for probabilistic programs.
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