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Abstract

Directed acyclic graphs (DAGs) with hidden vari-
ables are often used to characterize causal relations
between variables in a system. When some vari-
ables are unobserved, DAGs imply a notoriously
complicated set of constraints on the distribution
of observed variables. In this work, we present en-
tropic inequality constraints that are implied by e-
separation relations in hidden variable DAGs with
discrete observed variables. The constraints can
intuitively be understood to follow from the fact
that the capacity of variables along a causal path-
way to convey information is restricted by their en-
tropy; e.g. at the extreme case, a variable with en-
tropy 0 can convey no information. We show how
these constraints can be used to learn about the
true causal model from an observed data distribu-
tion. In addition, we propose a measure of causal
influence called the minimal mediary entropy, and
demonstrate that it can augment traditional mea-
sures such as the average causal effect.

1 INTRODUCTION

A causal model of a system of random variables can be rep-
resented as a directed acyclic graph (DAG), where an edge
from a node X to a node Y can be taken to mean that the
random variable X is a direct cause of the random variable
Y . Such causal models can be used to algorithmically de-
duce highly non-obvious properties of the system. For ex-
ample, it is possible to deduce that the probability distribu-
tion of observed variables in the system, called the observed
data distribution, must satisfy certain constraints.

When some variables in the system are unobserved, the
constraints implied by the causal model are not well under-
stood, and, for computational reasons, cannot be feasibly
enumerated in full for arbitrary graphs. As a result, a num-

ber of methods have been developed for quickly providing
a subset of these constraints [Wolfe et al., 2019, Kang and
Tian, 2006, Poderini et al., 2019]. In this work, we con-
tribute to this literature by describing entropic inequality
constraints that hold whenever an e-separation relationship
[Evans, 2012, Pienaar, 2017] is present in the graph.

The idea underlying these inequality constraints is that mu-
tual information between two variables in a graphical model
must be explained by variability of variables (termed bot-
tleneck variables) that are between them along some path.
Such paths need not be directed; a bottleneck variable may
constitute the base of a fork structure or the mediary vari-
able in a chain structure along the path. Each such path has
a limited capacity for carrying information, which can be
quantified in terms of the entropies of the bottleneck vari-
ables on that path. At the extreme case, if there is a bottle-
neck variable along a path with zero entropy, then subse-
quent variables on that path cannot learn about prior vari-
ables through the path, because the bottleneck variable will
hold a fixed valueregardless of the values taken other any
other variables, observed or unobserved. We will quantita-
tively relate the amount of information that can flow through
a path to the entropies of its bottleneck variables below.

Constraints on the observed data distribution implied by a
causal model have primarily been used to determine whether
the observed data is compatible with a causal model, and to
learn the true causal model directly from the observed data.
Existing algorithms for learning causal models rely primar-
ily on equality constraints. We suggest that incorporating
our proposed inequality constraints, which can easily be
read off a graphical model, can meaningfully improve these
methods. In addition, we show how the entropy of latent
variables can be linked to properties of the observed data
distribution, yielding bounds on latent variable entropies or
constraints on the observed data distribution.

We also demonstrate that our constraints can be used to
bound an intuitive measure of the strength of a causal rela-
tionship between two variables, called the Minimum Medi-
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 ary Entropy (MME). We show that the standard measure,
called the Average Causal Effect (ACE), is not well suited
to capturing the causal influence strength of a non-binary
treatment on outcome, and can be misleading in some set-
tings. For example, the ACE can be 0 even when treatment
changes outcome for every subject in the population. The
MME overcomes both of these issues, and can serve as an
informative complement to the ACE.

The remainder of the paper is organized as follows. In Sec-
tion 2, we discuss relevant material in causal inference and
information theory. We present our constraints in Section 3,
and several applications of the constraints in Section 4. Fi-
nally, a discussion of related work and directions for future
study can be found in Section 5 and Section 6 respectively.

2 PRELIMINARIES

2.1 CAUSAL INFERENCE BACKGROUND

We begin by introducing key ideas from the literature on
graphical causal models. Suppose we are interested in a sys-
tem of related phenomena, each of which can be represented
by a random variable. We denote observed variables in the
system as Y, unobserved variables as U, and the full set of
variables as V ≡ Y ∪U.

We let G denote a DAG representing the system of interest.
Each node in G corresponds to a variable in V. The direct
causes of each random variable V are defined to be its par-
ents in G, denoted paG(V ). We adopt a nonparametric struc-
tural equations view of the DAG [Pearl, 2009, Richardson
and Robins, 2013], under which the value of each variable
V is a function of its direct causes and exogenous noise, de-
noted εV . The set of these structural equations is denoted
F ≡ {fV (paG(V ), εV ) | V ∈ V}. In most causal analyses,
the exact form of these functions is unknown. Nevertheless,
if the structure of causal dependencies in a system is known
to be summarized by a graph G, or, equivalently, to be de-
scribed by some set of functions F , then the distribution
P (V) is know to factorize as

P (V) =
∏
V ∈V

P (V | paG(V )). (1)

Equation (1) is the fundamental constraint that G places on
the distribution P (V) – if the equality holds, then the dis-
tribution is in the model; otherwise it is not. When all vari-
ables are observed, each term in the factorization is identifi-
able from observed data, and the constraint may easily be
checked. When not all variables are observed, there is no
known polynomial-time algorithm for expressing the con-
straints that the factorization of the full joint distribution
places on the observed data distribution. In theory, nec-
essary and sufficient conditions for the observed data dis-
tribution to be in the model can be obtained through the
use of quantifier elimination algorithms [Geiger and Meek,

1999], but these have doubly exponential runtime and are
prohibitively slow in practice.

We now review d-separation and e-separation, which are
properties of the graph G that imply certain properties of
distribution P (V). We first introduce the notion of open
and closed paths in conditional distributions. Triples in the
graph of the form A→ C → B and A← C → B are said
to be open if we do not condition on C, and closed if we do
condition on C. Triples of the form A→ C ← B, in which
C is called a collider, are closed if we do not condition on
C or any of its descendants, and open if we do. A path is
said to be open under a conditioning set C if all contiguous
triples along that path are open under that conditioning set.

Definition 1 (d-separation). Let A, B and C be sets of vari-
ables in a DAG. A and B are said to be d-separated by C
if all paths between A and B are closed after conditioning
on C. This is denoted (A ⊥d B | C).

It is a well-known consequence of Equation (1) that any d-
separation relation (A ⊥d B | C) in G implies the corre-
sponding conditional independence relation A ⊥ B | C
in the distribution P (V). Conditional independence con-
straints of this form are about sub-populations in which the
variables in C take the same value for all subjects. We can
only evaluate whether these constraints hold when all vari-
ables in C are observed; otherwise there is no way to iden-
tify the relevant sub-populations. For that reason, it is im-
possible to determine whether conditional independences
implied by G hold if they have hidden variables in their con-
ditioning sets, leading to the need for other mechanisms to
test implications of these independencies.

To describe e-separation, we first introduce the idea that a
node can be deleted from a graph by removing the node and
all of its incoming and outgoing edges. e-separation can
then be defined as follows.

Definition 2 (e-separation). Let A, B, C and D be sets of
variables in a DAG. A and B are said to be e-separated by
C after deletion of D if (A ⊥d B | C) after deletion of ev-
ery variable in D. This is denoted (A ⊥e B | C upon ¬D).

Conditioning on C may close some paths between A and B,
and open others. In the context of e-separation, the set D,
which we refer to as a bottleneck for A and B conditional
on C, is any set that includes at least one variable from each
path between A and B that is open after conditioning on
C. If no subset of D is a bottleneck, then D is called a
minimal bottleneck. This terminology reflects the fact that,
conditional on C, all information shared between A and B
– that is, transferred from one to the other or transferred to
each from a common source – must flow through D.

It has been shown that every e-separation relationship
among observed variables in a graph G corresponds to a
constraint on the observed data distribution P (Y) [Evans,
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Figure 1: The Unrelated Confounders graph (a), and a split
node model for it (b), as well as the Instrumental graph (c),
and its split node model (d).

2012]. However, this result is not constructive, in the sense
that it does not provide a strategy for deriving such con-
straints for a given e-separation relationship. The inequality
constraints we provide in Section 3 partially fulfill this role;
they provide explicit constraints that hold everywhere in the
model whenever an e-separation relationship obtains in a
graph.

2.1.1 Node Splitting

We will see that e-separation is related to the idea of splitting
nodes in a graph. We define a node-splitting operation as
follows. Given a graph G and a vertex D in the graph, the
node splitting operation returns a new graph G# in which
D is split into two vertices. One of the vertices is still called
D, and it maintains all edges directed into D in the original
graph G, but none of its outgoing edges. This vertex keeps
the name D because it will have the same distribution as
D in the original graph, as all of its causal parents remain
the same. The second random variable is labeled D#, and
it inherits all of the edges outgoing from D in the original
graph, but none of its incoming edges. Examples of the
node splitting operation are illustrated in Fig. 1.

By a result in [Evans, 2012], (A ⊥e B | C upon ¬D) in
G if and only if (A ⊥d B | C,D#) in G#. Note that the
node splitting operation described here is closely related to
the operation of node splitting in Single World Intervention
Graphs in causal inference [Richardson and Robins, 2013].

2.2 ENTROPIES

In this section, we review standard concepts in information
theory, which we will use to express our inequality con-
straints. We begin with the definitions of entropy and mu-
tual information.

Definition 3. The entropy of a random variable X is
defined as H(X) ≡ −

∑
x∈X P (x) log2 P (x), with the

joint entropy of X and Y defined analogously. The
mutual information between X and Y is defined as
I(X : Y ) ≡ H(X) +H(Y )−H(X,Y ).

The entropy of a random variable can be thought of as the
level of uncertainty one has about its value. Entropy is
maximized by a uniform distribution over the domain of a
random variable, as there is no reason to think any one value
is more probable than another, and minimized by a point
distribution, in which there is no uncertainty.

The mutual information between X and Y can be thought
of as the amount of certainty we gain about the value of
one, on average, if we learn the value of the other. It is
maximized when one ofX and Y is a deterministic function
of the other, and is minimized when they are independent.

The entropy H(X | Y=y) of X conditional on a specific
value of Y=y is obtained by replacing the distribution P (X)
in Definition 3 with P (X | Y=y). The conditional en-
tropy of X given Y , denoted H(X | Y ), is defined as the
expected value of H(X | Y=y). Conditional mutual infor-
mation is analogously defined.

3 E-SEPARATION CONSTRAINTS

We have already described the intuition behind our con-
straints, which can be roughly summarized by the observa-
tion that the statistical dependence between random vari-
ables must be limited by the total amount of information
that can flow through any bottleneck between them. We now
describe how the tools introduced in Section 2 help us for-
malize this intuition.

First, we describe why e-separation helps formalize the idea
of blocking “all paths” between two sets of variables. Con-
sider the instrumental variable graph, depicted in Fig. 1(c).
A and B are only d-separated by the set {D,U}, where U
is unobserved. Consequently, they are not d-separated by
any set consisting entirely of observed variables. They are,
however, e-separated after deletion of the observed variable
D. This tells us that all paths between A and B are through
D, and we can take advantage of observed properties of D
to bound the dependence between them even when nothing
is known about the unobserved variable U . A similar story
can be told about the Unrelated Confounders scenario de-
picted in Fig. 1(a).

When all variables are observed, e-separation does not imply
any constraints that are not implied by d-separation, which
follows from the fact that d-separation implies all constraints
in such cases [Pearl, 1988]. However, as illustrated by
the examples in Figs. 1(a) and 1(c), e-separation allows
us to identify bottlenecks consisting entirely of observed
variables between A and B even when paths between A



 and B cannot be closed by any manner of conditioning
on observed variables. To show how e-separation lead to
entropic constraints, we will make use of Theorem 4.2 in
[Evans, 2012], reframed as follows.

Theorem 4. ([Evans, 2012] Theorem 4.2)
Suppose (A ⊥e B | C upon ¬D) in G, and that no variable
in C is a descendant of any in D. Then there exists a
distribution P ∗ over A,B,C,D,D# such that

P (A=a,B=b,D=d | C=c)

= P ∗(A=a,B=b,D=d | C=c,D#=d)
(2)

with A ⊥ B | C,D# in P ∗. If furthermore no variable
in A is a descendant of any in D, then there exists a dis-
tribution P ∗ such that P (B=b,D=d | A=a,C=c) =
P ∗(B=b,D=d | A=a,C=c,D#=d) with
A ⊥ B | C,D# in P ∗. 1

We provide the following intuition for this theorem. Our
graph G represents the causal relationships within a system
of random variables in the real world. The graph G# repre-
sents an alternative world in which the causal effects of D
are “spoofed” by some random variable D#. That is, chil-
dren of D in G, which should be functions of D, are instead
fooled into being functions of D#.

In the alternative world represented by G#, we suppose that
the functional form fV of a variable V in terms of its parents
stays the same for all variables that are shared between
graphs. This means that all non-descendants of D have the
same joint distribution in our world and in the alternative
world, as neither their parents nor the functions defining
them in terms of their parents have changed. By contrast,
descendants of D in G will have a different distribution in
the alternative world, as their distributions are now functions
of the distribution of D#, which may be different from that
of D, and is unknown.

Now, suppose we condition on a particular value of D#=d
in G#. Then, because the functional form of the causal
mechanisms is shared across worlds, the descendants of D
in G have the same distribution as they have when D=d in
the observed world. In addition, all of the non-descendants
of D# are marginally independent from D#, because it has
no ancestors so all connecting paths must be collider paths.
Therefore, both its non-descendants and its descendants have
the same joint distribution they would have had when D=d
in the original graph. The results in the theorem then follow
when we note that C, and optionally A, are non-descendants
of D, and that the relevant independence properties hold in
the world of G#.

In general, we cannot know what this P ∗ distribution is, be-
cause we never get to observe this alternate world. But when

1In causal inference problems, a distribution P ∗ that satisfies
the relevant conditions for this result may be constructed from
counterfactual random variables A(d),B(d),D(d) and C(d).

we condition on D#, we are removing precisely the random-
ness we do not know about, yielding a distribution that we
do know about. The fact that P ∗ agrees with P on a subset
of their domains, and that it contains known independences,
is sufficient to derive informative constraints, as seen below.

3.1 ENTROPIC CONSTRAINTS FROM
E-SEPARATION

We now show how the notion of e-separation permits the
formulation of entropic inequality constraints. In these
constraints, we use mutual information to represent depen-
dence between sets of variables, and entropy to measure the
information-carrying capacity of paths connecting them.

Theorem 5. (Proof in Supplementary Materials.)
Suppose observed variables are discrete. If
(A ⊥e B | C upon ¬D) and no element of C is a descen-
dant of any in D, then for any value c in the domain of C,
the following constraints hold:

I(A : B | C=c,D) ≤ H(D | C=c), (3a)
I(A : B | C,D) ≤ H(D | C). (3b)

If in addition, no element of A is a descendant of any in
D, then for any value c in the domain of C, the following
stronger constraints hold:

I(A : B,D | C=c) ≤ H(D | C=c), (4a)
I(A : B,D | C) ≤ H(D | C). (4b)

This theorem potentially allows us to efficiently discover
many entropic inequalities implied by any given graph, such
as those implied by Fig. 2. In some cases, as in Fig. 2(a), the
theorem recovers all Shannon-type entropic inequality con-
straints implied by the graph [Chaves et al., 2014, Chaves
et al., 2014, Weilenmann and Colbeck, 2017]. In other cases,
as in Fig. 2(b), the graph implies a Shannon-type entropic
inequality constraint beyond what Theorem 5 can recover,
per a result in [Weilenmann and Colbeck, 2020]. Indeed,
entropic inequality constraints can be implied by graphs not
exhibiting e-separation relations whatsoever, such as the tri-
angle scenario [Steudel and Ay, 2015, Chaves et al., 2014].

The linear quantifier elimination of [Chaves et al., 2014,
Chaves et al., 2014, Weilenmann and Colbeck, 2017] will
always discover all the entropic inequalities which can be
inferred from Theorem 5. However, the quantifier elimina-
tion method is computationally expensive, and is essentially
intractable for graphs involving more than six or seven vari-
ables (observed and latent combined). Theorem 5, by con-
trast, provides an approach that is computationally tractable,
but is capable of discovering fewer entropic constraints.

We describe the strategy used to obtain the results in The-
orem 5 at a high level. First, we express some function of



 the observed data distribution g(P ) as a sum over the do-
main of D of some non-negative function f(P ∗), such that
g(P ) =

∑
d∈D f(P

∗). We then find a pair of functions
fA and fD, such that f(P ∗) ≤ fA(P

∗) − fD(P ∗), with
fA(P

∗) = fA(P ) and fD ≥ 0. Finding this pair of func-
tions is the only non-prescriptive part of this proof strategy.
For the resulting constraint to be non-trivial, the decomposi-
tion must make use of the independence properties of P ∗.
We substitute these functions into g(P ) =

∑
d∈D f(P

∗)
to obtain the inequality g(P ) ≤

∑
d∈D fA(P

∗)− fD(P ∗).
Because fD is non-negative, it can be dropped from the ex-
pression to yield g(P ) ≤

∑
d∈D fA(P

∗). By construction,
fA(P

∗) = fA(P ), which can be used to produce an inequal-
ity constraint between two functions of the observed data
distribution: g(P ) ≤

∑
d∈D fA(P ).

Our proof of Theorem 5, which is deferred to the appendix,
demonstrates how fA and fD may be found for any function
f that obeys subadditivity and the additive chain rule, such
as the Shannon entropy, as used in the proposition.
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Figure 2: For graph (a), Theorem 5 implies the en-
tropic inequality constrains I(A : XY Z) ≤ H(X) and
I(A : Y Z) ≤ H(Y ). For graph (b), Theorem 5 implies
I(A : XY Z) ≤ H(X) and I(A : Y Z|X) ≤ H(Y |X).
Note, however, that the entropic quantifier elimina-
tion method of Chaves et al. [2014] as applied by
Weilenmann and Colbeck [2020], finds that the for-
mer inequality for graph (b) can be strengthened into
I(A : XY Z) ≤ H(X|Y ).

3.2 RELATING E-SEPARATION TO EQUALITY
CONSTRAINTS

We have seen that d-separation and e-separation relations im-
ply constraints on the observed data distribution. Verma and
Pearl [1990] discuss equality constraints for latent variable
models that apply in identified post-intervention distribu-
tions. Such equality constraints are sometimes called Verma
constraints. A general description of the class of these con-
straints implied by a hidden variable DAG model, as well
as discussion of properties of these constraints is given in
[Richardson et al., 2017]. In this section, we examine the
relationship between the e-separation-based constraints of
Theorem 5 and the d-separation-based conditional indepen-
dence and Verma constraints.

First, we observe that the presence of d-separation relations
and Verma constraints in a graphical model imply the pres-
ence of an e-separation relation.

Proposition 6. (Proof in Supplementary Materials.)
If A is d-separated from B by {C,D}, then A is also e-
separated from B by C upon deleting D.

This demonstrates that for any d-separation relation in the
graph, it is possible to obtain an entropic constraint cor-
responding to any minimal bottleneck D through an e-
separation relation. More precisely, when A is d-separated
from B by {C,D}, then by Proposition 6, it is also the case
that A is e-separated from B given C upon deleting D, and
therefore Theorem 5 can be applied to obtain entropic con-
straints. Note, however, that these are necessarily weaker
than the entropic constraint I(A : B | C,D) = 0, which
follows from the d-separation relation itself.

In summary, every d-separation relation in the graph is
an instance of e-separation, but not vice-versa. When an
instance of e-separation is also an instance of d-separation,
then all the inequality constraints implied by e-separation
are rendered defunct by the stronger equality constraints
implied by d-separation.

We now show that a similar pattern of deprecating inequali-
ties by equalities occurs in the presence of Verma constraints
when certain counterfactual interventions are identifiable.

Proposition 7. Consider a graph G which exhibits the e-
separation relation (A ⊥e B | C upon ¬D) and where no
element of C is a descendant of any in D. If the counterfac-
tual distribution P (A(D=d),B(D=d),D(D=d) | C) is
identifiable2 then the inequalities of Theorem 5 are logically
implied whenever the stronger equality constraints

I (A(D=d) : B(D=d) | C) = 0 (5)

are satisfied for all values of d. Note that Equation (5) is
satisfied if and only if the margin of the identified counter-
factual distribution factorizes, i.e., when

P (A(D=d),B(D=d) | C)

≡
∑

d′ P (A(D=d),B(D=d),D(D=d)=d′ | C)

exhibits A(D=d) ⊥ B(D=d) | C. (6)

The proof directly follows from that of Theorem 5. In prov-
ing Theorem 5, we derive entropic inequalities by relating
the entropies pertaining to P (A,B,D | C) to entropies per-
taining to the P ∗ distribution posited by Theorem 4. That
is, Theorem 5 is an entropic consequence of Theorem 4. If

2The counterfactual distribution in this theorem allows
intervened-on variables and outcomes to intersect. See [Shpitser
et al., 2021] for a complete identification algorithm for counterfac-
tual distributions of this type.



 the conditions of Proposition 7 are satisfied, then the con-
ditions of Theorem 4 are also automatically satisfied since
one can then explicitly reconstruct

P ∗(A,B,D=d | C,D#=d#)

= P (A(D=d#),B(D=d#),D(D=d#)=d | C).
(7)

There is no opportunity to violate the entropic inequalities of
Theorem 5 once the observational data has been confirmed
as consistent with Theorem 4. In other words, in order to
violate the inequalities of Theorem 5 it must be the case that
no P ∗ consistent with Theorem 4 can be constructed, but
this contradicts the explicit recipe of Equation (7).

See [Verma and Pearl, 1990, Tian and Pearl, 2002, Richard-
son et al., 2017] for details on how to derive the form of
the equality constraints summarized by Equation (6). We
note here that P (A(D=d),B(D=d),D(D=d)=d | C)
is certainly identifiable if D is not a member of the
same district ([Richardson et al., 2017]) as any element
in {A,B} within the subgraph of G over {A,B,C,D}
and their ancestors. We also note that the identifia-
bility of merely P (A(D=d),B(D=d) | C) but not of
P (A(D=d),B(D=d),D(D = d)=d | C) negates the
implication from Equation (6) to Theorem 5. In Ap-
pendix ??, we provide an example of a graph in which
P (A(D=d),B(D=d) | C) is identified, but the entropic
constraints of Theorem 5 remain relevant. In addition, we
demonstrate that the application of the entropic constraints
to identified counterfactual distributions can also result in
inequality constraints on the observed data distribution.

3.3 CONSTRAINTS AND BOUNDS INVOLVING
LATENT VARIABLES

In this section, we consider d-separation relations with hid-
den variables in the conditioning set. Because we cannot
condition on hidden variables, there is no way to check
whether the corresponding independence constraints hold
in the full data distribution. However, if we have access to
auxiliary information about these hidden variables – such
as information about their entropy or their cardinality – it
is possible to obtain inequality constraints on the observed
data distribution.

Proposition 8. (Proof in Supplementary Materials.)
If (A ⊥d B | C,U), then the entropy of U may be lower-
bounded, H(U) ≥ H(U | C) ≥ I(A : B | C).

In many scenarios, we may have more information about
the cardinality of a hidden variable than its entropy. We
take the cardinality of a set of variables to be the product
of the cardinalities of the variables in the set. An upper
bound on the cardinality of U entails an upper bound on
its entropy. As observed above, the entropy of a random
variable is maximized when it takes a uniform distribution.

If we let |U| denote the cardinality of U, and recall that the
entropy of a uniformly distributed variable with cardinality
m is simply log2(m), then log2 |U| ≥ H(U). The next
corollary then follows immediately from Proposition 8.

Corollary 8.1. If (A ⊥d B | C,U), then the cardinality of
U may be lower-bounded, |U| ≥ 2I(A:B|C).

Finally, we note that both of these inequalities can also be
used if we do not know anything about the properties of
U, but would like to infer lower bounds for its entropy and
cardinality from the observed data. In Section 4.2, we will
explore a scenario in genetics in which these bounds and
constraints may be of use.

Remark 9. Constraints given in Proposition 8 and Corol-
lary 8.1 are stronger than can be obtained from the
e-separation relation (A ⊥e B | C upon ¬U) on its own.

To demonstrate Remark 9, we consider a set of structural
equations consistent with Fig. 1(a). Suppose that D takes
the value 0 when U1 6= U2, and the value 1 otherwise, and
that A and B take the value 0 if D is 0, and values equal to
U1 and U2 respectively ifD is 1. It follows thatA andB are
always equal, and therefore I(A : B) = H(A). Now, sup-
pose that U1 and U2 only take values not equal to 0, and that
there are at least two values that each takes with nonzero
probability. It immediately follows that H(D) < H(A),
and therefore that H(D) < I(A : B), as D and A by con-
struction take the value 0 with the same probability, but
there is strictly more entropy in the remainder of A’s distri-
bution because D is binary and A takes at least two other
values with nonzero probability.

4 APPLICATIONS

In this section, we explore several applications of the con-
straints developed above. In Sections 4.1 and 4.2, we show
how our results can be used to learn about causal models
from observational data. In Section 4.3, we further leverage
the importance of the entropy of variables along a causal
pathway to posit a new measure of causal strength, and ob-
serve that this measure can be bounded by an application of
Theorem 5.

4.1 CAUSAL DISCOVERY

In this section, we present an example in which two hidden
variable DAGs with the same equality constraints present
different entropic inequality constraints. The ability to dis-
tinguish between models that share equality constraints has
the potential to advance the field of causal discovery, in
which causal DAGs are learned directly from the observed
data. Causal discovery algorithms for learning hidden vari-
able DAGs currently do so using only equality constraints.
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Figure 3: Two hidden variable DAGs that share equal-
ity constraints over observed variables, but (a) contains e-
separation relations that are not in (b).

Our approach may be useful as a post-processing addition
to such methods, whereby any graph found to satisfy the
equality constraints in the observed data is tested against
the entropic inequality constraints implied by e-separation
relations in the model.

The hidden variable DAGs in Fig. 3, adapted from Ap-
pendix B in [Bhattacharya et al., 2020], share the same con-
ditional independence constraints: Y1 ⊥ Y3 | Y2Y5 and
Y1 ⊥ Y5, but exhibit different e-separation relations.

In Fig. 3(a), (Y1 ⊥e Y3Y4 | Y2 upon ¬Y5),
(Y1Y2 ⊥e Y4 | upon ¬Y3), and (Y2 ⊥e Y4 | Y1 upon ¬Y3).
Applying Theorem 5 in each case, we obtain the three
inequality constraints I(Y1 :Y3Y4Y5 | Y2) ≤ H(Y5 | Y2),
I(Y2 :Y3Y4 | Y1) ≤ H(Y3 | Y1), I(Y1Y2 :Y3Y4) ≤ H(Y3).

In Fig. 3(b), we have added an edge, which re-
moves some e-separation relations. We are left with
(Y1 ⊥e Y3 | Y2 upon ¬Y5), and (Y2 ⊥e Y4 | Y1 upon ¬Y3).
We can again apply Theorem 5 in each case, yielding the
inequality constraints I(Y1 : Y3Y5 | Y2) ≤ H(Y5 | Y2) and
I(Y2 : Y3Y4 | Y1) ≤ H(Y3 | Y1). The second of these con-
straints is shared by the graph in Fig. 3(a), and the first is
strictly weaker than a constraint in Fig. 3(a).

Models similar to those shown in Fig. 3 sometimes arise in
time-series data, where the variables in the chain represent
observations taken at consecutive time steps. In such models,
it is often assumed that treatments no longer have a direct
effect on outcomes after a certain number of time steps.
Here, that assumption is encoded in the lack of a direct edge
from Y1 to Y4 in Fig. 3(a). We have shown above that this
kind of assumption can be falsified even when it does not
imply any additional equality constraints, as is often the
case. In particular, if the stronger constraints implied by
Fig. 3(a) are violated, but the weaker constraints of Fig. 3(b)
are not, then the assumption is falsified.

UX Y

(a)

UX Y

(b)

Figure 4: Identifying direct causal influence in the presence
of a confounder with limited cardinality.

4.2 CAUSAL DISCOVERY IN THE PRESENCE OF
LATENT VARIABLES

In this section, we consider a very simple possible applica-
tion of the constraints and bounds relating to entropies of un-
observed variables in genetics. Consider a causal hypothesis
wherein the presence or absence of an unobserved gene influ-
ences two aspects of an organism’s phenotype. Suppose that
due to genetic sequencing studies, the number of variants of
the gene in the population – i.e. the cardinality of the cor-
responding random variable – is known. Two possible hy-
potheses regarding the causal structure are depicted in Fig. 4,
where U represents the gene andX and Y are the phenotype
aspects. In Fig. 4(a), one presumes no causal influence of
X on Y , whereas in Fig. 4(b), direct causal influence is al-
lowed. In the former case, knowledge of the number of vari-
ants of the gene constrains the mutual information between
the phenotypes, while in the latter case it is not constrained.

Thus, for certain types of statistical dependencies between
X and Y , one can rule out the hypothesis of Fig. 4(a). For
example, suppose we know the cardinality of U to be 3.
Corollary 8.1 then implies the constraint that the mutual
information between X and Y cannot exceed log2(3) ≈
1.584. Suppose further that we observe the distribution
depicted in Table 1. The mutual information between X
and Y in this distribution is ≈ 1.594. Because this mutual
information violates the constraint implied by the model
in Fig. 4(a), we know this model cannot be correct, and
conclude that Fig. 4(b) is correct. More generally, strong
statistical dependence between high cardinality variables
cannot be explained by a low cardinality common cause and
requires a direct influence between them.

Y
0 1 2 3

0 0.002 0.001 0.400 0.001
X 1 0.003 0.005 0.005 0.066

2 0.224 0.003 0.003 0.001
3 0.002 0.281 0.001 0.002

Table 1: An example joint distribution over two variables X
and Y , each with cardinality 4.

Conversely, suppose Fig. 4(a) is known to be correct, and
that there is no direct causal influence between the two
aspects of phenotype. If the cardinality of U is not known,
it can be bounded from below directly from observed data,



 according to Corollary 8.1. In this case, the lower bound
would be 2I(X:Y ) ≈ 21.594 ≈ 3.018. It follows that U must
have a cardinality of 4 or above in this setting. The ability
to extract such information from observational data may
be useful in making substantive scientific decisions, or in
guiding future sequencing studies.

In many applied data analyses, different variables may be
observed for different subjects, i.e., data on some variables
is “missing” for some subjects. A recent line of work has
focused on properties of missing data models that can be
represented as DAGs [Mohan et al., 2013]. Although the
bounds and constraints above have been developed in the
context of fully unobserved variables, they can also be used
in missing data DAG models, for variables that are not
observed for all subjects.

4.3 QUANTIFYING CAUSAL INFLUENCE

The traditional approach to measuring the strength of a
causal relationship is by contrasting how different an out-
come would be, on average, under two different treatments.
Formally, if X is a cause of Y , the ACE is defined as
E[Y (X = x)− Y (X = x′)]. While the ACE is a very use-
ful construct, we suggest that it has two important shortcom-
ings, and present an alternative measure of causal strength
called the Minimal Mediary Entropy or MME. The MME
is based on the idea – explored throughout this work – that
the entropy of variables along a causal pathway provide in-
sight into the amount of information that can travel along
that pathway. If the pathway is a single directed edge, we
suppose this information represents the causal influence of
the parent on the child. The MME can also be used to aug-
ment causal targets similar to the ACE, such as the average
direct effect and the local average treatment effect.

We first describe a setting in which the ACE can be mislead-
ing. Suppose that every subject in a population has an out-
come that depends on treatment. In some sense, the causal
relationship between treatment and outcome in this popu-
lation is as large as it can be – the treatment always causes
the outcome, in the sense that the outcome would always
have been different under a different treatment. However,
even when the observed data is sufficient to conclude that
treatment causes outcome for every subject in the popula-
tion, the ACE may still be 0, as in the following example.

Example 1. Consider a randomized binary treatment X
and a ternary outcome Y , with P (Y=0 | X=0) =
P (Y=2 | X=0) = 0.5, and P (Y=1 | X=1) = 1. In this
setting, ACE = 0, even though treatment affects outcome
for every subject in the population.

Reporting that the ACE is 0 in this scenario does not paint a
complete picture about the strength of the causal relationship
under investigation. The same idea applies in less extreme
cases – the ACE may be very low, even though treatment

affects outcome for almost every subject in the population.
Similarly, it may be very high, even when very few subjects
have an outcome that is affected by treatment, if those effects
are of sufficiently large magnitude.

We also note that the ACE is not well suited to providing a
general view of the strength of a causal relationship when
the treatment variable is non-binary, as it is by construc-
tion a contrast between two settings of the treatment. In
such situations, the ACE may be identified for every pair of
treatment settings, but no one causal contrast represents the
strength of the causal relationship, and the number of pos-
sible contrasts grows combinatorially in the cardinality of
treatment. We now define the MME and discuss how it can
overcome these issues.

Definition 10 (Minimal Mediary Entropy (MME)). Suppose
X is a cause of Y , and that the unobserved variable W
fully mediates the effect of X on Y . Then MMEX→Y is
the smallest entropy W can have without contradicting the
observed data distribution.

CX Y

(a)

CX Y

W U

(b)

Figure 5: DAG (a) modified by inserting a latent mediary
W between X and Y (b).

This definition posits a hypothetical latent variable W that
fully mediates the effect of X on Y , such that X does not
affect Y other than through W , as illustrated in Fig. 5. We
can bound the MME when X and Y are unconfounded. In
this case, W and Y can have an unobserved common cause,
but W and X cannot. If C blocks all indirect paths between
X and Y , then (X ⊥e Y | C upon ¬W ). The following
corollary then follows immediately from Theorem 53:

Corollary 10.1. For discrete X , Y , and C, if X
is unconfounded with Y conditional on C, then
MMEX→Y ≥ maxc I(X : Y | C=c) ≥ I(X : Y | C).

In Example 1, if P (X=0) = P (X=1) = 0.5, this corollary
leads directly to a lower bound on the MME of 1. The MME
is trivially bounded from above by min{H(X), H(Y )} be-
cause the observed data could always be produced if W just
copies the values of either X or Y . It follows that we have
with equality in this case that MME = 1. This scenario

3We take W to be discrete without loss of gen-
erality, since W could copy X without compression;
see also [Finkelstein et al., 2021]. We apply Equa-
tion (4a) as I(X : Y,W | C=c) ≤ H(W | C=c), not-
ing that I(X : Y | C=c) ≤ I(X : Y,W | C=c) and
H(W | C) ≤ H(W ) by nonnegativity of conditional entropies.



 demonstrates one advantage of the MME over the ACE: it
captures the clear causal dependence of Y on X when the
mean of Y does not depend on X .

Now suppose the distribution in Table 1 represents a setting
in which there is no common cause of treatment X and
outcome Y . In this case, MMEX→Y is bounded from below
by ≈ 1.594, the mutual information between X and Y . For
reference, the trivial upper bounds on MMEX→Y of H(X)
and H(Y ) are ≈ 1.802 and ≈ 1.822 respectively in this
distribution. The relatively high lower bound on the MME
indicates a high level of causal dependence. This example
demonstrates the advantages of the MME in settings with
non-binary treatments, where the ACE may not apply.

While the MMEX→Y can be bounded as described above, it
can also be calculated exactly when observed variables are
discrete. To calculate the MME, we first augment the origi-
nal graph with a latent variable W mediating the causal re-
lationship of interest, along with another latent variable as
common parent ofW and Y , such as shown in Figure 5. The
MME is then the lowest possible entropy for W in a distri-
bution that is Markov to this augmented graph such that the
observed distribution is recovered as a marginal. Finkelstein
et al. [2021] shows that these constraints can be expressed
as a system of polynomial equations and inequalities on the
parameters of the distribution over all variables – latent and
observed, such that MME can then be obtained by minimiz-
ing the entropy of W subject to the polynomial constraints.
As entropy is a non-polynomial function of the parameters
of the distribution, this procedures involves minimizing a
non-polynomial objective over polynomial constraints, and
care must be taken obtain the global minimum.4

We advocate for reporting the MME alongside the ACE in
common causal applications such as randomized clinical
trials, especially for treatments that have the potential to
cause harm. A large lower bound on the MME in such
settings, accompanied by a small positive ACE, may indicate
that a substantial portion of the population is negatively
affected by treatment, and help direct analysts to questions
that need more thorough investigation. In multi-treatment
trials, reporting the MME may inform clinicians about how
likely a treatment is to alter outcomes.

5 RELATED WORK

This work builds most directly on [Evans, 2012], in which e-
separation was introduced and Theorem 4 was derived, both
of which are essential to our results. It follows in the tradi-
tion of a line of literature that aims to derive symbolic ex-
pressions of restrictions on the observed data distribution im-

4This procedure is related to that of [Duarte et al., 2021] for
bounding unidentified causal parameters, but the targets consid-
ered in that work are polynomial functions of the distribution’s pa-
rameters over latent and observed variables.

plied by a causal model with latent variables, including [Tian
and Pearl, 2002, Balke and Pearl, 1993] and [Kang and Tian,
2006]. Entropic constraints were previously considered in
[Chaves et al., 2014, Chaves et al., 2014] and [Weilenmann
and Colbeck, 2017]. The entropic constraint for the instru-
mental scenario appears as Equation (5) in [Chaves et al.,
2014], see also Appendix E of [Henson et al., 2014]. Our
work is also closely related to work in the literature on infor-
mation theory on how much information can pass through
channels of varying types [Gamal and Kim, 2011]. Our pro-
posed measure of causal strength, the MME, is motivated by
weaknesses in standard causal strength measures (e.g. ACE),
which was previously discussed in [Janzing et al., 2013].

Our results are also related to the causal discovery literature,
which seeks to find the causal structures compatible with
an observed data distribution [Spirtes et al., 2000]. The
inequality constraints posed above can be used as a further
check on the outputs of causal discovery algorithms that use
only equality constraints [Strobl et al., 2018, Spirtes et al.,
2000, Bernstein et al., 2020].

6 CONCLUSION

In this work, we present inequality constraints implied by
e-separation relations in hidden variable DAGs. We have
shown that these constraints can be used for a number of
purposes, including adjudicating between causal models,
bounding the cardinalities of latent variables, and measuring
the strength of a causal relationship. e-separation relations
can be read directly off a hidden variable DAG, leading to
constraints that can be easily obtained.

This work opens up two avenues for future work. The
first is that our constraints demonstrate a practical use of
e-separation relations, and should motivate the study of
fast algorithms for enumerating all such relations in hid-
den variable DAGs. The second, related avenue, is that the
constraints suggest that existing equality-constraint-based
causal discovery algorithms can be improved; understand-
ing how the inequality constraints can best be used to this
end will take careful study.
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