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Abstract

Sparse Gaussian processes and various extensions
thereof are enabled through inducing points, that
simultaneously bottleneck the predictive capacity
and act as the main contributor towards model
complexity. However, the number of inducing
points is generally not associated with uncertainty
which prevents us from applying the apparatus of
Bayesian reasoning for identifying an appropriate
trade-off. In this work we place a point process
prior on the inducing points and approximate the
associated posterior through stochastic variational
inference. By letting the prior encourage a mod-
erate number of inducing points, we enable the
model to learn which and how many points to util-
ise. We experimentally show that fewer inducing
points are preferred by the model as the points
become less informative, and further demonstrate
how the method can be employed in deep Gaussian
processes and latent variable modelling.

1 INTRODUCTION

Gaussian processes (GP) constitute an attractive model-
ling tool when the amount of data is limited and/or un-
certainty quantification is critical, e.g. global optimisation
(Močkus [1975], Shahriari et al. [2015]), medical model-
ling (Lorenzi et al. [2015]), and reinforcement learning
(Deisenroth and Rasmussen [2011]). While the original
formulation presents shortcomings in scalability and ex-
pressiveness, a vast amount of enhancements have been
presented over the years that enable large-scale modelling
(Hensman et al. [2013]), deep architectures (Damianou
and Lawrence [2013]), inter-domain covariance mappings
(Lázaro-Gredilla and Figueiras-Vidal [2009]), and various
combinations thereof (Blomqvist et al. [2019]).

Fundamental to these advancements is the methodology of

sparse Gaussian processes (Snelson and Ghahramani [2006],
Quiñonero-Candela and Rasmussen [2005], Titsias [2009]).
Here, we introduce the assumption that the true posterior
over functions may be adequately approximated by condi-
tioning on a relatively small set of inducing points, acting as
a representative proxy for the observed data (see Figure 1a).
The task of model optimisation now reduces to quantifying
and minimising the discrepancy between the approximate
posterior and that of the full GP. Since the inducing points
communicate all information between observations and pre-
dictions, it is crucial that they are initialised and optimised
to provide good coverage of the input domain (Burt et al.
[2019]). At the same time, they are the main contributors to
the complexity of the model, and so both the number and
locations of inducing points must be selected with care.

While well-developed and long underway, the inducing
point methodology has always viewed the number of points
as a design choice. We may add or remove inducing points
adaptively and optimise their locations in input space, but
the set of points ultimately appear as a deterministic quant-
ity in the model specification. This has the immediate con-
sequence that the question of which and how many inducing
points to utilise is not part of the inference. As such, we can-
not “learn” how many points to include in order to balance
capacity and complexity, and there is no principled way of
identifying inducing points that may not be contributing
much towards explaining the data.

In this work we present a solution to the above limitations
by including the selection of inducing points in the infer-
ence. Concretely, we expand the hierarchical model by first
sampling the inducing points from a point process prior,
which in a Bayesian fashion encodes the beliefs we have
about our point set – namely that the model should be eco-
nomical in its use of points. We then approximate the true
posterior with a variational point process (Figure 1b) that
must find a trade-off between adhering to the expectations
of the prior and explaining the data. As a result the model
learns to sample only those points that it deems sufficiently
informative, yielding a data-driven approach for optimally
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Figure 1: Illustration of our method. A sparse GP infers an approximate posterior (blue shading) over observed data (grey
crosses) by conditioning on a set of inducing points (black circles). (a) Posterior when using an initial candidate set of
50 inducing points. (b) Marginal probability of inclusion assigned to each inducing point by the variational point process
midway through training. Note that uninformative points are less likely to be included. Right panel shows three samples
from the point process. (c) Result after training where a small set of highly informative inducing points remain.

exploiting the available resources (Figure 1c).

We present a prior that naturally encourages selectivity while
allowing for an analytically tractable expression for the
Kullback-Leibler divergence when certain statistical meas-
ures are known about the variational posterior. The evid-
ence lower bound can then be maximised through score
function estimation (Williams [1992], Fu [2006]), making
it straightforward to implement in any existing Gaussian
process framework.1

We demonstrate on various datasets that when reducing the
informativeness of inducing points, our model does indeed
select fewer points while achieving comparable or better
performance than standard approaches. We then consider
the problem of allocating inducing points to the layers of
a deep Gaussian process, and show that we can solve this
otherwise combinatorial problem by jointly inferring the
posterior set of points for each layer. Finally, we apply the
method to the Gaussian process latent variable model where
we learn a representation for a high-dimensional single cell
dataset whilst adapting the suitable number of inducing
points throughout optimisation, thus avoiding costly cross-
validation.

2 BACKGROUND

2.1 GAUSSIAN PROCESSES

We consider the supervised learning setting of having N
datapoints, (y,X) = {yi,xi}Ni=1, that are assumed condi-

1Implementation is available at https://github.com/
akuhren/selective_gp.

tionally independent given a latent function f :

p(y | f,X) =

N∏
i=1

p(yi | f(xi)).

By placing a Gaussian process prior (Rasmussen
and Williams [2006]) on the latent function,
f ∼ GP (m(x), κ(x,x′)), we assert that any finite
set of evaluations, f = {f(xi)}Ni=1, follows a multivariate
Gaussian with statistics given by mean function, m, and
covariance function, κ:

p(f | X) = N (f | µ,Σ) ,

µi = m(xi; θ), Σij = κ(xi,xj ; θ).

Here θ comprises the hyper-parameters ofm and κ that char-
acterise the Gaussian process. When the data distribution,
p(y | f), is an isotropic normal, the marginal likelihood
is available in closed form, providing a means for model
selection and a (differentiable) objective for estimating θ
and the observation noise of p(y | f). Predicting for unseen
data, (y∗,X∗), is carried out by conditioning on the training
data and marginalising out the latent function, yielding a
tractable expression for p(y∗ | X∗,y,X).

2.2 SPARSE VARIATIONAL GAUSSIAN
PROCESSES

As a result of marginalising out the latent function, the
datapoints are no longer independent leading to a model
that scales poorly in the number of observations. This has
motivated the development of sparse Gaussian processes
(Snelson and Ghahramani [2006], Quiñonero-Candela and
Rasmussen [2005]), in which we only condition on a set
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 of M inducing points, (u,Z) = {uj , zj}Mj=1, uj = f(zj).
These points are not restricted to being part of the observed
data and can thus be optimised so as to best represent X and
y. We will adopt the notation of f 6=u being all evaluations
except for u, and f , [f 6=u,u]. Modelling proceeds by mak-
ing the simplifying assumption that the function posterior
can be approximated through these inducing points, which
for M � N leads to a vast reduction in complexity. While
various approaches encode this assumption in different man-
ners, we will focus on the variational sparse formulation of
Titsias [2009]. By introducing a variational distribution, Q,
to approximate the true posterior, p(f | y,X), the evidence
lower bound (ELBO) is derived through Jensen’s inequality:

log p(y | X) ≥
∫
Q log

p(y, f 6=u | X)

Q
df 6=u , L.

Next, we augment the probability space with inducing points
(u,Z).2 Note that these points are already implicitly present
in the generative model of p(y | X) through the infinite-
dimensional vector, f , but since f 6=u is a sufficient stat-
istic for y, the inducing outputs are marginalised out with
no effect to the distribution over observed data. However,
by including the points in the variational distribution s.t.
Q = p(f 6=u | X,u,Z)q(u | Z) we obtain the much simpli-
fied expression:

L =

∫
Q log

p(y, f | X,Z)

p(f6=u | X,u,Z)q(u | Z)
df

=

∫
Q log

p(y | f 6=u)(((((((
p(f 6=u | u,X,Z)p(u | Z)

(((((((
p(f 6=u | X,u,Z)q(u | Z)

df

= EQ [log p(y | f 6=u)]− KL[q(u | Z) ‖ p(u | Z)], (1)

where KL[·] is the Kullback-Leibler divergence. Our approx-
imate posterior, Q ≈ p(f | X,y), thus relies on the initially
redundant inducing points to make the function evaluations
pertaining to y conditionally independent, leading to a vast
reduction in complexity.

In the special case of p(y | f 6=u) = N
(
y | f 6=u, Iσ

2
y

)
the

collapsed bound is analytically tractable and yields the vari-
ational distribution q(u) = N (u |m,S) with:

S−1 = σ−2y K−1MMKMNKNMK−1MM + K−1MM ,

m = σ−2y SK−1MMKMNy,

where KMN = K>NM = κ(Z,X) and KMM = κ(Z,Z).
However, this bound does not allow us to subsample (y,X)
which in turn prohibits stochastic variational inference. To
circumvent this limitation, Hensman et al. [2013] let (m,S)
be free parameters. This further enables settings where
p(y | f6=u) is not Gaussian (Hensman et al. [2015a]), in

2Matthews et al. [2016] provide a rigorous analysis of the
validity of the augmentation strategy and show it to be valid under
very general conditions.

which case the expectation over conditionally independent
data points can be estimated by Monte Carlo sampling:

L =

M∑
i=1

Eq(fi;m,S) [log p(yi | fi)]

− KL[q(u | Z;m,S) ‖ p(u | Z)],

q(fi;m,S) ∼ N
(
βim, κ(xi,xi)− βi(KMM − S)βTi

)
,

βi = κ(xi,Z)K−1MM .

In this work we focus on both the collapsed and uncollapsed
bounds and explore how the probabilistic model is affected
by associating Z with a point process. The sparse variational
GP (SVGP) model is straightforwardly extended to more
exotic variants such as deep Gaussian processes (Damianou
and Lawrence [2013]) and latent variable models (Lawrence
[2004], Titsias and Lawrence [2010]), which we also explore
in our experiments. However, we defer the derivation of
these to Appendix A.

3 PROBABILISTIC SELECTION OF
INDUCING POINTS

In the SVGP model the inducing points communicate all in-
formation between observed data and new predictions while
contributing O(M2) time complexity in doing so. This im-
plies that the main trade-off between model capacity and
complexity hinges on the cardinality of Z. In many scenarios
this does not pose much of a dilemma. If, for instance, we
are fitting a SVGP and know the amount of available train-
ing data, we would opt for using as many inducing points
as possible while keeping within computational constraints.
In other situations, however, the choice is less obvious. We
might have a hierarchical model with various compositions
of SVGP’s (e.g. Hamelijnck et al. [2019]), each of which
will model response surfaces of varying complexity and thus
require differing amounts of inducing points. Or we may
be presented with batches of data in an online fashion (Bui
et al. [2017]) and should ideally determine adaptively how
many points to utilise for a given batch dependent on the
characteristics of the data.

In such situations it seems unsatisfactory to have the car-
dinality of Z be a deterministic choice. Rather, we ought to
adopt a Bayesian approach and explicitly model any uncer-
tainty we might have about the number of inducing points to
utilise. We propose going about this by extending the gener-
ative model to include the sampling of inducing points from
a point process prior, p(Z), which assigns probability to sets
belonging to its domain, Z , based on their cardinality.

This is theoretically justified since, as mentioned in the pre-
vious section, the inducing points are implicitly present in
the generative model before the variational approximation
is made. We are thus free to put a prior on this quantity
(as has been done in previous work, e.g. Hensman et al.



 [2015b]) even though this prior does not affect the marginal
distribution over y. However, once the variational approx-
imation is made the inducing points cease to be redundant
and, consequently, p(Z) ceases to be redundant as well.

Note that p(Z) does not specify a distribution over continu-
ous values; rather it is a discrete distribution over subsets
drawn fromZ . The prior will in traditional Bayesian fashion
encode our expectations about any finite set of points not
belonging to the observed data, allowing for a natural way
to encourage a discriminatory selection of inducing points.

To accommodate this hierarchical expansion we also update
our proposal distribution, Q, to include a variational point
process, q(Z):

Q = q(f ,Z) = p(f 6=u | X,u,Z)q(u | Z)q(Z).

Here, q(u | Z) is just the marginal distribution conditioned
on a set of inputs sampled from Z . Under the collapsed
bound this distribution is, as always, available in closed
form. In the uncollapsed case, where N (u? | m?,S?) is
the variational distribution pertaining to all points in Z
and (m?,S?) are variational parameters, we appeal to the
marginalisation properties of the normal distribution for
obtaining q(u | Z). That is, letting IZ be the index set
associated with a particular Z ∈ Z , we have q(u | Z) =
N
(
u |m?

IZ ,S
?
IZ
)
, with mean and covariance being the

subvector and submatrix indexed by IZ.

Including the prior and variational distribution over Z yields
the updated ELBO:

log p(y | X) ≥ EQ
[
log

p(y | f 6=u)p(u | Z)p(Z)

q(u | Z)q(Z)

]
= Eq(Z) [L(Z)]− KL [q(Z) ‖ p(Z)] (2)

, L̃,

where L(Z) is the original ELBO from (1) evaluated for a
given subset Z ∈ Z . This new objective encodes the trade-
off between capacity and complexity since the first term
increases and the second term decreases in the number of
inducing points drawn from q(Z).

3.1 OPTIMISING THE UPDATED ELBO

The first term in (2) is a discrete sum over a large (po-
tentially infinite) domain of subsets and is therefore not
straightforward to optimise. One strategy is to apply the
reparameterisation trick (Maddison et al. [2017]) which al-
lows for gradients to be propagated through samples from
a continuous relaxation of the discrete distribution. For the
current work we did derive an approach that utilises this
method; however, as it restricts the form of q(Z) we defer it
to Appendix B.

Instead we rely on the more general framework of score
function estimation (Williams [1992], Fu [2006]), which en-
ables us to obtain unbiased, noisy gradients through Monte

Carlo sampling. Letting λ be the variational parameters of
qλ(Z) and noting that∇λqλ(Z) = qλ(Z)∇λ log qλ(Z), we
have:

∇λE [L(Z)] =
∑
Z∈Z

L(Z)qλ(Z)∇λ log qλ(Z)

= Eqλ(Z)[L(Z)∇λ log qλ(Z)],

which can be approximated by

∇λE [L(Z)] ≈ 1

S

S∑
s=1

L(Z̃s)∇λ log qλ(Z̃(s)), (3)

Z̃(s) ∼ qλ(Z).

In the basic form this method may suffer from high vari-
ance in the gradients, but various strategies have been de-
veloped to alleviate this problem (Glasserman [2013]), many
of which include subtracting a baseline from L(Z̃(s)). We
found that using a decaying average of the samples from
L(Z̃(s)) as baseline proved sufficient for obtaining stable
optimisation. Note that since L(Z) is computed as in (1),
this method can be straightforwardly implemented in any
existing GP framework with automatic differentiation. The
usual parameters ofL(Z) can furthermore be included in the
gradient approximation of (3) allowing for jointly learning
the SVGP and its supporting inducing set.

Score function estimation increases the time complexity
with a factor of S compared to standard SVGP optimisation.
However, when smaller sets of inducing points are sampled
from qλ(Z), the evaluation of L(Z̃) becomes cheaper so the
effective complexity depends on the degree to which the
prior, p(Z), promotes sparsity.

In the following section we present point processes that
make the KL divergence analytically tractable. This cru-
cially implies that in order to maximise (2) we only need to
be able to sample from qλ(Z) and evaluate the gradients of
the associated log probability mass.

3.2 SPECIFYING THE POINT PROCESSES

The main motivation for this work is to allow the model
to infer which inducing points to include based on their
informativeness w.r.t. the observed data. We therefore find it
natural to encourage fewer points by having the prior assign
probability according to the squared cardinality of Z:

pα(Z) = C · e−α|Z|
2

.

Here we have introduced α as a (fixed) hyper-parameter that
indicates the strength of the prior while C is a normalising
constant. We use the squared cardinality because, for the
models of our focus, the time complexity is O(M2) when
making new predictions. However, this is ultimately a mod-
elling choice. Note that because we never sample from the



 

Figure 2: Interaction between observation noise, σ, and the
informativeness of inducing points. As the noise increases,
more of the true function is lost in the noise floor, and
the exact posterior over functions (top row) becomes more
uncertain. As a result, fewer inducing points are required to
provide an accurate approximation of the posterior (bottom
row).

prior when evaluating the objective in (2), we only have
to define the probability mass function which affords us a
lot of freedom in designing p(Z). Another idea that was
recently explored in Rossi et al. [2021] is to use the prior
to encourage dispersion amongst the inducing inputs. This
could potentially be combined with our approach in future
work.

We let qλ(Z) be a discrete Poisson point process (PPP) that
is constrained to a pre-defined set of candidate points, Z?

(Streit [2010]). This process associates each point in Z?

with an independent probability of inclusion:

qλ(Z) =
∏
zk∈Z

λk
∏
zk /∈Z

(1− λk),

with λ = {λk}Kk=1 and K being the total number of candid-
ate points, as illustrated in Figure 1b. Under these definitions
of pα(Z) and qλ(Z), the KL divergence becomes closed-
form computable. To see this, first note that |Z| under qλ(Z)
follows a Poisson binomial distribution, and so

E , E[|Z|] =

K∑
k=1

λk, V , Var[|Z|] =

K∑
k=1

λk(1− λk).

Decomposing into entropy and cross-entropy terms, we
have:

KL [qλ(Z) ‖ pα(Z)] = CE(λ, α)−H(λ), (4)

H(λ) = −
K∑
k=1

(λk log λk + (1− λk) log λk) ,

CE(λ, α) = − logC + αEqλ(Z)[|Z|2]

= − logC + α(V + E2).

The normalisation constant isC = 1/
∑K
k=1

(
K
k

)
e−α·k

2

but
can be ignored as it contains no free parameters.

The new hyperparameter, α, is user-defined and reflects the
sparsity level that we expect to be sufficient for obtaining a
suitable approximation. In contrast to specifying the exact
number of points as in standard methods, this means that the
model can identify an informative subset out of the entire set
of candidates, and additionally adapt the number of points
according to the amount and characteristics of the observed
data.

Remark: An interesting generalisation of our framework is
to let qλ(Z) be a point process that is i) continuous, i.e. not
restricted to a finite set of candidate points, and/or ii) capable
of expressing correlation between individual points. Both of
these qualities are afforded by determinantal point processes
(DPP) (Kulesza and Taskar [2012]). However, this would
render the entropy term in (4) intractable and require either
that we drop it, thus loosening the bound of L̃, or absorb it
into the stochastic approximation of (3). To maintain focus
on the paradigm of deriving posteriors over inducing point
selection, we restrict this work to the simpler yet effective
and robust PPP setting and leave the exploration of more
flexible point processes as future work.

4 RELATED WORK
Before the introduction of inducing points, sparse GP ap-
proximations were obtained by conditioning on only a sub-
set of the observed data (Williams and Seeger [2001], Csató
and Opper [2002], Lawrence et al. [2002]). Here we find
commonalities with our work, since the task is to identify
the most informative subset of (observed) datapoints. Gener-
ally, these methods employ discrete optimisation and often
rely on greedy heuristics. With the introduction of inducing
points the focus naturally moved to M as the new bottle-
neck. Various strategies have been proposed for reducing
complexity, e.g. decoupling the variational mean and cov-
ariance to enable distinct sets of inducing points (Salimbeni
et al. [2018], Havasi et al. [2018]) or using the spectral
representation of kernels to express the posterior through
Fourier features (Lázaro-Gredilla et al. [2010], Hensman
et al. [2018]). In work parallel with ours, Rossi et al. [2021]
also expand the hierarchical model to include the inducing
inputs and even consider the DPP as a prior. Their motiva-
tion differs fundamentally from ours, however, in that they
keep the number of points fixed and use the prior to improve
model fitting and subsequent inference. Identifying a good
selection of inducing points has also been examined in theor-
etical work by Burt et al. [2019], who provide an asymptotic
bound on the KL divergence as a function of the number
of data- and inducing points, input distribution, and kernel
smoothness. The latter results lend credence to common
heuristics regarding how many number of inducing points to
utilise for a given modelling task, and we will use them as a
point of reference in our experiment section. However, they



 

Figure 3: KL divergence between the approximate and exact posterior as a function of number of inducing points under
different data characteristics (lower is better). Solid lines are the baseline SVGP with a fixed number of inducing points. As
a given intensity increases, fewer points are required to obtain the same KL divergence. The vertical, dashed lines show
the expected number of inducing points inferred by the point process under different characteristics, and the circles are 10
samples of subsets drawn from each. Our method adaptively reduces the number of points as informativeness decreases, and
in certain cases it slightly improves upon the baseline.

Figure 4: ELBO as a function of number of inducing points, when adding Gaussian noise of varying intensity (higher is
better). The setup is similar to that of Figure 3.

are less helpful when the influential factors are unknown
prior to observing the data.

The above body of work offer various strategies for exploit-
ing available resources when doing sparse approximations.
However, a common thread is that the number of inducing
points can generally be categorised as a design choice. Our
contribution lies in associating this choice with uncertainty
and thus reframing the problem of balancing capacity and
complexity as being part of the Bayesian inference.

5 EXPERIMENTS

In this section we provide empirical evidence for the effic-
acy of our approach in various contexts of SVGP modelling.
We first show for synthetic and real-world datasets that as
the informativeness of inducing points decreases due to data
characteristics, the model prunes away more points. Next,
we turn to the practical problem of dynamically allocating
inducing points amongst the layers of a deep Gaussian pro-
cess. Lastly, we demonstrate how the method can be applied
in latent variable modelling (GP-LVM) to jointly learn a
low-dimensional representation along with a supporting set
of inducing points.

5.1 INFORMATIVENESS OF INDUCING POINTS

Previous work has identified various characteristics that
determine how effective the inducing points are in commu-
nicating information about the observed data. In the works
of Burt et al. [2019] and Hensman and Lawrence [2014] it
is shown that fewer points are required to achieve the same
quality of approximation when i. the observation noise in-
creases, ii. the kernel becomes more smooth, or iii. the input
data is more clustered. This effect is shown for the case
of observation noise in Figure 2 and illustrates how data
characteristics, that are often not known a priori, influence
the capacity/complexity trade-off.

In this experiment we vary the intensity of these three char-
acteristics – observation noise, smoothness, and input clus-
tering – and demonstrate that our method does indeed ad-
apt to those conditions by selecting fewer inducing points
when their informativeness decreases. As a baseline for our
method we fitted SVGP’s with increasing number of indu-
cing points to noisy observations, for which we had adjusted
the intensity of each characteristic separately. See Figure 3
where the solid lines are the posterior KL divergence as a
function of number of inducing points for 5 different intens-
ity levels. For higher intensities, the divergence reaches a



 

Figure 5: Illustration of different function fidelities in a 3 layer DGP. The three left plots show the learnt SVGP’s for each
layer with the inducing being the black circles. The target observations, drawn from a square wave, are plotted to the right
on top of the DGP’s posterior density.

Figure 6: Dynamically allocating inducing points in a 2 layer DGP. (a) Each dot corresponds to the accuracy and performance
of a specific configuration of inducing points. Grey dots are the outcomes of a comprehensive and tedious grid-search, with
the 10 large dots representing those configurations that have equal number of inducing points both layers. Red dots are the
configurations found by our point process for four different settings of the prior weight, α. Note that the latter all fall on the
frontier of optimal trade-offs between accuracy and performance. (b) The distribution of points across layers over 5 folds.
We see a clear preference towards placing more inducing points in the last layer.

plateau more quickly, showing a saturation of the informa-
tion communicated by the inducing points.

We then applied our method for each intensity level, using
an initial set of 80 inducing points. The vertical lines in
Figure 3 show the expected number of points after fitting the
point process for a given intensity; for each we have drawn
10 samples from the point process. The results demonstrate
that the number of inferred points decrease monotonically as
the intensities increase, showing that the point process does
indeed adapt to the characteristics of the data; in fact, for
some intensities, the adaptive approach achieves a slightly
higher reduction of KL divergence.

The same experiment was repeated for 4 real-world datasets
by adding varying degrees of Gaussian noise to the training
outputs. Results are displayed in Figure 3 where we use the
ELBO after 5000 epochs as metric. Again we see that as
more noise is added, fewer points are deemed necessary by
the points process for emulating the exact GP. The baseline
for each noise level shows the trade-off between capacity
and complexity that would normally have to be identified

through expensive search over M , but that our method finds
adaptively as part of the inference. We give a detailed de-
scription of the experimental setups in Appendix C.

5.2 DEEP GAUSSIAN PROCESS
When specifying a deep Gaussian process (DGP) in the
sparse framework, each layer is associated with its own set
of inducing points. Without evidence to the contrary, the
most natural choice might be to use the same number of
points for each layer. However, we put forth the conjecture
that the layers could potentially model varying levels of fi-
delity and thus require different numbers of inducing points
in order to reach an optimal trade-off between accuracy and
complexity. As a motivating example, consider Figure 5
where we apply a three-layer DGP to approximate a square-
wave. Such discontinuous data are notoriously difficult for
shallow GP’s using a smooth, stationary kernel. The DGP
finds a good fit by making a smooth approximation in the
first layer and accentuating the jumps by step functions in
the subsequent layers. Here we have applied our method to



 

Figure 7: Demonstration of our method applied to a GP-LVM on a single-cell qPCR dataset where observations are coloured
according to cell stage. The inducing points are fixed on a 15 × 15 grid with filling indicating the marginal probability
of inclusion (filled means probability of one; open means probability of zero). As the latent inputs change throughout
optimisation, different inducing points are activated.

jointly learn a set of inducing points across all layers. From
the figure it can be seen that the approximated functions be-
come less complex as we move through the layers, which in
turn causes fewer points to be retained by the point process.

We demonstrate that the same approach can be applied for a
benchmark dataset, UCI Kin8nm (Dua and Graff [2017]),
to incorporate the search for an optimum between capacity
and complexity directly in the training of a two-layer DGP.
The model follows the doubly-stochastic formulation from
Salimbeni and Deisenroth [2017]. In accordance with the
findings in Duvenaud et al. [2014], the observed input was
added to the second layer which was empirically verified
to increase stability. As baseline we first carried out a grid-
search over [10, 20, . . . , 90, 100] inducing points in each
layer, yielding 100 different configurations. For each config-
uration we recorded the test log likelihood and prediction
time over 5 folds. These results are plotted as grey dots in
Figure 6a, and show a significant variance in prediction time
for models with similar accuracy. In our adaptive strategy
we first pre-fitted the model with 150 inducing points in
each layer without the point processes, estimated a posterior
set of inducing points, and then re-fitted the pruned model.
See Appendix C for a detailed description. The results are
plotted in Figure 6a for four different settings of the prior,
each yielding different near-optimal trade-offs between ac-
curacy and complexity. Figure 6b shows the hierarchical
distribution of inducing points, illustrating a clear prefer-
ence towards allocating points in the second layer. Finding
such optima in the standard setting would effectively be a
combinatorial problem where on would have to re-fit the
model for each new configuration.

5.3 LATENT VARIABLE MODELLING

Lastly, we apply our method in a Bayesian Gaussian Process
latent variable model (GP-LVM) where the latent inputs are
learnt along with the function. We use two latent dimensions
to infer a representation of 48 single cell gene expressions

for 437 samples.3 The aim is to avoid the need for the
extensive cross-validation required to identify a reasonable
set of inducing points as the case in for example Ahmed et al.
[2018]. The latent variables were initialised with PCA and
the locations where fixed to a 15 × 15 grid for illustrative
purposes. All parameters (except for inducing inputs) were
trained jointly along with the point process for 300 epochs.
Figure 7 illustrates how nearby inducing points are activated
as the latent coordinates move around in the input space.
In effect our method allows for the model to adapt to the
change in function complexity throughout model training
and negates the need for finding an appropriate number of
inducing points through cross-validation.

6 CONCLUSION
We have presented a Bayesian approach for choosing the
number of inducing points in sparse Gaussian processes,
thus introducing a probabilistic paradigm for balancing capa-
city and complexity. By extending the standard probabilistic
model with a point process prior we encourage discrimin-
ative selection of inducing points, effectively allowing the
model to choose only those points that it finds most informat-
ive. We apply variational inference to learn an approximate
posterior jointly along with the usual model parameters, and
present choices of prior and variational point processes that
make the resulting evidence lower bound straightforward
to optimise. The efficacy of this approach is verified in a
controlled experiment on synthetic and real-world data, and
its practical applicability is demonstrated for deep Gaussian
process regression and latent variable modelling.
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