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Abstract

Subseasonal climate forecasting is the task of pre-
dicting climate variables, such as temperature and
precipitation, in a two-week to two-month time
horizon. The primary predictors for such prediction
problem are spatio-temporal satellite and ground
measurements of a variety of climate variables in
the atmosphere, ocean, and land, which however
have rather limited predictive signal at the subsea-
sonal time horizon. We propose a carefully con-
structed spatial hierarchical Bayesian regression
model that makes use of the inherent spatial struc-
ture of the subseasonal climate prediction task. We
use our Bayesian model to then derive decision-
theoretically optimal point estimates with respect
to various performance measures of interest to cli-
mate science. As we show, our approach handily
improves on various off-the-shelf ML baselines.
Since our method is based on a Bayesian frame-
work, we are also able to quantify the uncertainty
in our predictions, which is particularly crucial for
difficult tasks such as the subseasonal prediction,
where we expect any model to have considerable
uncertainty at different test locations under differ-
ent scenarios.

1 INTRODUCTION

Climate forecasts, which involve predictions of key climate
variables such as temperature and precipitation, have im-
mense utility to individuals, businesses, and government
agencies [National Research Council, 2010]. These fore-
casts can be distinguished in terms of their prediction time
horizons. Weather forecasting consists of predicting the
day-to-day weather. These are largely based on numerical
weather prediction (NWP) model typically based on dynam-
ical models [Lorenc, 1986, Lorenz, 1996, Simmons and

Hollingsworth, 2002] that can effectively forecast to about
10 days in advance [Bauer et al., 2015]. Since weather is pri-
marily subject to atmospheric dynamics, and the atmosphere
does not have substantial long term memory, this 10-day
horizon is often regarded as the limit of predictability for
numerical weather prediction models.

On the other hand, climate forecasts focus on predicting
variables over several months (seasonal) to several decades
(multi-decadal). Aggregated on such time frames, many of
the day-to-day aberrations of the atmosphere are smoothed
out, and consequently the coupling of the atmosphere with
other components of the climate system, notably ocean,
land, and sea ice, become more important. For example, at
seasonal time scales, ocean variables often provide valuable
predictive information because of the longer term memory
of oceans. More generally, both simplified climate models
as well as statistical models [Barnston et al., 2012] can be
used quite effectively to produce seasonal forecasts.

Between weather and seasonal climate forecasts lies the
regime of subseasonal climate forecasting (SSF). Here the
goal is to predict at least two weeks to the future [White
et al., 2017, DelSole and Banerjee, 2017, Totz et al., 2017,
Raff et al., 2017, Cohen et al., 2019, Hwang et al., 2019,
He et al., 2020]. In general, there are three main sources of
predictability for climate forecasts: atmosphere, ocean, and
the land, and the coupling between these climate variables
play on important role; see Figure 1 in He et al. [2020]. What
makes subseasonal prediction a far more difficult task than
seasonal climate forecasting is that the shorter time horizon
entails that the far more chaotic atmospheric noise is still
an important factor, unlike for climate scale predictions.
But on the other hand, it is also more difficult than weather
forecasting because one needs to account for more than
atmospheric climate variables given the longer time horizon.

Notwithstanding these structural bottlenecks to predictabil-
ity, the subseasonal forecasting time frame is of significant
practical importance, as has been noted by two National
Academy of Science reports [National Research Council,
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 2010, Ocean Studies Board and National Academies of
Sciences, Engineering, and Medicine, 2016]. For instance,
in agriculture, irrigation, pesticide, and fertilizer schedules
must be implemented weeks in advance of an intended har-
vest [White et al., 2017]. We thus have the state of affairs
that subseasonal predictions are crucially important for in-
formed decision-making, and yet, subseasonal predictions
are quite poor. There has thus been some burgeoning inter-
est (as also recommended in the NAS reports cited above)
in statistical machine learning based approaches for sub-
seasonal forecasting, beyond just dynamical systems based
climate models. One argument is that at longer lead times,
the nonlinear atmospheric processes are too chaotic to be of
use [Van den Dool, 2007]. Additionally, Cohen et al. [2019]
argues that the proliferation of successful new statistical
techniques could also be of use in climate forecasting. In-
deed, in the recent subseasonal forecasting Rodeo, a climate
prediction contest for the western US sponsored by NOAA
and the US Bureau of Reclamation, simple yet thought-
ful statistical models consistently outperformed NOAA’s
dynamical systems forecasts [Hwang et al., 2019].

To motivate our proposed approach, it will be instructive
to discuss key facets of the subseasonal forecasting prob-
lem. Firstly, the data is noisy, high-dimensional, and highly
spatially correlated, both in the covariate and response cli-
mate variables. The noise is due to chaotic nature of the
atmosphere, making predictions weeks in advance difficult.
The high dimensionality of the data is due to both the high
spatial resolution of the climate variable measurements, as
well as the size of the relevant regions. For instance, a large
portion of the Pacific Ocean might include over 30,000 grid
points for measurements of sea surface temperature, and
even subsampling a smaller portion of the Pacific with a
coarser grid can still lead to over 1,000 grid points. While
a popular approach for such high-dimensional data is to
impose sparsity, this might not be the best fit for the sub-
seasonal prediction setting, since it is not clear if the target
response could be adequately modeled using a few selected
covariates. In contrast, the main structure in the data is its
spatial smoothness, i.e., that nearby locations often have
similar climate measurements. Thus, to effectively mitigate
noise in the subseasonal regime, it might be preferable to
carefully leverage spatial smoothness.

In this paper, we propose a simple and interpretable statisti-
cal machine learning approach, for subseasonal forecasting
of temperature averaged over days 15 through 28 to the
future on a 2◦ × 2◦ grid over the western US, where we
draw from approaches spatial statistics and econometrics
[Gelfand et al., 2010, Cressie and Wikle, 2011, Banerjee
et al., 2014], together with structural insights specific to
the climate domain. Specifically, we use a spatial Bayesian
hierarchical linear model to impose spatial structure on both
the noise and the fitted regression coefficients. A key dif-
ference between our spatial Bayesian hierarchical linear

model and other recent efforts in subseasonal climate fore-
casting Hwang et al. [2019], He et al. [2020] is that our
modelling approach is Bayesian, and provides probabilistic
estimates as compared to point estimates. There are two
key advantages of our Bayesian approach. First, it allows
us to obtain decision-theoretically optimal point predictions
for common loss functions used in climate science, without
having to fit a separate model for each loss function. Second,
it allows us to quantify the uncertainty of our predictions,
which is crucial in climate prediction in general.

In climate prediction, one usually seeks to improve on the
forecast of the constant baseline known as climatology: the
30-year mean of a variable at a given location and day-of-
the-year. We use the 30-year period from 1981 through 2010
to calculate the climatology and to fit our model, and we use
2011 through 2018 for evaluation. Two prediction metrics
popular in climate science are mean-squared-error (MSE)
skill and cosine similarity. As we discuss in more detail in
our experiments, aggregating over all points, our models
achieve skills of approximately 0.055 and 0.053 on the train
and test sets. The constant baseline of climatology has a
skill of zero, so the above is remarkably high for the sub-
seasonal forecasting setting, and is also indicative of good
generalization. We provide a detailed breakdown of our re-
sults from spatial and temporal standpoints, from which we
observe that performance has considerable heterogeneity
over both space (locations) and time (dates). Finally, our
Bayesian spatial model allows us to examine and quantify
the uncertainty of our predictions.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the data we use for our forecasting
approach. In Section 3, we introduce our Bayesian spatial
model, and in Section 4, we discuss how to derive decision-
theoretically point predictions for varied loss functions used
in climate science. In Section 5, we discuss our main re-
sults, and examine model fit, and compare to off-the-shelf
modern ML baselines. And in Section 6, we discuss future
directions for the subseasonal climate forecasting problem.
Finally, our Appendices contain a number of additional de-
tails including further related work, specification of our data
processing procedures, choice of hyperparameters of both
our and baseline procedures, and more extensive compar-
isons with modern machine learning models.

2 DATA

We briefly review our data sources, and our process of stan-
dardization.

Our target climate variable is tmp2m, the air temperature
measured at two meters above the ground in Celsius. We
use data from the Climate Prediction Center (CPC) [Fan and
Van den Dool, 2008], which is based on daily observations
made since 1979 from the Global Historical Climatology



 Network version 2 and the Climate Anomaly Monitoring
System. The raw data is with respect to a 0.5◦×0.5◦ latitude-
longitude grid, which for computational considerations, we
subsample to a 2◦ × 2◦ grid. This subsampling process
retains most of the spatial smoothness in the original data
which is crucial to our method.

As input climate variables, we use sea surface tempera-
ture, sea level pressure, geopotential height, and relative
humidity. The first climate variable, sea surface temperature
(sst) is provided in degrees Celsius; with measurements
from September 1981. Our second climate variable, sea
level pressure (slp), is provided in pascals; with measure-
ments from January 1981. Our last two climate variables are
atmospheric: geopotential height at the 500 millibar level
(hgt500) measured in meters; and relative humidity at the
sigma level 995 measured in percentage (rhum.sig995).
For all these variables, we use a 2◦ × 2◦ latitude-longitude
grid over oceans, subsampled from a 0.25◦ × 0.25◦ grid
of daily values [Reynolds et al., 2007]. Both the target and
input climate variables are thus spatio-temporal in nature.
We next discuss our standardization process.

First, due to our focus on the 2-4 week out subseasonal
forecasting problem, we compute running averages of the
data across a time period of 14 days for each location.

Second, as is standard in climate science, instead of pre-
dicting the raw temperature, we focus on and compute tem-
perature anomalies, i.e., the deviation from the so-called
climatology, which is the 30-year average temperature in
Celsius for a given location and day of the year or two-week
average ending on a given day of the year. Our reference
climatology consists of the average over the years 1981
through 2010, as it is standard to compute climatology be-
ginning with a year ending in 1.

Third, we standardize the anomalies using a simple z-score
method, i.e., dividing the anomaly by its standard deviation,
which gives rise to a standardized anomaly or a z-score. This
is particularly crucial since climate variables have wildly dif-
ferent units and scaling: slp is measured in pascals with a
range of approximately 9.0 ·104 Pa to 1.1 ·105 Pa, whereas
sst is measured in Celsius with a range of approximately
4◦ C to 32◦ C. Given the predicted z-score from our mod-
els, we can then multiply with the climatology standard
deviation, to then obtain our prediction of the anomaly it-
self (which with the climatology added, would yield the
predicted temperature). We discuss data standardization in
more detail in the Appendix.

3 METHODS

In this section, we introduce our Bayesian spatial model that
is carefully constructed to leverage high level climate scien-
tific domain insights, while drawing from spatial statistics
and econometrics.

3.1 SETUP

We begin by setting up our notation. We let S denote the
number of spatial locations for which we will be predicting.
For each of these locations, we will be making predictions
every 15 days; we let T denote the number of time periods
that we will make predictions. Given the spatio-temporal
climate covariates, we will be constructing predictors de-
rived from PCA. Specifically, we obtain d predictors (which
we might also term as input features) by computing the
principal components of the z-scores of climate variables
— sst, slp, hgt500 and rhum.sig995 — focusing
on sea-based data. This is due to a climate scientific do-
main insight that a key source of predictors with “memory”
sufficient to predict at subseasonal time scales are likely
water-based.

Note that we obtain these PCs in a coupled fashion: we have
4 climate variables at Ssea locations over the sea, for a total
of 4Ssea rows, from which we obtain the d covariates.

We collate these predictors into the design matrix XT×d as

X =

x1,1 . . . x1,d

...
. . .

...
xT,1 . . . xT,d

 .

The target is multi-dimensional (we are predicting scalar
temperature but at S locations). We collate the targets at all
timesteps by the matrix y ∈ RT×S given by

y =

y1,1 . . . y1,S
...

. . .
...

yT,1 . . . yT,S

 .

We denote yt = (yt,1, . . . , yt,S) as the tth row of y, which
is all of the target values across spatial locations for a given
time t.

3.2 SPATIAL MODEL

We next discuss our Bayesian spatial regression model.

Before we specify the Bayesian setup, consider the multiple
linear regression model for predicting the target yt given
the covariates Xt:

yt = βTXt + ϵt, (1)

for all t ∈ {1, . . . , T}, where ϵt ∈ RS is a zero-mean noise
variable, and the multiple regression coefficients are collated
into the matrix β ∈ Rd×S as

β =

β1,1 . . . β1,S

...
. . .

...
βd,1 . . . βd,S

 .



 In other words, β is the matrix of row vectors, each of which
are the collection of the coefficients for a covariate across
spatial locations. Note that this models observations at dif-
ferent times (where each consecutive pair of timestamps are
15 days apart) as being independent.

There are two caveats to simply fitting a vanilla multiple
linear regression:

1. The predictions need not be spatially smooth. As we
discuss below, we ensure this by enforcing spatial
smoothness of regression coefficients via a carefully
constructed prior

2. The noise vector term ϵt need not be independent
across all spatial locations. We allow for spatial corre-
lation of the noise term.

Before specifying these spatial smoothness and dependence
modifications, we first set up some notation. We define a spa-
tial graph over the target region, with vertices of this graph
as latitude-longitude pairs, and edges between vertices with
locations adjacent to each other in the latitude-longitude
grid under consideration. We define the notion of adjacency
as follows.

Definition 1 (Adjacency). Two locations u = (ulat, ulon)
and v = (vlat, vlon) are spatially adjacent with respect to a
set of locations S if

dist(u, v) := ∥u− v∥2 = res(S),

where res(S) = min
x,y∈S;x ̸=y

dist(x, y) is the resolution of S.

Example: Consider any non-boundary location u in the
2◦ × 2◦ latitude-longitude grid of points for tmp2m. Then,
its adjacent points are simply the grid points 2◦ to the north,
south, east, and west of u.

The adjacency matrix A ∈ {0, 1}S×S of this spatial graph is
a matrix with Au,v = 1 if u and v are distinct and adjacent
and zero otherwise. Let D in RS×S denote the diagonal
degree matrix where Ds,s is the degree of s in S . Then, the
Laplacian matrix L ∈ RS×S is given by L = D −A.

Given this notation, we define the following parameterized
family of spatial covariance matrices

Σ(ρ) := (ρL+ (1− ρ)IS)
−1, (2)

parameterized by ρ in (0, 1). Note that we often drop the ρ
dependence on the left hand side when conditioning on ρ.
This shrinkage model can be compared to Tikhonov regular-
ization studied in Belkin et al. [2004].

While this construction might not seem as intuitive at first
sight, its importance will become clearer once we specify
our spatial prior over the regression coefficients, as follows:

βj | β0j , τ
2
j ∼ N (β0j , τ

2
j Σ), (3)

for each j ∈ {1, . . . , d}, where βj is the jth row of β
defined earlier. Note that the spatial dependence in the re-
gression coefficients arises due to our spatial covariance Σ,
which is scaled by τ2j . Furthermore, if we considered the
regression parameter β to be a vector of length d · S, then
the model can be concisely expressed as

vec(β) | vec(β0), τ
2 ∼ N (vec(β0),Ω

−1
0 ) (4)

where the prior mean is

vec(β0) = (β0,1, . . . , β0,1︸ ︷︷ ︸
S times

, β0,2, . . . , β0,2︸ ︷︷ ︸
S times

, . . . , β0,d)

and the prior covariance is the block diagonal matrix

Ω0 =


1
τ2
1
Σ−1

. . .
1
τ2
d
Σ−1

 = diag(1/τ2)⊗ Σ−1.

Here τ2 is the length d vector of τ2j s specified in (3) and
A⊗B denotes the Kronecker product between A and B.

We now have the notation necessary to detail the motivation
behind our spatial covariance matrix construction in (2).

Let vec(β)−j,−s denote the vector in Rd·S−1 obtained by
removing βj,s from vec(β).

Proposition 1. Suppose the regression coefficients have
the prior as specified in (3). Then, the conditional prior
distribution of βj,s is

βj,s | vec(β)−j,−s, vec(β0), τ
2

∼ N

(
ρ
∑

s′ ̸=s As,s′βj,s′ + (1− ρ)β0,j

ρ
∑

s′ ̸=s As,s′ + (1− ρ)
,

τ2j
ρ
∑

s′ ̸=s As,s′ + (1− ρ)

)
. (5)

Proof. The equivalence between (4) and (5) follows from
an application of Brook’s lemma [Banerjee et al., 2014,
Brook, 1964].

The proposition thus motivates our spatial covariance ma-
trix construction in (2). When using this covariance matrix
within the prior in (3) on the regression coefficients, the
prior could alternatively be considered as a spatial autore-
gressive nature of the model, respecting the adjacency graph
as defined earlier.

Lastly, we define the prior over the noise terms as follows:

ϵt | ρ, τ2ϵ ∼ N (0, τ2ϵ Σ)

to be spatially-correlated noise. We further assign a prior
for τ2ϵ as

τ2ϵ | aϵ, bϵ ∼ Inverse-Gamma(aϵ, bϵ)



 We choose the hyperparameters aϵ, bϵ in an empirical Bayes
manner, as discussed in the Appendix.

The priors over the regression coefficients and noise terms
are in turn specified by various hyperparameters. We impose
additional priors over these to build a hierarchical Bayesian
model. For the means β0j , we set

β0j | λ ∼ N
(
0,

1

λST
I

)
. (6)

Note that λ plays the role of a regularization hyperparameter;
higher λ indicates stronger regularization and vice versa. We
then place a prior over λ as

λ | aλ, bλ ∼ Gamma(aλ, bλ).

where (aλ, bλ) are chosen to be (10, 10). Next, for the prior
variances, we set

τ2j ∼ Inverse-Gamma(aj , bj), (7)

and the hyperparameters (aj , bj) are chosen in an empirical
Bayes manner. For further details, see the Appendix. Next,
we need to place a prior on ρ, which controls the spatial
covariance. We select the prior

ρ ∼ Beta(aρ, bρ), (8)

where (aρ, bρ) are chosen to be (8, 2).

Our model is implemented using NumPyro [Phan et al.,
2019]. We use the No-U-Turn-Sampler (NUTS) [Hoffman
and Gelman, 2014] for inference based on Hamiltonian
Monte Carlo (HMC). In particular, NUTS provides an ef-
ficient way of running HMC, and enables faster conver-
gence to the target posterior distributions, and we verify
convergence using the Gelman-Rubin statistic which is also
computed in NumPyro.

Computationally, one difficulty is that the number of pa-
rameters dS is quite large. In our computations, d = 20
and S = 2004 leading to dS = 40080. Thus, a smaller
S leads to much faster computations, which motivated our
subsampling of the target climate variable tmp2m to over
a 2◦ × 2◦ grid. With the original resolution, we had 2, 004
spatial grid points, whereas with the subsampling this re-
duced to 132, while nonetheless retaining most of the spatial
smoothness discussed earlier. Despite this, NUTS struggles
to scale, and this is due to the number of unobserved vari-
ables in the model. Therefore, one simplification we make
before running our model is to collapse the prior on the
mean of β. Due to conjugacy of this prior (Normal-Normal),
we marginalize out effect of β0, and consequently leads to
our model running faster.

4 FROM BAYESIAN MODELS TO
DECISION-THEORETIC PREDICTION

Our Bayesian spatial regression models provide the distri-
bution of the target climate variable (conditioned on the

covariates) at any location and time. Here, we discuss how
to obtain point estimates given these distributions and the
specific decision-theoretic loss functions used in climate
science: squared-error skill and cosine similarity. This is a
key advantage of Bayesian machinery: we can easily derive
skillful point predictions given any new loss function of
interest, without any laborious retraining of models.

4.1 LOSS FUNCTIONS / PREDICTION METRICS

Before we present the loss functions / prediction metrics,
we first set up some notation. We let yclims,t denote the clima-
tology of temperature i.e., the 30 year average for tmp2m
at location s and time t as described in Section 2. Let ys,t
denote the true measurement made at location s and time t,
and ŷs,t denote the prediction made at location s and time t.
Consequently, we define the following relative values

as,t = ys,t − yclims,t

âs,t = ŷs,t − yclims,t .

The key prediction metric used in climate science is skill
[Van den Dool, 2007]. This metric specifically measures the
relative performance of our prediction in comparison to the
climatology. This is given by

skill(S ′, T ′) = 1−
∑

s∈S′
∑

t∈T ′(ys,t − ŷs,t)
2∑

s∈S′
∑

t∈T ′(ys,t − yclims )2

= 1−
∑

s∈S′
∑

t∈T ′(as,t − âs,t)
2∑

s∈S′
∑

t∈T ′(as,t)2
.

Here, the two arguments S ′, T ′ are sets of spatial locations,
and sets of specific times respectively. In-sample, this might
seem the same as the usual statistical notion of R2; however,
here, the sample mean that would appear in the denominator
for R2 is replaced by the climatology instead.

Another metric used in climate science is cosine similar-
ity; for instance, this was used in the Subseasonal Forecast
Rodeo and related work [Raff et al., 2017, Hwang et al.,
2019]. In particular, the contest considers spatial similarity

cos-sim(S ′, T ′) =
⟨aS′,T ′ , âS′,T ′⟩

∥aS′,T ′∥F ∥âS′,T ′∥F
.

Note that for the Rodeo contest, cosine similarity is com-
puted spatially, i.e., T ′ = {t} consists of a single date, and
these are averaged or otherwise compared over time. Al-
ternatively, we consider cosine similarity across space and
time, i.e., cos-sim(S, T ). However, the difference between
averaged spatial cosine similarity and total cosine similarity
i.e., with T ′ = {1, . . . , T}, as we use, tends to be small.
We briefly note here that cosine similarity is unusual or less
than ideal from a statistical perspective, since it ignores the
scale of predictions and only considers the cosine of the
angle between the vector of predictions from various grid
points; it is nonetheless popular in climate science.



 Method Train skill Test skill Train cos-sim Test cos-sim
Spatial-regression 5.48 · 10−2 5.32 · 10−2 2.34 · 10−1 2.31 · 10−1

XGBoost 1.52 · 10−1 4.39 · 10−2 4.23 · 10−1 2.13 · 10−1

Multi-task Lasso 5.53 · 10−2 4.98 · 10−2 2.36 · 10−1 2.23 · 10−1

Neural Network 5.54 · 10−2 4.95 · 10−2 2.35 · 10−1 2.24 · 10−1

Table 1: Overall metrics on the train and test sets; higher is better. Note that the spatial regression approach performs the
best with respect to both metrics on the test set.

4.2 BAYES OPTIMAL POINT PREDICTIONS

Given the loss functions above, we next discuss computing
decision theoretically optimal point estimates with respect
to our Bayesian regression model.

Let us focus on predictions at particular time t. For any
of our loss functions L(S ′, {t}), let us no longer suppress
the dependence on the true anomalies a and the predicted
anomalies â, so that we use L(S ′, {t})[a, â] in the develop-
ment below.

Given our Bayesian model for the conditional distribution
of the anomalies, P (at|xt), we can compute the conditional
expected loss

LP (ât) = Ea∼P (·|xt)L(S
′, {t})[a, â].

The decision-theoretically optimal point prediction for the
Bayesian model P (at|xt) with respect to the loss function
L(·, ·) is then given by ât ∈ argminât

LP (ât).

We next derive these decision theoretically optimal point
predictions for the two loss functions we had discussed
earlier. In the sequel, we focus on a specific time t, and
condition on covariates xt ∈ Rd. We begin by noting that

skill(S ′, {t}) ∝ −
∑
s∈S′

(as,t − âs,t)
2.

Therefore, maximizing the skill is equivalent to minimizing
the squared error loss. It then follows that the decision-
theoretically optimal point prediction is given as:

ât = argmin
c

Ea′∼P (a|xt) ∥a
′ − c∥2 = Ea′∼P (a|xt)[a

′].

Drawing N samples a′1, . . . , a
′
N from the posterior distribu-

tion, we can compute the usual Monte-Carlo approximation

ât =
1

N

N∑
i=1

a′i. (9)

Analogously, we can also derive decision-theoretic optimal
point predictions that maximize cosine similarity as

ât = argmax
c

Ea′∼P (a|xt)
⟨a′, c⟩
∥a′∥∥c∥

= argmax
c:∥c∥≤1

〈
Ea′∼P (a|xt)

[
a′

∥a′∥

]
, c

〉
= Ea′∼P (a|xt)

[
a′

∥a′∥

]

As done earlier, drawing N samples a′1, . . . , a
′
N from the

posterior distribution, we obtain the Monte-Carlo estimate

ât =
1

N

N∑
i=1

a′i
∥a′i∥

.

Due to our focus on skill as the primary metric, we use (9)
as our point predictions made by our model.

5 RESULTS

We start by providing results on the accuracy of our decision-
theoretically optimal point prediction with respect to the
squared error loss given our Bayesian spatial model, com-
paring to standard baselines. We also quantifying the un-
certainty of our predictions via prediction coverage, and
posterior intervals at the 95% confidence level. In all our
experiments, we choose the number of principal component
based covariates d = 20. Additionally, we predict stan-
dardized anomalies, which we rescale back to obtain the
unstandardized predictions, as discussed earlier, and which
we also detail further in the Appendix.

5.1 POINT PREDICTIONS

We first compare the quality of our prediction to various ma-
chine learning (ML) baselines using metrics defined earlier.
For all these ML baselines, we use the same PCA derived
covariates. The methods we include are (a) XGBoost [Chen
and Guestrin, 2016], (b) Multi-task Lasso [Zhang et al.,
2006] and (c) a multi-layer nonlinear neural network [Good-
fellow et al., 2016]. More details regarding the hyperparam-
eters of these baselines are specified in the Appendix.

We provide these point prediction evaluations in Table 1. As
it shows, our Bayesian spatial model has markedly better
performance on the test sets with respect to both skill and
cosine similarity metrics. Interestingly, XGBoost has better
training performance, but worse test performance than other
approaches, which indicates that it does not generalize well.
This difficulty to generalize has been noted by earlier work



 Year Spatial-regression XGBoost Multi-task Lasso Neural Network
2011 1.19 · 10−1 −4.32 · 10−2 1.28 · 10−1 1.27 · 10−1

2012 1.26 · 10−1 1.84 · 10−1 1.15 · 10−1 1.23 · 10−1

2013 −7.60 · 10−2 −1.04 · 10−1 −6.78 · 10−2 −7.90 · 10−2

2014 3.99 · 10−2 2.66 · 10−2 3.71 · 10−2 3.66 · 10−2

2015 −2.26 · 10−2 1.19 · 10−1 −3.42 · 10−2 −3.51 · 10−2

2016 1.52 · 10−1 1.46 · 10−1 1.44 · 10−1 1.51 · 10−1

2017 5.59 · 10−2 7.55 · 10−2 5.05 · 10−2 4.98 · 10−2

2018 5.75 · 10−2 −3.16 · 10−2 5.68 · 10−2 5.36 · 10−2

Table 2: Variation of skill annually on the test set. Note the considerable heterogeneity across years.
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Figure 2: The posterior means of regression coefficients by spatial location for 4 randomly chosen covariates.

as a key facet of subseasonal forecasting problem, indicat-
ing that the Bayesian machinery provides crucial adaptive
regularization that allows for resistance to overfitting.

To provide further insights into these results, we break down
the test performance by year in Table 2. The most important
takeaway is that there is considerable heterogeneity in per-
formance by year. We see that for a majority of the models,
2013 and 2015 appear to be difficult years to predict, since
the skills are the lowest then, whereas XGBoost seems to
perform surprisingly well in 2015, while performing sub-
optimally in the years where other models perform well. The
difficulties in 2013 and 2015 could be due to the extreme
winter and the El Nĩno event that occurred in the respective
years. In the Appendix, we provide the annual variation in
cosine-similarity as well.

In addition to the temporal breakdown of the performance
above, we also provide a spatial breakdown, by plotting the
average skill for any location in Figure 1. The model can
be seen to perform well in the Pacific Northwest and Texas,
while performing relatively poorly in California and the
Arizona-New Mexico border. We show the spatial variation
in cosine similarity for our model, as well as the spatial
variation for the other ML baselines in the Appendix.

5.2 INSPECTING THE REGRESSION
COEFFICIENTS

A crucial advantage of our linear spatial model is its inter-
pretability. In particular, we can gain an understanding of
our fitted model by inspecting the regression coefficients
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Figure 1: Variation of skill by location. Note the variance
across locations, especially those closer to the coast.

for each of the d = 20 covariates. In Figure 2, we plot the
posterior means of regression coefficients at each spatial
location corresponding to 4 randomly chosen covariates; we
provide the rest in the Appendix.

As can be seen in the figure, some interesting spatial pat-
terns emerge. Consistent with our modeling, we observe
smoothness in the regression coefficients. Note that for the
1st covariate, we see that the strongest coefficients are pos-
itive, and in the states of Idaho, and disperse around that
state. On the other hand, for the 2nd covariate, we see the
strongest coefficients in California, Nevada, Arizona and
Utah, and the effect gradually weakens towards the east. The
3rd and 4th covariates have their strongest coefficients that



 are more eastward, while there is a negative effect of equal
magnitude on the west around the states of Washington and
Oregon.

5.3 QUANTIFYING PREDICTION UNCERTAINTY

A crucial advantage of our Bayesian machinery is that it
allows for easy quantification of the uncertainty of our pre-
dictions.
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Figure 3: Spatial and temporal coverage for our prediction
intervals.

We start with the coverage of high-confidence posterior pre-
diction intervals. First, we construct 95% posterior predic-
tion intervals for each time and location: these are intervals
in the target response domain that have more than 95% prob-
ability with respect to our Bayesian model posterior. Next,
we computed the fraction of train and test points that fall
in this interval: the train coverage was 0.89, while the test
coverage was 0.86. While large, this is lower than a typi-
cally expected 0.95 coverage level in parametric Bayesian
analyses. This is due to the difficulty of the subseasonal
forecasting. From a statistical perspective, this is likely due
to the fact that distributions of temperature are known to
have relatively heavy tails; so some undercoverage would
be expected.

To provide further insights into the posterior prediction cov-
erage as computed above, we breakdowns of the cover-
age with respect to both space and time in Figure 3. From
Figure 3(a), we see that coverage is very spatially hetero-
geneous. However, it is generally better in the north and
poorer down south. Additionally, there are a few spots of
exceedingly poor coverage in Washington state, where per-
haps mountains or rivers have important effects. We also
observe this in state of Texas near the border to the east,
where perhaps the Gulf of Mexico has a more prominent
effect in predicting the temperature. With respect to tempo-
ral variation, from Figure 3(b), we observe that coverage
can be quite temporally heterogeneous as well. In general,
it appears that poor coverage dates tend to be in the winter
months, although there are days with poor coverage in the
summer of 2015.
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Figure 4: Variation of mean residuals temporally, and normal
quantile-quantile for the mean residual across the Western
US.

One hypothesis for the heterogeneity above could be the
persistent heteroscedasticity, which we consider in our ex-
amination on the noise. To get additional insights on the
noise distribution, we next analyze the residuals with re-
spect to our point predictions in greater detail, as shown in
Figure 4. In panel (a), we plot the mean residuals over time,
from which we can immediately observe the heteroscedastic-
ity over time. Indeed, it appears that residuals are generally
larger in the winter months. A second observation is possi-
bly a weak trend: while at any point it seems the signs of the
residuals may be hard to predict, in later years, the average
residual appears to be negative. This implies the predictions
are consistently high for this time period. In panel (b), we
provide a quantile-quantile plot for the residuals averaged
across the Western US, together with an envelope at the 95%
level. We notice that the mean residuals over the Western
US are approximately normal; one explanation for which
is that even with spatial dependence, the central limit the-
orem applies. This indicates that our normal distributional
assumptions on the noise was a reasonable fit to the data.

6 DISCUSSION

Our paper presents a Bayesian spatial model for subseasonal
climate forecasting in the western US based on exploiting
spatial smoothness in the data. We next list some possible
avenues for improvements and future work. First, our mod-
eling of the climate dynamics could be improved, by going
beyond the features we use to incorporate more nuanced
features such as eddies and seasonal currents, as well as
other climate covariates, such as sea ice concentration, soil
moisture or polar pressure anomalies. Second, from a mod-
eling perspective, it might be helpful to build a two-staged
model, where we identify locations where the standardized
climate anomalies are not normal distributed and build a
more complex model for such locations. Finally, it would be
of interest to extend our subseasonal forecasts from the US
to other parts of the world, assessing their ability to predict
droughts that commonly lead to water shortages, or floods
that lead to infectious disease outbreaks through mosquitoes,
among others.
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