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Abstract

The susceptibility of deep neural networks
to untrustworthy predictions, including out-of-
distribution (OOD) data and adversarial examples,
still prevent their widespread use in safety-critical
applications. Most existing methods either require
a retraining of a given model to achieve robust iden-
tification of adversarial attacks or are limited to out-
of-distribution sample detection only. In this work,
we propose a geometric gradient analysis (GGA)
to improve the identification of untrustworthy pre-
dictions without retraining of a given model. GGA
analyzes the geometry of the loss landscape of neu-
ral networks based on the saliency maps of their
respective input. We observe considerable differ-
ences between the input gradient geometry of trust-
worthy and untrustworthy predictions. Using these
differences, GGA outperforms prior approaches in
detecting OOD data and adversarial attacks, includ-
ing state-of-the-art and adaptive attacks. Code is
available at: https://github.com/mad-lab-fau/GGA-
Identifying-Untrustworthy-Predictions

1 INTRODUCTION

Deep neural networks (DNNs) are known to achieve remark-
able results when the distributions of the training and test
data are similar. However, this assumption is often violated
in real-world scenarios where so-called out-of-distribution
(OOD) data may be observed which are not covered by
the training set. DNNs have been shown to make high-
confidence predictions for OOD data even if it does not
contain any semantic information, e.g., randomly generated
noise [Hendrycks and Gimpel, 2017]. This behavior can
lead to fatal outcomes in safety-critical applications, such
as autonomous driving, where the algorithm might fail to
call for human intervention when it is confronted with OOD

data. In addition to the overconfidence of DNNs, it is widely
recognized that most DNNs are vulnerable to imperceptible
input perturbations called adversarial examples [Goodfel-
low et al., 2015, Madry et al., 2018]. These perturbations
can lead to incorrect predictions by the neural network and
therefore pose an additional security risk. Many approaches
have been proposed to make neural networks more robust
in terms of adversarial examples [Goodfellow et al., 2015,
Madry et al., 2018, Gowal et al., 2020]. Nevertheless, there
is still a wide gap between the accuracy on unperturbed data
and adversarial examples.

An alternative to training robust DNNs is the early detection
of attacks [Lee et al., 2018, Chen et al., 2020]. Identified
attacks can then be forwarded for further human assessment.
One line of research investigates geometric properties of
neural networks in the input space to explain their classifi-
cation decisions and detect adversarial attacks. Fawzi et al.
[2017] demonstrate that the decision boundaries of neural
networks are mostly flat around the training data and only
show considerable curvature in very few directions. Jetley
et al. [2018] illustrate that these high-curvature directions
are mainly responsible for the final classification decision
and thus can be exploited by adversarial attacks to induce
misclassifications. However, Fawzi et al. [2017] only focus
on detecting small adversarial perturbations and Jetley et al.
[2018] restrict themselves to the theoretical analysis of the
loss landscape.

In this work, we focus on the detection of two major prob-
lems of DNNs, namely OOD data and adversarial attacks.
We propose a novel methodology inspired by the analysis of
geometric properties in the input space of neural networks,
which we name geometric gradient analysis (GGA). Here,
we analyze and interpret the gradient of a neural network
w.r.t. its input, in the following referred to as saliency map.
More precisely, for a given input sample, we inspect the
geometric relation among all possible saliency maps, which
are calculated for each output class of the model. This is
achieved by a pairwise calculation of the cosine similarity
between saliency maps. GGA can be used with any pre-
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Figure 1: Input samples of a neural network in the top row and the respective cosine similarity matrices in the bottom row
(matrices which contain the pairwise cosine similarity between the saliency map w.r.t. every class-specific logit). Clean
samples show high average cosine similarity (red) between the saliency maps of non-predicted classes, while untrustworthy
samples (i.e., noisy images, adversarial examples, outliers) can be detected by saliency maps that are less aligned between
non-predicted-classes (blue).

trained differentiable neural network and does not require
any retraining of the model. Figure 1 shows input samples
of a neural network in the top row and the respective cosine
similarities between the saliency maps of every output class
in the bottom row. Figure 1a exemplifies that if an input is
correctly classified by the model, the saliency map of the
predicted class (i.e., the digit 7) generally points in a direc-
tion that is opposite to the saliency maps of all other classes.
This results in low average cosine similarity between these
saliency maps in the rows and columns of class label 7
(blue-colored squares). Accordingly, the saliency maps of
the other classes mostly align and display a high average
cosine similarity (red-colored squares). In contrast, in the
case of an OOD sample or adversarial attack, the saliency
maps of the non-predicted classes point towards different
directions and the cosine similarity is considerably lower on
average.

The contributions of this paper can be summarized as fol-
lows. First, we demonstrate that the gradient of only the
predicted class is not sufficient for the detection of un-
trustworthy predictions and thereby motivate to analyze
the saliency maps of all possible output classes simultane-
ously. Subsequently, we demonstrate that for common OOD
tasks, GGA is highly competitive compared to prior meth-
ods. Furthermore, we demonstrate that GGA successfully
identifies a diverse variety of adversarial attacks and show
that the geometric relation between gradients is difficult to
compromise with adaptive attacks. Finally, we show that
the computational overhead of GGA can be substantially
reduced without considerable decreases in the detection
performance.

2 RELATED WORK

Our proposed method combines ideas from several areas of
neural network research. This includes out-of-distribution
detection, adversarial attack detection, and model saliency.
In this section, we briefly review prior work in these research
areas.

Previous works have established that softmax-based neu-
ral networks tend to make overconfident predictions in the
presence of misclassifications, OOD data, and adversarial
attacks [Hendrycks and Gimpel, 2017, Liang et al., 2018,
Jiang et al., 2018, Corbière et al., 2019]. Hendrycks and
Gimpel [2017] propose a baseline method for detecting
OOD data that utilizes the softmax output of a neural net-
work. Depending on a pre-defined threshold based on the
softmax score, they define samples as either in- or out-of-
distribution. Liang et al. [2018] further enhance this baseline.
They apply temperature scaling to the softmax scores and
additionally add small perturbations to the input to increase
the difference between in- and out-of-distribution samples.
While both approaches have been shown to work on OOD
data, they fail in the presence of adversarial attacks [Chen
et al., 2020].

Lee et al. [2018] evaluate their detection framework both
on OOD and adversarial samples. They calculate class-
conditional Gaussian distributions from the pre-trained net-
works and discriminate samples based on the Mahalanobis
distance between the distributions. Chen et al. [2020] pro-
posed a combined framework for detecting OOD data and
adversarial attacks as robust out-of-distribution (ROOD) de-
tection. They extend the threat model to attacks on OOD
data that aim to fool the adversarial detector as well as
the classification model. They augment the training data of
neural networks with both perturbed inlier and outlier data



 and demonstrate improved robustness compared to prior
methods. Nevertheless, both methods require adversarial
examples to train the respective detector.

Another line of research has found that as neural networks
become more robust, the interpretability of their saliency
maps increases [Tsipras et al., 2019, Etmann et al., 2019].
Gu and Tresp [2019] propose enhanced Guided Backprop-
agation and show that the classifications of adversarial im-
ages can be explained by saliency-based methods. Ye et al.
[2020] demonstrate that the saliency maps of adversarial
and benign examples exhibit different properties and uti-
lize this behavior to detect adversarial attacks. However,
Dombrowski et al. [2019] observe that explanation-based
methods can be manipulated by adversarial attacks as well,
which limits the robustness of these methods.

3 GEOMETRIC GRADIENT ANALYSIS

In this section, we first introduce the necessary mathemati-
cal notation and describe the proposed geometric gradient
analysis (GGA) method. Then, necessary and sufficient con-
ditions for local minima in the loss function using non-local
gradient information are given to further motivate the geo-
metrical gradient analysis.

Let (x, y) be a pair consisting of an input sample x ∈ Rd
and its corresponding class label y ∈ {1, . . . , C} in a super-
vised classification task. We denote by Fθ a neural network
parametrized by the parameter vector θ ∈ Θ, and by k̂ the
class predicted by the neural network for a given sample
x. We define L(Fθ(x), y) as the loss function of the neural
network. The GGA method can be summarized as follows.
We first define si(x) ∈ Rd as the saliency map of the i-th
class for a given sample x as

si(x) = sgn (∇xL (Fθ(x), i)) , (1)

where sgn indicates the element-wise sign operation. As
common for adversarial attacks [Goodfellow et al., 2015,
Madry et al., 2018] we use the sign of the gradient instead
of utilizing the gradient directly. This has shown to be effec-
tive for approximating the direction which will maximize
the loss w.r.t. the respective class [Goodfellow et al., 2015,
Madry et al., 2018] and has been more effective for GGA
as well in our experiments. Omitting the dependency on x,
the cosine similarity matrix CSM ≡ CSM(x), for a given
sample x is defined as

CSM = (cij) ∈ RC×C , cij =
si · sj
|si||sj |

(2)

where i, j ∈ {1, ..., C} and cij represent the cosine similar-
ity between the two saliency maps si and sj . In contrast to
previous methods, which rely solely on the saliency w.r.t.
the predicted class, GGA takes into account the geometric
properties between the saliency maps of all possible output

classes. Considering multiple saliency maps simultaneously
makes GGA more difficult to attack. To fool the trained neu-
ral network as well as the GGA detector, an attacker must
cause a misclassification while simultaneously retaining the
geometric properties between the saliency maps of all out-
put classes. We observe that for clean samples, the saliency
maps of non-predicted classes si, sj , i, j 6= k̂, all point in a
similar direction and therefore show a high average cosine
similarity. Simultaneously, the saliency map of the predicted
class and the saliency maps of the non-predicted classes
point in opposite directions and show a strongly negative co-
sine similarity. In contrast, adversarially attacked and OOD
samples show less alignment between the different saliency
maps and thus a lower average cosine similarity and more
variance between the saliency maps. These observations are
in line with prior work from Jetley et al. [2018], that showed
that samples from the same class can be associated with
specific directions in the input space of neural networks. We
argue that samples that belong to the same distribution as
the training data lie on these class-specific directions with
high curvature. Thus, gradients at clean samples point either
in the same or opposite of these class-specific directions.
In contrast, samples that do not belong to the distribution
of the training data deviate from these directions and show
different properties. The described behavior of CSMs is
exemplified in Figures 1 and 2.

The calculated CSMs can be used to differentiate between
trustworthy and untrustworthy predictions in a classifica-
tion pipeline. This could be done, for example, by training
a classifier on CSMs from types of data (e.g., clean data,
adversarial examples, OOD samples). To demonstrate that
the CSMs can be used without training another neural net-
work and without prior knowledge on the outlier data, we
chose a simpler approach in this paper. We extract simple
features from the CSMs and use them with a standard outlier
detector to identify untrustworthy samples. Further, we only
train the outlier detector on CSMs from clean data, which
reduces the computational overhead. More details are given
in Section 4.3.3.

4 EXPERIMENTS

In this section, we describe methods, evaluation metrics,
data sets, and other settings of our experiments.

4.1 EXISTING METHODS

We compare GGA to two other methods, which also do
not necessarily require any retraining of the neural network
and do not utilize adversarial examples to train the out-
lier/adversarial detector. Namely, we consider the method
proposed in [Hendrycks and Gimpel, 2017] (called Base-
line in the following) and the ODIN method [Liang et al.,
2018]. For the ODIN method we set the temperature scaling



 parameter T = 1000 and the perturbation bounds ε for the
CIFAR10 (ε = 0.0014) and CIFAR100 (ε = 0.002) data
sets were taken from the original paper. We found the best
values for the MNIST, Fashion-MNIST, SVHN, and UCR
ECG data set to be ε = 0.0014, ε = 0.0014, ε = 0.002,
and ε = 0.002, respectively. We additionally consider the
method proposed by Lee et al. [2018] (called Maha in the
following), which requires the detector to be trained with
adversarial examples. In this case, we directly used the im-
plementation provided by the authors Lee et al. [2018].

4.2 EVALUATION METRICS

We use common evaluation metrics for the assessment of
the OOD detection methods [Hendrycks and Gimpel, 2017,
Liang et al., 2018]. The metrics are described below:

TNR at (95% TPR): This evaluation metric describes the
true negative rate (TNR) for negative examples (i.e., adver-
sarial attacks or OOD data) for a true positive rate (TPR) of
95% (i.e., clean data).

AUROC: The area under the receiver operating character-
istic curve is a threshold independent metric [Davis and
Goadrich, 2006]. It describes the relationship between false
positive rate (FPR) and TPR and can be calculated by in-
tegrating over the ROC curve. The AUROC value can be
interpreted as the probability that a positive example exhibits
a higher detector score than a negative example [Fawcett,
2006].

AUPR: The area under precision-recall is also a threshold in-
dependent metric [Manning and Schütze, 1999]. In contrast
to the AUROC, it adjusts for the frequency of the differ-
ent classes and is thereby suitable for imbalanced problems
[Hendrycks and Gimpel, 2017]. The AUPR can be calcu-
lated either with trustworthy predictions as the positive class
(AUPR-IN) or with untrustworthy predictions as the positive
class (AUPR-Out).

The best possible score for all described metrics is 100%.

4.3 SETUP

In the following, we give an overview of general hyperpa-
rameters used for the performed experiments. This includes
a description of the data sets, neural network models, and
the features we extract from the CSMs. Finally, we describe
the threat model of the adversarial attacks.

4.3.1 Data and Architectures

We split each data set into predefined training and testing
sets. Additionally, we used 10% of the training data as the
validation set for self-trained models. All self-trained mod-
els were trained by minimizing the cross-entropy loss using

SGD with Nesterov momentum (0.9) and a batch size of
128. We used a step-wise learning rate schedule that divides
the learning rate by five at 30%, 60%, and 80% of the total
training epochs. The following classification data sets were
used to evaluate the proposed method.

MNIST [LeCun et al., 1998] consists of greyscale images
of handwritten digits each of size 28 × 28 × 1 (60, 000
training and 10, 000 test) and is a common benchmark for
outlier detection and adversarial robustness. We trained a
basic CNN architecture as in prior work [Madry et al., 2018].
This architecture consists of four convolutional layers with
32, 64, and 128 filters and two fully-connected layers with
100 and 10 output units. We used ReLU for the activation
functions between each layer. We used a learning rate of 0.1
and trained for 10 epochs, where the validation accuracy
converged.

CIFAR10 [Krizhevsky, 2009] consists of RGB color im-
ages, each of size 32 × 32 × 3, with 10 different labels
(50, 000 training and 10, 000 test). For CIFAR10 we used a
ResNet56 [He et al., 2016]. All images from the CIFAR10
data set were standardized and random cropping and hor-
izontal flipping were used for data augmentation during
training as in [He et al., 2016].

CIFAR100 [Krizhevsky, 2009] has the same properties as
CIFAR10 but is considerably more difficult as it contains
100 instead of only 10 classes. For CIFAR100, we used a
pre-trained PreResNet164 [Xichen, 2019] and otherwise the
same configurations as for CIFAR10.

UCR ECG (ID 49) [Dau et al., 2018] is a time series clas-
sification data set with 42 different classes (1800 training
and 1965 test). It contains non-invasive electrocardiogram
(ECG) recordings of fetuses with a length of 750 time steps
each. We consider this data set in addition to the computer
vision data sets for a basic benchmark of the proposed GGA
method on time series classification tasks. We trained a basic
CNN architecture consisting of three convolutional layers
with 128, 256, and 128 filters and one fully-connected layer
with 42 output units. We used batch normalization and a
ReLU activation function between each layer. We used a
learning rate of 0.01 and trained for 100 epochs.

4.3.2 Out-Of-Distribution Data Sets

We consider the respective test set of the training data as
in-distribution data and suitable, realistic images from other
data sets as OOD. Additionally, we create two synthetic
noise data sets as OOD data for every data set as done
in prior work [Hendrycks and Gimpel, 2017, Liang et al.,
2018]. In the following list, the respective in-distribution
data sets are put in brackets after the OOD data sets:

Fashion-MNIST (OOD for MNIST): [Xiao et al., 2017]
consists of greyscale images of 10 different types of clothing,



 each of size 28× 28× 1 (10, 000 test).

SVHN (OOD for CIFAR10, CIFAR100): [Netzer et al.,
2011] consists of color images of 10 different types of street
view digit, each of size 32× 32× 3 (26, 032 test).

Uniform Noise (OOD for all data sets): the uniform noise
data set consists of 10, 000 images, where each pixel value
is drawn i.i.d. from a uniform distribution in [0, 1].

Gaussian Noise (OOD for all data sets): the Gaussian
noise data set consists of 10, 000 images, where each pixel
value is drawn i.i.d. from a Gaussian distribution with unit
variance.

4.3.3 Geometric Gradient Analysis Features and
Prediction

To identify untrustworthy predictions with the GGA method,
we first generate the respective CSM for a given sample x.
Then, we compute simple features from the CSMs and use
them for training a simple outlier detector. Let k̂ be the index
associated with the class predicted by the neural network
Fθ for a given sample x. By exploiting the symmetry of
the cosine similarity matrix CSM, and observing that the
elements of the main diagonal are all equal to 1, we can
restrict the analysis to the set S to the elements above the
main diagonal, i.e., S = {cij}i<j . We compute five basic
statistical features (mean, maximum, minimum, standard
deviation, and energy) separately for two different sets S1 =
S∩{cij}i,j 6=k̂ and S2 = S∩{cij}i=k̂∨j=k̂. These statistics
constitute the ten features f1−10 provided to the outlier
detection model.

Figure 2 shows how the mean value of S1 of a CSM can
be used to differentiate between several data classes on the
MNIST data set that are not discriminated by the softmax
score alone. We exclude the softmax score from the GGA
features for better comparison between the methods. For
practical applications, the softmax score can be used as an
additional feature. For all the remaining detection tasks, we
train a lightweight on-line detector of anomalies (LODA)
[Pevný, 2016] with the GGA features of the correctly clas-
sified samples of the training set. We chose LODA as it is
designed to handle a large number of data points and does
not add noticeable computational overhead to the classifica-
tion pipeline. For LODA, we set the number of random cuts
to 100 for all experiments. The number of random bins was
set to 500 for the CIFAR data sets and 100 for MNIST and
UCR ECG after an evaluation on the validation set.

4.3.4 Threat Model

Let δ ∈ Rd be an adversarial perturbation. We use a variety
of adversarial attacks with different attributes to generate
untrustworthy predictions. We only consider successful ad-
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Figure 2: Box-plots of the mean value of the cosine similar-
ity matrices and the softmax scores of the neural network for
different data. The boxes show the quartiles of the data set
while the whiskers extend to 95% of the distributions. The
values are calculated on the MNIST validation set using the
MNIST model.

versarial attacks that change the classification result as un-
trustworthy and discard unsuccessful attacks. We employ
attacks with different norm constraints (`2, `∞) such that
the adversarial perturbation is smaller than some predefined
perturbation budget ||δ||p ≤ ε. We set the perturbation bud-
get ε in the `∞-norm to 0.3, 8/255, 8/255, 0.1 for MNIST,
CIFAR10, CIFAR100, and UCR ECG, respectively, as in
prior work [Madry et al., 2018, Fawaz et al., 2019]. For
attacks in the `2-norm we multiply the allowed perturbation
strength by 10. Furthermore, we use attacks that produce
high and low confidence predictions as low confidence ad-
versarial examples have shown to be effective against several
detectors [Chen et al., 2020]. To create high confidence mis-
classifications we use Projected Gradient Descent (PGD)
[Madry et al., 2018]. PGD is an iterative attack that tries to
maximize the loss w.r.t. the original class and subsequently
creates perturbations, which lead to wrong predictions with
high certainty. For the PGD attack we used a step size of
α = ε

4 and 70 attack iterations which lead to a success rate
of 100% for all models. To create low confidence predictions
we employ the B&B attack [Brendel et al., 2019], which
creates perturbations at the decision boundary of the attack.
For B&B we used a learning rate of 0.001 and 100 itera-
tions. Finally, we consider random rotations between −45
and 45 degrees and uniform noise attacks in the ε-ball for
non-gradient-based attacks (rotations are naturally omitted
for the time-series classification task).

We create several adaptive attacks that are designed to fool
the proposed GGA method [Grosse et al., 2017, Carlini and
Wagner, 2017]. With these attacks, we aim to obtain cosine
similarity matrices which resemble those of correctly classi-
fied samples. This means that the cosine similarity between
non-predicted classes in S1 should be high on average while
the cosine similarities in S2 are small.

Targeted attacks: We use a targeted PGD-based attack to
maximize the loss w.r.t. a random target class which is not
the ground truth. We argue that such attacks could result in
similar saliency maps for all other classes since the attack
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Figure 3: (a) Violin plots of ζx estimates for the MNIST dataset for different values of the standard deviation σ. (b) and (c)
show ζ estimates for different data types and constant σ for the MNIST and CIFAR10 data sets, respectively.

will optimize the input towards a local minimum of the loss
landscape w.r.t. the target class. We employ this attack both
with the mean squared error (T-MSE) and the categorical
cross-entropy loss (T-SCE). We used the same step size of
α = ε

4 and 100 attack iterations for all targeted attacks.

Cosine similarity attack (CSA): We use a PGD-based at-
tack and additionally add a cosine similarity objective to
optimize the perturbation such that the saliency maps of all
non-predicted classes align. The loss of the cosine similarity
objective is given by:

LCSA(x, k̂) =
1

|S1|
∑
cij∈S1

cij(x). (3)

For this attack we exchange the ReLU activation func-
tions [Agarap, 2018] with Softplus activations [Dugas et al.,
2000]. This was shown to be an effective way to calculate
a second-order gradient to attack the saliency maps of neu-
ral networks [Dombrowski et al., 2019]. We used the same
step size and attack iterations as for the targeted PGD at-
tacks. We achieved the highest success rate of the attack
by weighting the CS objective in equation 3 by 0.8 and the
cross-entropy objective with 0.2. As our cosine similarity
attack needs the second-order gradient for optimization it
may be prone to common pitfalls, such as gradient obfusca-
tion [Athalye et al., 2018]. We encourage other researchers
to create adaptive attacks that circumvent our method.

5 RESULTS AND DISCUSSION

In the following, we summarize and analyze the findings of
the experiments used to evaluate the proposed GGA method.

5.1 LOSS LANDSCAPE ANALYSIS

In a preliminary experiment, we evaluated if it is necessary
to analyze the geometry between multiple gradients in the

input space to detect untrustworthy data or if the gradient
w.r.t. the predicted class is sufficient for a geometrical anal-
ysis. To identify untrustworthy data with only the gradient
of the predicted class, we introduce a property that lets us
identify if a given data point lies on a local minimum of the
loss landscape. First, we observe that the following holds.

Theorem 1. Let ζx(x̃) be defined by

ζx(x̃) :=
〈−∇xL(Fθ(x̃), i), x− x̃〉
|∇xL(Fθ(x̃), i)||x− x̃|

, x̃ 6= x. (4)

The point x is a local minimum of L(Fθ(·), i) if and only if

0 ≤ lim inf
|x−x̃|→0

ζx(x̃) ≤ lim sup
|x−x̃|→0

ζx(x̃) ≤ 1. (5)

Proof. Can be found in the appendix.

We empirically tested if the properties of ζx defined in equa-
tion 4 can be used to differentiate between trustworthy and
untrustworthy predictions. Since ζx is a cosine similarity, it
holds that ζx ∈ [−1, 1]. To test our hypothesis, we estimate
ζx in a neighborhood of a sample x and check whether it
is non-negative. To generate points close to x we add i.i.d.
Gaussian noise with standard deviation σ > 0. Following
this procedure, we calculated the statistics of ζx in equa-
tion 4 with 1, 000 injections per sample on the MNIST and
CIFAR10 validation set. Subfigure 3a shows the behavior of
ζx for increasing values of σ for correct and incorrect clas-
sifications. In the direct vicinity of the original sample, the
gradients are mostly orthogonal to noise for both correct and
incorrect classifications with an average cosine similarity of
zero, indicating that the corresponding samples lie in a rela-
tively wide minimum of the loss. Incorrect classifications
show a slightly lower values of ζx. For an increasing stan-
dard deviation σ, the difference of ζx values between correct
and incorrect classifications increases. When the samples x̃
are too far from x the value ζx becomes normally distributed
around zero. The optimal value to distinguish trustworthy



 
Table 1: True negative rate in [%] for different augmentations, OOD data, and attacks. All values are given for a true positive
rate of 95%. Additionally the AUROC, AUPR-In, and AUPR-Out for all data types is shown.

Data set Method Noise PGD Rotation B&B B&BL2 OOD AUROC AUPR-In AUPR-Out

MNIST Baseline 45.8 3.3 59.7 99.9 99.3 55.0 86.1 46.7 97.8
ODIN 97.2 2.5 92.0 93.6 89.1 69.4 88.2 39.9 98.1
Maha 100.0 12.4 93.5 98.4 99.0 97.9 92.4 88.3 99.9
Ours 100.0 98.9 98.2 100.0 100.0 98.1 99.5 97.7 99.9

CIFAR10 Baseline 10.5 0.0 55.1 97.5 95.4 77.2 82.7 30.2 97.4
ODIN 25.3 0.0 45.1 14.0 14.5 83.6 81.2 29.7 96.8
Maha 93.1 85.9 73.2 90.8 91.3 88.2 90.0 72.1 99.0
Ours 95.6 92.6 84.5 93.2 93.3 84.2 96.3 83.7 99.4

CIFAR100 Baseline 32.4 0.0 40.1 80.7 81.5 6.7 55.2 11.3 93.6
ODIN 16.8 0.0 15.6 8.5 7.9 23.3 60.2 16.3 94.1
Maha 93.7 81.9 77.3 52.1 55.3 86.2 68.2 47.1 98.4
Ours 95.1 98.5 95.1 98.1 97.9 83.5 98.0 87.5 99.7

UCR ECG Baseline 6.7 0.5 N/A 1.5 1.8 0.0 11.8 6.9 74.7
ODIN 0.0 0.0 N/A 0.0 0.0 0.0 0.0 6.4 70.7
Ours 81.5 96.7 N/A 75.9 75.8 100.0 96.9 88.8 99.1

and untrustworthy predictions was approximately the re-
spective maximum perturbation magnitude ε for each data
set. A summary of the results is displayed in Figure 3.

While the quantity in equation 4 can be used to distinguish
untrustworthy and trustworthy samples for MNIST to some
degree, it has major limitations. First, the calculation ζx
is computationally expensive as it requires a considerable
amount of sampling operations and model evaluations. Sec-
ondly, adaptive adversarial attacks could move a sample
towards a local minimum of the loss landscape w.r.t. the
predicted class and circumvent this approach in our exper-
iments. Lastly, the method does not scale to more compli-
cated data sets like CIFAR10. In the following experiments,
we additionally consider the gradient directions w.r.t. other
classes with the GGA method, which makes the detection
of misclassifications induced by adversarial attacks substan-
tially more robust.

5.2 OUT-OF-DISTRIBUTION DETECTION AND
ADVERSARIAL ATTACKS

First, we studied the detection performance for OOD data
and adversarial attacks as described in the previous sec-
tion. The results are summarized in Table 1. As reported in
prior work, the baseline and ODIN methods fail to identify
adversarial attacks. In contrast, the proposed GGA shows
high identification performance for all attacks. The aug-
mentations which were the most difficult to detect for the
computer vision tasks were rotations. UCR ECG noise and
the B&B attacks were the most difficult to detect. For the
detection of OOD data, the GGA method achieves worse re-
sults than the Mahalanobis distance-based approach (Maha)
in some cases [Lee et al., 2018]. However, in contrast to

GGA, Maha requires additional finetuning of the OOD and
adversarial detector on OOD data and adversarial examples,
respectively.

5.3 ADAPTIVE ADVERSARIAL ATTACKS

Next, we studied the detection performance for adaptive ad-
versarial attacks that were specifically designed to fool the
GGA detector. As seen in Table 2, the proposed GGA shows
high identification performance on all adaptive attacks. The
targeted PGD attacks (T-SCE, T-MSE) show a higher suc-
cess rate than the untargeted PGD attack. Using the softmax
cross-entropy loss for the targeted attack was more effective
in our experiments. We observed that we can successfully
increase the cosine similarity between non-predicted classes
in the cosine similarity matrices with the cosine similarity
attack (CSA). CSA achieves a considerably higher success
rate than the standard PGD attack. However, combining this
objective with the goal to induce misclassifications seems
to be ineffective. A higher weight for the cosine similarity
objective results in considerably fewer misclassifications
and vice versa. The CSA attack was only able to induce mis-
classifications on 561, 1354, and 857 out of 10, 000 samples
for the MNIST, CIFAR10, and CIFAR100 data sets, respec-
tively. In contrast, the untargeted and targeted PGD attacks
achieved 100% success rate and led to a misclassification
on 10, 000 out of 10, 000 images on all data sets.

5.4 GRADIENT OBFUSCATION

Prior work demonstrates that defense mechanisms that are
apparently robust to adaptive attacks can often be circum-
vented with another or simpler optimization objectives



 
Table 2: Identification accuracy [%] for different adaptive
attacks for the proposed GGA. All values are given for a
TPR of 95%

Data set T-SCE T-MSE CSA

MNIST 95.4 97.3 72.1

CIFAR10 90.3 91.5 69.7

CIFAR100 96.9 97.8 71.6

[Athalye et al., 2018, Tramèr et al., 2020]. Complex ob-
jectives often result in noisy loss landscapes with unreliable
gradient information. To evaluate if this phenomenon ap-
plies to the CSA attack, we further inspect the behavior
of the CSM features over a wide variety of perturbed data
points. In particular, we inspect the behavior of the objective
in equation 3 along the direction of a successful adversarial
perturbation (g) and a random orthogonal direction (g⊥)
originating from a clean sample. This results in a three-
dimensional map where the x-axis g and y-axis g⊥ describe
the perturbation of the current data point, while the z-axis
shows the value described in equation 3. A representative
map for an individual sample of the MNIST data set is
shown in Figure 4. The predicted label of the classifier is
color-coded, where the upper plateau in orange corresponds
to the ground truth class while the lower plateau in blue
corresponds to the class predicted after the adversarial at-
tack. Near the decision boundary, the CSM characteristics
fluctuate as the gradient directions between saliency maps
of different classes start to diverge. It can be seen that the
mean value of the CSMs is a stable indicator of the classifier
decision. Furthermore, the smoothness of the map indicates
that the mean value can be utilized as an objective for an
adaptive attack.

orthogonal dir. (g⊥ · ε2)ε 0 −ε
adversarial dir. (g · ε1)

−ε 0 ε

Figure 4: Landscape of the mean value of cosine similarity
maps centered around a clean sample x. We calculate the
loss value for sample x + ε1 · γ + ε2 · γ⊥ where γ is the
direction of a successful adversarial attack and γ⊥ a random
orthogonal direction. The different colors indicate the pre-
dicted class of the neural network, with orange indicating
the correct class.

Table 3: Detection performance for cosine similarity maps
which are calculated with only the top-N prediction of the
classifier. AUROC, AUPR-In, and AUPR-Out in [%] for
different augmentations, OOD data, and attacks are shown.

CIFAR100 AUROC AUPR-In AUPR-Out

top-100 (all) 98.0 87.5 99.7

top-10 98.0 86.9 99.7

top-5 97.7 85.6 99.7

5.5 ENHANCING THE EFFICIENCY

The main computational cost of GGA is given by the pre-
liminary computation of the saliency maps for each refer-
ence class. Here, we show that it is possible to rely on a
partial computation of the CSM with only the top-N pre-
dicted classes. This allows GGA to scale to data sets with
a large number of output classes. Table 3 demonstrates the
detection performance for the same adversarial attacks and
outlier data as used in Section 5.2 for CSMs which are com-
puted with the top-N predictions only. Even for the case
of only 5% of the original saliency maps used to calculate
the CSMs the performance degrades only marginally for
all detection tasks. We observed that the cosine similarity
between the gradients of the predicted class and the non-
predicted classes is mostly sufficient for the detection of
untrustworthy predictions. We argue that this enables the
algorithm to perform well with largely reduced CSMs. In
our experiments the partial CSMs performed similarly on
the adaptive attacks as well. Note that the computation of
the CSMs can be parallelized, which results in no time over-
head between partial and full CSMs when sufficient memory
is used for the calculation. In practice, the computational
overhead can be adjusted based on the required detection
performance and available resources.

6 CONCLUSION

In this paper, we propose a novel geometric gradient anal-
ysis (GGA) method, which is designed to identify out-of-
distribution data and adversarial attacks in differentiable
neural networks. The proposed method does not require
retraining of the neural network model and can be used with
any pre-trained differentiable model. We demonstrate the ef-
fectiveness of GGA for the detection of untrustworthy data
with a simple framework. We first extract standard features
from the calculated cosine similarity matrices (CSMs) and
use them to identify untrustworthy data with a basic outlier
detection method. We show that GGA achieves competitive
performance for outlier detection without a complex classi-
fier. Furthermore, we observe that GGA effectively detects
state-of-the-art and adaptive adversarial attacks. Finally, we
demonstrate how GGA can be efficiently implemented for



 data sets with a large number of output classes. Future work
will explore the end-to-end training of a GGA-based detec-
tor with the CSMs.
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A NECESSARY AND SUFFICIENT
CONDITIONS FOR LOCAL MINIMA
OF THE LOSS FUNCTION

The proof of Theorem 1 is divided in two steps. We first
prove that equation 5 is necessarily met if the function x 7→
L(Fθ(x), i) attains a local minimum in x. This follows from

Lemma 1. Let f : Rd → R be a C1-function and let x be
a local minimum of f . Then it holds

0 ≤ lim inf
|x−x̃|→0

〈−∇f(x̃), x− x̃〉
|∇f(x̃)||x− x̃|

≤ lim sup
|x−x̃|→0

〈−∇f(x̃), x− x̃〉
|∇f(x̃)||x− x̃|

≤ 1.

Proof. Taylor expanding around x̃ gives

f(x) = f(x̃) + 〈∇f(x̃), x− x̃〉+ o(|x− x̃|),

which can be reordered to

f(x̃)− f(x)

|x− x̃|
=
〈−∇f(x̃), x− x̃〉

|x− x̃|
+ o(1).

If x is a local minimum, one obtains

0 ≤ lim inf
|x−x̃|→0

〈−∇f(x̃), x− x̃〉
|x− x̃|

which directly implies the desired inequality.

Non-negativity of the cosine similarity in equation 4 can
also be brought into correspondence with positive semi-
definiteness of the Hessian of f which follows from

Lemma 2. Let f : Rd → R be a C2-function. Then for all
vectors e ∈ Rd with |e| = 1 it holds

lim
r→0

〈
∇f(x+ re)−∇f(x)

r
, e

〉
= 〈Hf(x)e, e〉 .

Proof. We compute〈
∇f(x+ re)−∇f(x)

r
, e

〉
=

〈
1

r

∫ r

0

d

dt
∇f(x+ te)dt, e

〉
=

〈
1

r

∫ r

0

Hf(x+ te)edt, e

〉
where Hf = (∂i∂jf)i,j denotes the Hessian matrix of f .
Since f is a C2-function, the integral 1

r

∫ r
0
Hf(x + te)dt

converges to Hf(x) as r → 0. Therefore, one obtains

lim
r→0

〈
1

r

∫ r

0

Hf(x+ te)edt, e

〉
= 〈Hf(x)e, e〉 .

We can now proceed to the proof of Theorem 1.

Proof of Theorem 1. Applying Lemma 1 to f(x) :=
L(Fθ(x), i) shows that equation 5 is necessary for x to
be a local minimum.

For the converse direction we argue as follows: First, we
note that equation 5 implies that x is a critical point with
∇f(x) = 0. Otherwise one could set x̃ = x− t∇f(x) with
t > 0 and obtain

〈−∇f(x̃), x− x̃〉
|∇f(x̃)||x− x̃|

=
〈−∇f(x̃),∇f(x)〉
|∇f(x̃)||∇f(x)|

→ −1,

as |x− x̃| → 0, since∇f is continuous. This is a contradic-
tion to equation 5 and hence∇f(x) = 0.

This allows us to compute

〈−∇f(x̃), x− x̃〉
|∇f(x̃)||x− x̃|

=
〈∇f(x)−∇f(x̃), x− x̃〉
|∇f(x)−∇f(x̃)||x− x̃|

=

〈
∇f(x)−∇f(x̃)

|x− x̃|
,
x− x̃
|x− x̃|

〉
|x− x̃|

|∇f(x)−∇f(x̃)|
.

Hence, if this expression is asymptotically non-negative for
all x̃ converging to x, we can choose arbitrary e ∈ Rd with
|e| = 1, define x̃ = x+ re and apply Lemma 2 to get

0 ≤ lim
r→0

〈
∇f(x+ re)−∇f(x)

r
, e

〉
= 〈Hf(x)e, e〉.

Since e was arbitrary, this means that x is a local minimum
of the loss f .
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