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Abstract

The sample efficiency of Bayesian optimiza-
tion (BO) is often boosted by Gaussian Pro-
cess (GP) surrogate models. However, on mixed
variable spaces, surrogate models other than GPs
are prevalent, mainly due to the lack of kernels
which can model complex dependencies across dif-
ferent types of variables. In this paper, we propose
the frequency modulated (FM) kernel flexibly mod-
eling dependencies among different types of vari-
ables, so that BO can enjoy the further improved
sample efficiency. The FM kernel uses distances on
continuous variables to modulate the graph Fourier
spectrum derived from discrete variables. How-
ever, the frequency modulation does not always
define a kernel with the similarity measure behav-
ior which returns higher values for pairs of more
similar points. Therefore, we specify and prove
conditions for FM kernels to be positive definite
and to exhibit the similarity measure behavior. In
experiments, we demonstrate the improved sample
efficiency of GP BO using FM kernels (BO-FM).
On synthetic problems and hyperparameter opti-
mization problems, BO-FM outperforms competi-
tors consistently. Also, the importance of the fre-
quency modulation principle is empirically demon-
strated on the same problems. On joint optimiza-
tion of neural architectures and SGD hyperparam-
eters, BO-FM outperforms competitors including
Regularized evolution (RE) and BOHB. Remark-
ably, BO-FM performs better even than RE and
BOHB using three times as many evaluations.

1 INTRODUCTION
Bayesian optimization has found many applications rang-
ing from daily routine level tasks of finding a tasty cookie
recipe [Solnik et al., 2017] to sophisticated hyperparame-

ter optimization tasks of machine learning algorithms (e.g.
Alpha-Go [Chen et al., 2018]). Much of this success is
attributed to the flexibility and the quality of uncertainty
quantification of Gaussian Process (GP)-based surrogate
models [Snoek et al., 2012, Swersky et al., 2013, Oh et al.,
2018].

Despite the superiority of GP surrogate models, as compared
to non-GP ones, their use on spaces with discrete struc-
tures (e.g., chemical spaces [Reymond and Awale, 2012],
graphs and even mixtures of different types of spaces) is
still application-specific [Kandasamy et al., 2018, Korovina
et al., 2019]. The main reason is the difficulty of defining ker-
nels flexible enough to model dependencies across different
types of variables. On mixed variable spaces which consist
of different types of variables including continuous, ordinal
and nominal variables, current BO approaches resort to non-
GP surrogate models, such as simple linear models or linear
models with manually chosen basis functions [Daxberger
et al., 2019]. However, such linear approaches are limited
because they may lack the necessary model capacity.

There is much progress on BO using GP surrogate mod-
els (GP BO) for continuous, as well as for discrete variables.
However, for mixed variables it is not straightforward how
to define kernels ,which can model dependencies across
different types of variables. To bridge the gap, we propose
frequency modulation which uses distances on continuous
variables to modulate the frequencies of the graph spectrum
[Ortega et al., 2018] where the graph represents the discrete
part of the search space [Oh et al., 2019].

A potential problem in the frequency modulation is that it
does not always define a kernel with the similarity measure
behavior [Vert et al., 2004]. That is, the frequency mod-
ulation does not necessarily define a kernel that returns
higher values for pairs of more similar points. Formally, for
a stationary kernel k(x,y) = s(x− y), s should be decreas-
ing [Remes et al., 2017]. In order to guarantee the similar-
ity measure behavior of kernels constructed by frequency
modulation, we stipulate a condition, the frequency modula-
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 tion principle. Theoretical analysis results in proofs of the
positive definiteness as well as the effect of the frequency
modulation principle. We coin frequency modulated (FM)
kernels as the kernels constructed by frequency modulation
and respecting the frequency modulation principle.

Different to methods that construct kernels on mixed vari-
ables by kernel addition and kernel multiplication, for exam-
ple, FM kernels do not impose an independence assumption
among different types of variables. In FM kernels, quantities
in the two domains, that is the distances in a spatial domain
and the frequencies in a Fourier domain, interact. Therefore,
the restrictive independence assumption is circumvented,
and thus flexible modeling of mixed variable functions is
enabled.

In this paper, (i) we propose frequency modulation, a new
way to construct kernels on mixed variables, (ii) we provide
the condition to guarantee the similarity measure behavior of
FM kernels together with a theoretical analysis, and (iii) we
extend frequency modulation so that it can model complex
dependencies between arbitrary types of variables. In exper-
iments, we validate the benefit of the increased modeling
capacity of FM kernels and the importance of the frequency
modulation principle for improved sample efficiency on dif-
ferent mixed variable BO tasks. We also test BO with GP
using FM kernels (BO-FM) on a challenging joint optimiza-
tion of the neural architecture and the hyperparameters with
two strong baselines, Regularized Evolution (RE) [Real
et al., 2019] and BOHB [Falkner et al., 2018]. BO-FM
outperforms both baselines which have proven their com-
petence in neural architecture search [Dong et al., 2021].
Remarkably, BO-FM outperforms RE with three times eval-
uations.

2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION WITH
GAUSSIAN PROCESSES

Bayesian optimization (BO) aims at finding the global opti-
mum of a black-box function g over a search space X . At
each round BO performs an evaluation yi on a new point xi ∈
X , collecting the set of evaluations D t = {(xi,yi)}i=1,··· ,t
at the t-th round. Then, a surrogate model approximates the
function g given D t using the predictive mean µ(x∗ |D t)
and the predictive variance σ2(x∗ |D t). Now, an acquisi-
tion function r(x∗) = r(µ(x∗ |D t),σ

2(x∗ |D t)) quantifies
how informative input x ∈X is for the purpose of find-
ing the global optimum. g is then evaluated at xt+1 =
argmaxx∈X r(x), yt+1 = g(xt+1). With the updated set of
evaluations, D t+1 = D t ∪{(xt+1,yt+1)}, the process is re-
peated.

A crucial component in BO is thus the surrogate model.
Specifically, the quality of the predictive distribution of the
surrogate model is critical for balancing the exploration-

exploitation trade-off [Shahriari et al., 2015]. Compared
with other surrogate models (such as Random Forest [Hutter
et al., 2011] and a tree-structured density estimator [Bergstra
et al., 2011]), Gaussian Processes (GPs) tend to yield better
results [Snoek et al., 2012, Oh et al., 2018].

For a given kernel k and data D = (X,y) where X =
[x1, · · · ,xn]

T and y = [y1, · · · ,yn]
T , a GP has a predic-

tive mean µ(x∗ |X,y) = k∗X(kXX + σ2I)−1 y and predic-
tive variance σ2(x∗ |X,y) = k∗∗ − k∗X(kXX + σ2I)−1kX∗
where k∗∗ = k(x∗,x∗), [k∗X]1,i = k(x∗,xi), kX∗ = (k∗X)T and
[kXX]i, j = k(xi,x j).

2.2 KERNELS ON DISCRETE VARIABLES

We first review some kernel terminology [Scholkopf and
Smola, 2001] that is needed in the rest of the paper.

Definition 2.1 (Gram Matrix). Given a function k :
X ×X → R and data x1, · · · ,xn ∈X , the n× n matrix
K with elements [K]i j = k(xi,x j) is called the Gram matrix
of k with respect to x1, · · · ,xn.

Definition 2.2 (Positive Definite Matrix). A real n×n ma-
trix K satisfying ∑i, j ai[K]i ja j ≥ 0 for all ai ∈ R is called
positive definite (PD)1.

Definition 2.3 (Positive Definite Kernel). A function k :
X ×X → R which gives rise to a positive definite Gram
matrix for all n ∈ N and all x1, · · · ,xn ∈X is called a posi-
tive definite (PD) kernel, or simply a kernel.

A search space which consists of discrete variables, includ-
ing both nominal and ordinal variables, can be represented
as a graph [Kondor and Lafferty, 2002, Oh et al., 2019]. In
this graph each vertex represents one state of exponentially
many joint states of the discrete variables. The edges repre-
sent relations between these states (e.g. if they are similar)
[Oh et al., 2019]. With a graph representing a search space
of discrete variables, kernels on a graph can be used for
BO. In [Smola and Kondor, 2003], for a positive decreasing
function f and a graph G = (V ,E ) whose graph Laplacian
L(G )2 has the eigendecomposition UΛUT , it is shown that
a kernel can be defined as

kdisc(v,v′|β ) = [U f (Λ|β )UT ]v,v′ (1)

where β ≥ 0 is a kernel parameter and f is a positive de-
creasing function. It is the reciprocal of a regularization
operator [Smola and Kondor, 2003] which penalizes high
frequency components in the spectrum.

1Sometimes, different terms are used, semi-positive definite
for ∑i, j ai[K]i ja j ≥ 0 and positive definite for ∑i, j ai[K]i ja j > 0.
Here, we stick to the definition in [Scholkopf and Smola, 2001].

2In this paper, we use a (unnormalized) graph Laplacian
L(G ) = D−A while, in [Smola and Kondor, 2003], symmetric
normalized graph Laplacian, Lsym(G ) = D−1/2(D−A)D−1/2. (A :
adj. mat. / D : deg. mat.) Kernels are defined for both.



 3 MIXED VARIABLE BAYESIAN
OPTIMIZATION

With the goal of obtaining flexible kernels on mixed vari-
ables which can model complex dependencies across dif-
ferent types of variables, we propose the frequency modu-
lated (FM) kernel. Our objective is to enhance the modelling
capacity of GP surrogate models and, thereby improve the
sample efficiency of mixed-variable BO. FM kernels use
the continuous variables to modulate the frequencies of the
kernel of discrete variables defined on the graph. As a con-
sequence, FM kernels can model complex dependencies
between continuous and discrete variables. Specifically, let
us start with continuous variables of dimension DC , and dis-
crete variables represented by the graph G = (V ,E ) whose
graph Laplacian L(G ) has eigendecompostion UΛUT . To
define a frequency modulated kernel we consider the func-
tion k : (RDC ×V )×(RDC ×V )⇒R of the following form

k((c,v),(c′,v′)|β ,θ)

=
|V |

∑
i=1

[U ]v,i f (λi,‖c−c′ ‖θ |β )[U ]v′,i (2)

where ‖c−c′ ‖2
θ
= ∑

DC
d=1(cd − c′d)

2/θ 2
d and (θ , β ) are tun-

able parameters. f is the frequency modulating function
defined below in Def. 3.1.

The function f in Eq. (2) takes frequency λi and distance
‖c−c′ ‖2

θ
as arguments, and its output is combined with the

basis [U ]v,i. That is, the function f processes the informa-
tion in each eigencomponent separately while Eq. (2) then
sums up the information processed by f . Note that unlike
kernel addition and kernel product,3, the distance ‖c−c′ ‖2

θ

influences each eigencomponent separately as illustrated in
Figure.1. Unfortunately, Eq. (2) with an arbitrary function
f does not always define a positive definite kernel. More-
over, Eq. (2) with an arbitrary function f may return higher
kernel values for less similar points, which is not expected
from a proper similarity measure [Vert et al., 2004]. To this
end, we first specify three properties of functions f such
that Eq. (2) guaranteed to be a positive definite kernel and a
proper similarity measure at the same time. Then, we moti-
vate the necessity of each of the properties in the following
subsections.

Definition 3.1 (Frequency modulating function). A fre-
quency modulating function is a function f : R+×R→ R
satisfying the three properties below.

FM-P1 For a fixed t ∈R, f (s, t) is a positive and decreasing
function with respect to s on [0,∞).

FM-P2 For a fixed s ∈ R+, f (s,‖c−c′ ‖θ ) is a positive
definite kernel on (c,c′) ∈ RDC ×RDC .

FM-P3 For t1 < t2, ht1,t2(s) = f (s, t1)− f (s, t2) is positive,
strictly decreasing and convex w.r.t s ∈ R+.

3e.g kadd((c,v),(c′,v′)) = e−‖c−c′ ‖2
θ + kdisc(v,v′) and

kprod((c,v),(c′,v′)) = e−‖c−c′ ‖2
θ · kdisc(v,v′)

Figure 1: Influence on eigencomponents

Definition 3.2 (FM kernel). A FM kernel is a function on
(RDC ×V )× (RDC ×V ) of the form in Eq. (2), where f is
a frequency modulating function on R+×R.

3.1 FREQUENCY REGULARIZATION OF FM
KERNELS

In [Smola and Kondor, 2003], it is shown that Eq. (1) de-
fines a kernel that regularizes the eigenfunctions with high
frequencies when f is positive and decreasing. It is also
shown that the reciprocal of f in Eq. (1) is a corresponding
regularization operator. For example, the diffusion kernel
defined with f (λ ) = exp(−βλ ) corresponds to the regular-
ization operator r(λ )= exp(βλ ). The regularized Laplacian
kernel defined with f (λ ) = 1/(1+βλ ) corresponds to the
regularization operator r(λ ) = 1+βλ . Both regularization
operators put more penalty on higher frequencies λ .

Therefore, the property FM-P1 forces FM kernels to have
the same regularization effect of promoting a smoother func-
tion by penalizing the eigenfunctions with high frequencies.

3.2 POSITIVE DEFINITENESS OF FM KERNELS

Determining whether Eq.2 defines a positive definite ker-
nel is not trivial. The reason is that the gram matrix
[k((ci,vi),(c j,v j))]i, j is not determined only by the entries vi
and v j, but these entries are additionally affected by different
distance terms ‖ci−c j ‖θ . To show that FM kernels are pos-
itive definite, it is sufficient to show that f (λi,‖c−c′ ‖θ | β )
is positive definite on (c,c′) ∈ RDC ×RDC .

Theorem 3.1. If f (λ ,‖c−c′ ‖θ | β ) defines a positive defi-
nite kernel with respect to c and c′, then the FM kernel with
such f is positive definite jointly on c and v. That is, the
positive definiteness of f (λ ,‖c−c′ ‖θ | β ) on RDC implies
the positive definiteness of the FM kernel on RDC ×V .

Proof. See Supp. Sec.1, Thm. 1.1.

Note that Theorem 3.1 shows that the property FM-P2 guar-
antees that FMs kernels are positive definite jointly on c and
v.



 In the current form of Theorem 3.1, the frequency mod-
ulating functions depend on the distance ‖c−c′ ‖θ . How-
ever, the proof does not change for the more general form
of f (λ ,c,c′ |α,β ), where f does not depend on ‖c−c′ ‖θ .
Hence, Theorem 3.1 can be extended to the more general
case that f (λ ,c,c′ |α,β ) is positive definite on (c,c′) ∈
RDC ×RDC .

3.3 FREQUENCY MODULATION PRINCIPLE

A kernel, as a similarity measure, is expected to return higher
values for pairs of more similar points and vice versa [Vert
et al., 2004]. We call such behavior the similarity measure
behavior.

In Eq. (2), the distance ‖c−c′ ‖θ represents a quantity in
the “spatial” domain interacting with quantities λis in the
“frequency” domain. Due to the interplay between the two
different domains, the kernels of the form Eq. (2) do not
exhibit the similarity measure behavior for an arbitrary
function f . Next, we derive a sufficient condition on f for
the similarity measure behavior to hold for FM kernels.

Formally, the similarity measure behavior is stated as

‖c−c′ ‖θ ≤ ‖c̃− c̃′‖θ

⇒ k((c,v),(c′,v′))≥ k((c̃,v),(c̃′,v′)) (3)

or equivalently,

‖c−c′ ‖θ ≤ ‖c̃− c̃′‖θ

⇒
|V |

∑
i=1

[U ]v,iht1,t2(λi|β )[U ]v′,i ≥ 0 (4)

where ht1,t2(λ |β ) = f (λ , t1|β )− f (λ , t2|β ), t1 = ‖c−c′ ‖θ

and t2 = ‖c̃− c̃′‖θ .

Theorem 3.2. For a connected and weighted undirected
graph G = (V ,E ) with non-negative weights on edges, de-
fine a similarity (or kernel) a(v,v′) = [Uh(Λ)UT ]v,v′ , where
U and Λ are eigenvectors and eigenvalues of the graph
Laplacian L(G ) = UΛUT . If h is any non-negative and
strictly decreasing convex function on [0,∞), then a(v,v′)≥
0 for all v,v′ ∈ V .

Therefore, these conditions on h(Λ) result in a similarity
measure a with only positive entries, which in turn proves
property Eq. (4). Here, we provide a proof of the theorem for
a simpler case with an unweighted complete graph, where
Eq. (4) holds without the convexity condition on h.

Proof. For a unweighted complete graph with n vertices, we
have eigenvalues λ1 = 0, λ2 = · · ·= λn = n and eigenvectors
such that [U ]·1 = 1/

√
n and ∑

n
i=1[U ]v,i[U ]v′,i = δvv′ . For v 6=

v′, the conclusion in Eq. (4), ∑
n
i=1 h(λi)[U ]v,i[U ]v′,i becomes

h(0)/n+h(n)∑
n
i=2[U ]v,i[U ]v′,i = (h(0)−h(n))/n in which

non-negativity follows with decreasing h.

For the complete proof, see Thm. 2.1 in Supp. Sec. 2.

Theorem 3.2 thus shows that the property FM-P3 is suf-
ficient for Eq. (4) to hold. We call the property FM-P3
the frequency modulation principle. Theorem 3.2 also im-
plies the non-negativity of many kernels derived from graph
Laplacian.

Corollary 3.2.1. The random walk kernel derived from
the symmetric normalized Laplacian [Smola and Kondor,
2003], the diffusion kernels [Kondor and Lafferty, 2002, Oh
et al., 2019] and the regularized Laplacian kernel [Smola
and Kondor, 2003] derived from symmetric normalized or
unnormalized Laplacian, are all non-negatived valued.

Proof. See Cor. 2.1.1 in Supp. Sec. 2.

3.4 FM KERNELS IN PRACTICE

Scalability Since the (graph Fourier) frequencies and ba-
sis functions are computed by the eigendecomposition of
cubic computational complexity, a plain application of fre-
quency modulation makes the computation of FM ker-
nels prohibitive for a large number of discrete variables.
Given P discrete variables where each variable can be in-
dividually represented by a graph G p, the discrete part of
the search space can be represented as a product space,
V = V 1×·· ·×V P.

In this case, we define FM kernels on RDC ×V =
RDC ×(V 1×·· ·×V P) as

k((c,v),(c′,v′)|α,β ,θ) =
P

∏
p=1

kp((c,vp),(c′,v′p)|βp,θ)

=
P

∏
p=1

|V p |

∑
i=1

[U p]vp,i f (λ p
i ,αp‖c−c′ ‖θ |βp)[U p]v′p,i (5)

where v = (v1, · · · ,vP, v′ = (v′1, · · · ,v′P, α = (α1, · · · ,αP)
β = (β1, · · · ,βP) and the graph Laplacian is given as L(G p)
with the eigendecomposition Updiag[λ p

1 , · · · ,λ
p
‖V p ‖]U

T
p .

Eq.5 should not be confused with the kernel product of ker-
nels on each V p. Note that the distance ‖c−c′ ‖θ is shared,
which introduces the coupling among discrete variables and
thus allows more modeling freedom than a product kernel.
In addition to the coupling, the kernel parameter αps lets us
individually determine the strength of the frequency modu-
lation.

Examples Defining a FM kernel amounts to constructing
a frequency modulating function. We introduce examples of
flexible families of frequency modulating functions.



 Proposition 1. For S ∈ (0,∞), a finite measure µ on
[0,S], µ-measurable τ : [0,S]⇒ [0,2] and µ-measurable
ρ : [0,S]⇒ N, the function of the form below is a frequency
modulating function.

f (λ ,α‖c−c′ ‖θ |β )

=
∫ S

0

1

(1+βλ +α‖c−c′ ‖τ(s)
θ

)ρ(s)
µ(ds) (6)

Proof. See Supp. Sec.3, Prop.1.

Assuming S = 1 and τ(s) = 2, Prop. 1 gives (1 +
βλ +α‖c−c′ ‖2

θ
)−1 with ρ(s) = 1 and µ(ds) = ds, and

∑
N
n=1 an(1 + βλ + α‖c−c′ ‖2

θ
)−n with ρ(s) = bNsc and

µ({n/N}) = an ≥ 0 and µ([{n/N}c
n=1,··· ,N) = 0.

3.5 EXTENSION OF THE FREQUENCY
MODULATION

Frequency modulation is not restricted to distances on Eu-
clidean spaces but it is applicable to any arbitrary space with
a kernel defined on it. As a concrete example of frequency
modulation by kernels, we show a non-stationary extension
where f does not depend on ‖c−c′ ‖θ but on the neural
network kernel kNN [Rasmussen, 2003]. Consider Eq. (2)
with f = fNN as follows.

fNN(λ ,kNN(c,c′ |Σ)|β ) =
1

2+βλ − kNN(c,c′ |Σ)
(7)

where kNN(c,c′ |Σ) = 2
π

arcsin
(

2cT Σc′
(1+cT Σc)(1+c′T Σc′)

)
is the

neural network kernel [Rasmussen, 2003].

Since the range of kNN is [−1,1], fNN is positive and thus sat-
isfies FM-P1. Through Eq.7, Eq.2 is positive definite (Supp.
Sec.3, Prop.2) and thus property FM-P2 is satisfied. If the
premise t1 < t2 of the property FM-P3 is replaced by t1 > t2,
then FM-P3 is also satisfied. In contrast to the frequency
modulation principle with distances in Eq. (3), the frequency
modulation principle with a kernel is formalized as

kNN(c,c′ |Σ)≥ kNN(c̃, c̃′|Σ)
⇒ k((c,v),(c′,v′))≥ k((c̃,v),(c̃′,v′)) (8)

Note that kNN(c,c′ |Σ) is a similarity measure and thus the
inequality is not reversed unlike Eq. (3).

All above arguments on the extension of the frequency mod-
ulation using a nonstationary kernel hold also when the kNN
is replaced by an arbitrary positive definite kernel. The only
required condition is that a kernel has to be upper bounded,
i.e., kNN(c,c′)≤C, needed for FM-P1 and FM-P2.

4 RELATED WORK
On continuous variables, many sophisticated kernels have
been proposed [Wilson and Nickisch, 2015, Samo and
Roberts, 2015, Remes et al., 2017, Oh et al., 2018]. In
contrast, kernels on discrete variables have been studied
less [Haussler, 1999, Kondor and Lafferty, 2002, Smola
and Kondor, 2003]. To our best knowledge, most of exist-
ing kernels on mixed variables are constructed by a kernel
product Swersky et al. [2013], Li et al. [2016] with some
exceptions [Krause and Ong, 2011, Swersky et al., 2013,
Fiducioso et al., 2019], which rely on kernel addition.

In mixed variable BO, non-GP surrogate models are more
prevalent, including SMAC [Hutter et al., 2011] using ran-
dom forest and TPE [Bergstra et al., 2011] using a tree
structured density estimator. Recently, by extending the
approach of using Bayesian linear regression for discrete
variables [Baptista and Poloczek, 2018], Daxberger et al.
[2019] proposes Bayesian linear regression with manually
chosen basis functions on mixed variables, providing a re-
gret analysis using Thompson sampling as an acquisition
function. Another family of approaches utilizes a bandit
framework to handle the acquisition function optimization
on mixed variables with theoretical analysis [Gopakumar
et al., 2018, Nguyen et al., 2019, Ru et al., 2020]. Nguyen
et al. [2019] use GP in combination with multi-armed bandit
to model category-specific continuous variables and provide
regret analysis using GP-UCB. Among these approaches,
Ru et al. [2020] also utilize information across different
categorical values, which –in combination with the bandit
framework– makes itself the most competitive method in
the family.

Our focus is to extend the modelling prowess and flexi-
bility of pure GPs for surrogate models on problems with
mixed variables. We propose frequency modulated kernels,
which are kernels that are specifically designed to model
the complex interactions between continuous and discrete
variables.

In architecture search, approaches using weight sharing such
as DARTS [Liu et al., 2018] and ENAS [Pham et al., 2018]
are gaining popularity. In spite of their efficiency, methods
training neural networks from scratch for given architec-
tures outperform approaches based on weight sharing [Dong
et al., 2021]. Moreover, the joint optimization of learning
hyperparameters and architectures is under-explored with
a few exceptions such as BOHB [Falkner et al., 2018] and
autoHAS [Dong et al., 2020]. Our approach proposes a com-
petitive option to this challenging optimization of mixed
variable functions with expensive evaluation cost.

5 EXPERIMENTS
To demonstrate the improved sample efficiency of GP BO
using FM kernels (BO-FM) we study various mixed variable
black-box function optimization tasks, including 3 synthetic



 

SMAC TPE ModDif ModLap CoCaBO-0.0 CoCaBO-0.5 CoCaBO-1.0

Func2C +0.006±0.039 −0.192±0.005 −0.066±0.046 −0.206±0.000 −0.159±0.013 −0.202±0.002 −0.186±0.009
Func3C +0.119±0.072 −0.407±0.120 −0.098±0.074 −0.722±0.000 −0.673±0.027 −0.720±0.002 −0.714±0.005

Ackley5C +2.381±0.165 +1.860±0.125 +0.001±0.000 +0.019±0.006 +1.499±0.201 +1.372±0.211 +1.811±0.217

Figure 2: Func2C(left), Func3C(middle), Ackley5C(right) (Mean±Std.Err. of 5 runs)

problems from Ru et al. [2020], 2 hyperparameter optimiza-
tion problems (SVM [Smola and Kondor, 2003] and XG-
Boost [Chen and Guestrin, 2016]) and the joint optimization
of neural architecture and SGD hyperparameters.

As per our method, we consider MODLAP which is of the
form Eq. 5 with the following frequency modulating func-
tion.

fLap(λ ,‖c−c′ ‖θ |α,β ) =
1

1+βλ +α‖c−c′ ‖2
θ

(9)

Moreover, to empirically demonstrate the importance of
the similarity measure behavior, we consider another kernel
following the form of Eq. 5 but disrespecting the frequency
modulation principle with the function

fDi f (λ ,‖c−c′ ‖θ |α,β ) = exp(−(1+α‖c−c′ ‖2
θ )βλ )

(10)
We call the kernel constructed with this function MODDIF.
The implementation of these kernels is publicly available.4

In each round, after updating with an evaluation, we fit a GP
surrogate model using marginal likelihood maximization
with 10 random initialization until convergence [Rasmussen,
2003]. We use the expected improvement (EI) acquisition
function [Donald, 1998] and optimize it by repeated al-
ternation of L-BFGS-B [Zhu et al., 1997] and hill climb-
ing [Skiena, 1998] until convergence. More details on the
experiments are provided in Supp. Sec. 4.

Baselines For synthetic problems and hyperparameter
optimization problems below, baselines we consider5 are
SMAC6 [Hutter et al., 2011], TPE7 [Bergstra et al., 2011],
and CoCaBO8 [Ru et al., 2020] which consistently outper-

4https://github.com/ChangYong-Oh/
FrequencyModulatedKernelBO

5The methods [Daxberger et al., 2019, Nguyen et al., 2019]
whose code has not been released are excluded.

6https://github.com/automl/SMAC3
7http://hyperopt.github.io/hyperopt/
8https://github.com/rubinxin/CoCaBO_code

forms One-hot BO [authors, 2016] and EXP3BO [Gopaku-
mar et al., 2018]. For CoCaBO, we consider 3 variants using
different mixture weights.9

5.1 SYNTHETIC PROBLEMS

We test on 3 synthetic problems proposed in Ru et al.
[2020]10. Each of the synthetic problems has the search
space as in Tab. 1. Details of synthetic problems can be
found in Ru et al. [2020].

Conti. Space Num. of Cats.
Func2C [−1,1]2 3, 5
Func3C [−1,1]2 3, 5,4

Ackley5C [−1,1] 17, 17, 17, 17, 17

Table 1: Synthetic Problem Search Spaces

On all 3 synthetic benchmarks, MODLAP shows competitive
performance (Fig. 2). On Func2C and Func3C, MODLAP
performs the best, while on Ackley5C MODLAP is at the
second place, marginally further from the first. Notably,
even on Func2C and Func3C, where MODDIF underper-
forms significantly, MODLAP exhibits its competitiveness,
which empirically supports that the similarity measure be-
havior plays an important role in the surrogate modeling in
Bayesian optimization. Note that TPE and CoCaBO have
much shorter wall-clock runtime.

5.2 HYPERPARAMETER OPTIMIZATION
PROBLEMS

Now we consider a practical application of Bayesian opti-
mization over mixed variables. We take two machine learn-

9Learning the mixture weight is not supported in the imple-
mentation, we did not include it. Moreover, as shown in Ru et al.
[2020], at least one of 3 variants usually performs better than
learning the mixture weight.

10In the implementation provided by the authors, only Func2C
and Func3C are supported. We implemented Ackley5C.

https://github.com/ChangYong-Oh/FrequencyModulatedKernelBO
https://github.com/ChangYong-Oh/FrequencyModulatedKernelBO
https://github.com/automl/SMAC3
http://hyperopt.github.io/hyperopt/
https://github.com/rubinxin/CoCaBO_code


 
SVM Method XGBoost

4.759± .141 SMAC .1215± .0045
4.399± .163 TPE .1084± .0007
4.188± .001 ModDif .1071± .0013
4.186± .002 ModLap .1038± .0003
4.412± .170 CoCaBO-0.0 .1184± .0062
4.196± .004 CoCaBO-0.5 .1079± .0010
4.196± .004 CoCaBO-1.0 .1086± .0008

Figure 3: SVM(left), XGBoost(right) (Mean±Std.Err. of 5 runs)

ing algorithms, SVM [Smola and Kondor, 2003] and XG-
Boost [Chen and Guestrin, 2016] and optimize their hyper-
parameters.

SVM We optimize hyperparameters of NuSVR in scikit-
learn [Pedregosa et al., 2011]. We consider 3 categorical
hyperparameters and 3 continuous hyperparameters (Tab. 2)
and for continuous hyperparameters we search over log10
transformed space of the range.

NuSVR param.11 Range
kernel {linear, poly, RBF, sigmoid }
gamma {scale, auto }

shrinking {on, off }
C [10−4,10]
tol [10−6,1]
nu [10−6,1]

Table 2: NuSVR hyperparameters

For each of 5 split of Boston housing dataset with
train:test(7:3) ratio, NuSVR is fitted on the train set and
RMSE on the test set is computed. The average of 5 test
RMSE is the objective.

XGBoost We consider 1 ordinal, 3 categorical and 4 con-
tinuous hyperparameters (Tab. 3).

XGBoost param.12 Range
max_depth {1, · · · ,10}

booster {gbtree, dart}
grow_policy {depthwise, lossguide}

objective {multi:softmax, multi:softprob}
eta [10−6,1]

gamma [10−4,10]
subsample [10−3,1]

lambda [0,5]

Table 3: XGBoost hyperparameters

For 3 continuous hyperparameters, eta, gamma and subsam-
ple, we search over the log10 transformed space of the range.

11https://scikit-learn.org/stable/modules/
generated/sklearn.svm.NuSVR.html

12https://xgboost.readthedocs.io/en/
latest/parameter.html

With a stratified train:test(7:3) split, the model is trained
with 50 rounds and the best test error over 50 rounds is the
objective of SVM hyperparameter optimization.

In Fig. 3, MODLAP performs the best. On XGBoost hy-
perparameter optimization, MODLAP exhibits clear benefit
compared to the baselines. Here, MODDIF wins the second
place in both problems.

Comparison to different kernel combinations In
Supp. Sec. 5, we also report the comparison with differ-
ent kernel combinations on all 3 synthetic problems and 2
hyperparameter parameter optimization problems. We make
two observations. First, MODDIF, which does not respect
the similarity measure behavior, sometimes severely de-
grades BO performance. Second, MODLAP obtains equally
good final results and consistently finds the better solutions
faster than the kernel product. This can be clearly shown by
comparing the area above the mean curve of BO runs using
different kernels. The area above the mean curve of BO
using MODLAP is larger than the are above the mean curve
of BO using the kernel product. Moreover, the gap between
the area from MODLAP and the area from kernel product
increases in problems with larger search spaces. Even on
the smallest search space, Func2C, MODLAP lags behind
the kernel product up to around 90th evaluation and outper-
forms after it. The benefit of MODLAP modeling complex
dependency among mixed variables is more prominent in
higher dimension problems.

Ablation study on regression tasks In addition to the
results on BO experiments, we compare FM kernels with
kernel addiition and kernel product on three regression tasks
from UCI datasets (Supp. Sec. 6). In terms of negative
log-likelihood (NLL), which takes into account uncertainty,
ModLap performs the best in two out of three tasks. Even
on the task which is conjectured to have a structure suitable
to kernel product, ModLap shows competitive performance.
Moreover, on regression tasks, the importance of the fre-
quency modulation principle is further reinforced. For full
NLL and RMSE comparison and detailed discussion, see
Supp. Sec. 6

https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html


 Method #Eval. Mean±Std.Err.

BOHB 200 7.158×10−2±1.0303×10−3

BOHB 230 7.151×10−2±9.8367×10−4

BOHB 600 6.941×10−2±4.4320×10−4

RE 200 7.067×10−2±1.1417×10−3

RE 230 7.061×10−2±1.1329×10−3

RE 400 6.929×10−2±6.4804×10−4

RE 600 6.879×10−2±1.0039×10−3

MODLAP 200 6.850×10−2±3.7914×10−4

For the figure with all numbers above, see Supp. Sec. 5.

Figure 4: Joint optimization of the architecture and SGD hyperparameters (Mean±Std.Err. of 4 runs)

5.3 JOINT OPTIMIZATION OF NEURAL
ARCHITECTURE AND SGD
HYPERPARAMETERS

Next, we experiment with BO on mixed variables by op-
timizing continuous and discrete hyperparameters of neu-
ral networks. The space of discrete hyperparameters A is
modified from the NASNet search space [Zoph and Le,
2016], which consists of 8,153,726,976 choices. The space
of continuous hyperparameters H comprises 6 continuous
hyperparameters of the SGD with a learning rate sched-
uler: learning rate, momentum, weight decay, learning rate
reduction factor, 1st reduction point ratio and 2nd reduc-
tion point ratio. A good neural architecture should both
achieve low errors and be computationally modest. Thus,
we optimize the objective f (a,h) = errvalid(a,h)+0.02×
FLOP(a)/maxa′∈A FLOP(a′). To increase the separability
among smaller values, we use log f (a,h) transformed val-
ues whenever model fitting is performed on evaluation data.
The reported results are still the original non-transformed
f (a,h).

We compare with two strong baselines. One is
BOHB [Falkner et al., 2018] which is an evaluation-
cost-aware algorithm augmenting unstructured bandit
approach [Li et al., 2017] with model-based guidance.
Another is RE [Real et al., 2019] based on a genetic
algorithm with a novel population selection strategy.
In Dong et al. [2021], on discrete-only spaces, these
two outperform competitors including weight sharing
approaches such as DARTS [Liu et al., 2018], SETN [Dong
and Yang, 2019], ENAS [Pham et al., 2018] and etc. In the
experiment, for BOHB, we use the public implementation13

and for RE, we use our own implementation.

For a given set of hyperparameters, with MODLAP or RE,
the neural network is trained on FashionMNIST for 25
epochs while BOHB adaptively chooses the number of

13https://github.com/automl/HpBandSter

epochs. For further details on the setup and the baselines we
refer the reader to Supp. Sec. 4 and 5.

We present the results in Fig. 4. Since BOHB adaptively
chooses the budget (the number of epochs), BOHB is plotted
according to the budget consumption. For example, the y-
axis value of BOHB on 100-th evaluation is the result of
BOHB having consumed 2,500 epochs (25 epochs × 100).

We observe that MODLAP finds the best architecture in
terms of accuracy and computational cost. What is more,
we observe that MODLAP reaches the better solutions faster
in terms of numbers of evaluations. Even though the time
to evaluate a new hyperparameter is dominant, the time to
suggest a new hyperparameter in MODLAP is not negligi-
ble in this case. Therefore, we also provide the comparison
with respect the wall-clock time. It is estimated that RE
and BOHB evaluate 230 hyperparameters while MODLAP
evaluate 200 hyperparameters (Supp. Sec. 4). For the same
estimated wall-clock time, MODLAP(200) outperforms com-
petitors(RE(230), BOHB(230)).

In order to see how beneficial the sample efficiency of
BO-FM is in comparison to the baselines, we perform a
stress test in which more evaluations are allowed for RE
and BOHB. We leave RE and BOHB for 600 evaluations.
Notably, MODLAP with 200 evaluations outperforms both
competitors with 600 evaluations (Fig. 4 and Supp.Sec. 5).
We conclude that MODLAP exhibits higher sample effi-
ciency than the baselines.

6 CONCLUSION

We propose FM kernels to improve the sample efficiency of
mixed variable Bayesian optimization.

On the theoretical side, we provide and prove conditions
for FM kernels to be positive definite and to satisfy the
similarity measure behavior. Both conditions are not trivial
due to the interactions between quantities on two disparate

https://github.com/automl/HpBandSter


 domains, the spatial domain and the frequency domain.

On the empirical side, we validate the effect of the condi-
tions for FM kernels on multiple synthetic problems and
realistic hyperparameter optimization problems. Further, we
successfully demonstrate the benefits of FM kernels com-
pared to non-GP based Bayesian Optimization on a chal-
lenging joint optimization of neural architectures and SGD
hyperparameters. BO-FM outperforms its competitors, in-
cluding Regularized evolution, which requires three times
as many evaluations.

We conclude that an effective modeling of dependencies
between different types of variables improves the sample
efficiency of BO. We believe the generality of the approach
can have a wider impact on modeling dependencies between
discrete variables and variables of arbitrary other types,
including continuous variables.
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