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Abstract

This paper studies the relationship between gen-
eralization and privacy preservation of machine
learning in two steps. We first establish an align-
ment between the two facets for any learning al-
gorithm. We prove that (ε, δ)-differential privacy
implies an on-average generalization bound for a
multi-sample-set learning algorithm, which further
leads to a high-probability bound for any learning
algorithm. We then investigate how the iterative
nature shared by most learning algorithms influ-
ences privacy preservation and further generaliza-
tion. Three composition theorems are proved to
approximate the differential privacy of an iterative
algorithm through the differential privacy of its ev-
ery iteration. Integrating the above two steps, we
eventually deliver generalization bounds for iter-
ative learning algorithms. Our results are strictly
tighter than the existing works. Particularly, our
generalization bounds do not rely on the model size
which is prohibitively large in deep learning. Ex-
periments of MLP, VGG, and ResNet on MNIST,
CIFAR-10, and CIFAR-100 are in full agreement
with our theory. The theory applies to a wide spec-
trum of learning algorithms. In this paper, it is
applied to the Gaussian mechanism as an example.

1 INTRODUCTION

Generalization to unseen data and privacy preservation
are two increasingly important facets of machine learning.
Specifically, good generalization guarantees that an algo-
rithm learns the underlying patterns in the training data
rather than just memorizes the data [Vapnik, 2013, Mohri
et al., 2018]. In this way, good generalization abilities pro-
vide confidence that the models trained on existing data
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can be applied to similar but unseen scenarios. Additionally,
massive personal data has been collected, such as financial
and medical records. How to discover the highly valuable
population knowledge carried in the data while protecting
the highly sensitive individual privacy has profound impor-
tance [Dwork and Roth, 2014, Pittaluga and Koppal, 2016].

This paper investigates the relationship between generaliza-
tion and privacy preservation in machine learning algorithms
by the following two steps: (1) exploring the relationship be-
tween generalization and privacy preservation in any learn-
ing algorithm; and (2) analyzing how the iterative nature
shared by most learning algorithms would influence the
privacy-preserving ability and further the generalizability.

We first prove two theorems that upper bound the generaliza-
tion error of an learning algorithm via its differential privacy.
Specifically, we prove a high-probability upper bound for
the generalization error,

GenS,A(S) = RD(A(S))− R̂S(A(S)),

where S is the training set sampled i.i.d. from some distri-
bution D, A(S) is the hypothesis learned by algorithm A
on S,RD(A(S)) is the expected risk, and R̂S(A(S)) is the
empirical risk. This bound is established based on a novel
on-average generalization bound for any (ε, δ)-differentially
private multi-sample-set learning algorithm. These results
indicate that the algorithms with a good privacy-preserving
ability also have a good generalizability. We, therefore, can
expect to design novel learning algorithms for better gener-
alizability by enhancing its privacy-preserving ability.

We then studied how the iterative nature shared by most
learning algorithms influences the privacy-preserving abil-
ity. Generally, the privacy-preserving ability of an iterative
algorithm degenerates along iterations, since the amount of
leaked information cumulates when the algorithm is pro-
gressing. To capture this degenerative property, we further
prove three composition theorems that calculate the dif-
ferential privacy of any iterative algorithm via the differ-
ential privacy of its every iteration. Combining with the
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 established relationship between generalization and privacy
preservation, our composition theorems help characterizing
the generalizabilities of iterative learning algorithms.

Our results considerably extend the current understanding of
the relationship between generalization and privacy preser-
vation in iterative learning algorithms.

Existing works [Dwork et al., 2015, Nissim and Stemmer,
2015, Oneto et al., 2017] have proved some high-probability
generalization bounds in the following form,

P
(
|GenS,A(S) | > a

)
< b, (1)

where a and b are two positive constant real numbers. Our
high-probability bound is strictly tighter than the current
tightest results by [Nissim and Stemmer, 2015] which only
holds for ε ≤ 1

10 from two aspects: (1) our bound tightens
the term a from 13ε to 4ε and the term b from 2δ

ε log
(

2
ε

)
to 2e−1.7εδ

ε log
(

2
ε

)
, and (2) our bound further cover the

case when ε > 1
10 . These improvements are significant in

practice because the factor ε can be as large as 10 in the
experiments by [Abadi et al., 2016]. Also, the bounds by
[Nissim and Stemmer, 2015] are only for binary classifica-
tion, while ours apply to any differentially private learning
algorithm.

There are also existing literature on the differential pri-
vacy composition bound [Dwork and Roth, 2014, Kairouz
et al., 2017], and the current state-of-art bound is given by
[Kairouz et al., 2015] using "privacy region" technique. The
approximation of factor δ in our composition theorems is
tighter than that in [Kairouz et al., 2017] by

δ
eε − 1

eε + 1

(
T −

⌈
ε′

ε

⌉)
,

where T is number of iterations, while the estimate of ε′

remains the same. This improvement is significant because
the iteration number T can be considerably large in prac-
tice. This helps our composition theorems to further tighten
our generalization bounds for iterative learning algorithms
considerably.

We trained MLPs on the MNIST dataset [LeCun, 1998], and
VGG-16 [Simonyan and Zisserman, 2014] and ResNet-18
[He et al., 2016] on the CIFAR-10 and CIFAR-100 datasets
[Krizhevsky et al., 2009]. Membership inference attack
[Yeom et al., 2018, Shokri et al., 2017] is performed in ev-
ery epoch. The membership inference attack accuracy and
the generalization error (the difference between test error
and training error) in every epoch are collected for evaluat-
ing the privacy-preserving ability and the generalizability,
respectively. The collected (membership inference attack
accuracy, generalization error) pairs, (membership inference
attack accuracy, training time) pairs, and (generalization er-
ror, training time) pairs are divided into groups according
to the neural architecture and the dataset. Spearman’s rank

order correlation test [Spearman, 1987] is performed to all
groups. The correlation coefficients and p-values show three
statistically significant correlations: (1) the positive corre-
lation between the generalization and privacy preservation;
(2) the negative correlation between the generalization and
training time; and (3) the negative correlation between the
privacy preservation and training time, which are in full
agreement with out theory.

Our results apply to a wide spectrum of machine learning
algorithms. This paper applies them to the iterative Gaus-
sian mechanism with mini-batch (IGMM), which includes
stochastic gradient Langevin dynamics [Welling and Teh,
2011] as an example of the stochastic gradient Markov chain
Monte Carlo scheme [Ma et al., 2015] and agnostic fed-
erated learning [Geyer et al., 2017]. Our results deliver
generalization bounds for agnostic federated learning. The
obtained generalization bounds do not explicitly rely on
the model size, which can be prohibitively large in modern
methods, such as deep neural networks.

2 NOTATIONS AND PRELIMINARIES

Suppose S = {(x1, y1), . . . , (xN , yN )|xi ∈ X ⊂ RdX ,
yi ∈ Y ⊂ RdY , i = 1, . . . , N} is a training sample set,
where xi is the i-th feature, yi is the corresponding label,
and dX and dY are the dimensions of the feature and the
label, respectively. For the brevity, we define zi = (xi, yi).
We also define random variables Z = (X,Y ), such that
all zi = (xi, yi) are independent and identically distributed
(i.i.d.) observations of the variable Z = (X,Y ) ∈ Z, Z ∼
D, whereD is the data distribution. For any setU , we denote
its boundary points as ∂U . For any function f(x) : R→ R,
we write g = Õ(f), if there exists another function h, such
that g = fh, and for any α > 0, limx→∞

h(x)
xα = 0. We

also write g = Ω̃(f) if f = Õ(g), and g = Θ̃(f) if both
f = Õ(g) and g = Õ(f). We also use p as the probability
density, with pV and PV respectively the probability density
and the probability conditional on any random variable V .

A machine learning algorithm A learns a hypothesis,

A(S) ∈ H ⊂ YX = {f : X → Y},

from the training sample S ∈ ZN . The expected risk
RS(A(S)) and empirical risk R̂D(A(S)) of the algorithm
A are defined as follows,

RD(A(S)) = Ez∼D`(A(S), z),

R̂S(A(S)) =
1

N

N∑
i=1

`(A(S), zi),

where ` : H × Z → R+ is the loss function. It is worth
noting that both the algorithm A and the training sample set
S can introduce randomness in the expected riskRD(A(S))
and empirical risk R̂S(A(S)). The generalization error is



 defined as the difference between the expected risk and
empirical risk,

GenS,A(S)
4
= RD(A(S))− R̂S(A(S)),

whose upper bound is called the generalization bound.

Differential privacy measures the ability to preserve privacy,
which is defined as follows (cf. [Dwork and Roth, 2014]).

Definition 1 (Differential Privacy). A stochastic algorithm
A is called (ε, δ)-differentially private if for any hypothesis
subset H0 ⊂ H and any neighboring sample set pair S
and S′ which differ by only one example (called S and S′

adjacent), we have

log

[PA(S)(A(S) ∈ H0)− δ
PA(S′)(A(S′) ∈ H0)

]
≤ ε. (2)

The algorithm A is also called ε-differentially private, if it
is (ε, 0)-differentially private.

Differential privacy measures the "worst case" distance be-
tween the hypothesis distributions, in the sense that for a
(ε, δ) differential privacy preserving algorithm, ε needs to be
larger than the left hand of eq.(2) for anyH0. We then intro-
duce KL divergence, which measures the "average" distance
between two distributions, and are helpful in approximating
differential privacy (cf. [Kullback and Leibler, 1951]).

Definition 2 (KL Divergence). Suppose two distributions
P (·) and Q(·) are defined on the same supportH. Then the
KL divergence between Q and P is defined as

DKL(Q‖P ) =

∫
h∈H

(
log

dQ(h)

dP (h)

)
dQ(h).

In this paper, we will slightly abuse the notations of dis-
tribution and its cumulative distribution function when no
ambiguity is introduced, since there is a one-one mapping
between them if zero-probability events are ignored.

3 GENERALIZATION BOUNDS FOR
ITERATIVE DIFFERENTIALLY
PRIVATE ALGORITHMS

This section establishes the generalizability of iterative dif-
ferentially private algorithms. The establishment has two
steps. We first establish generalization bounds for any dif-
ferentially private learning algorithm. Then, we investigate
how the iterative nature shared by most learning algorithms
would influence the differential privacy and further the gen-
eralizability via three composition theorems. We also sketch
the proofs for these results and demonstrate their advantages
compared with existing literature.

3.1 BRIDGING GENERALIZATION AND
PRIVACY PRESERVATION

We first prove a high-probability generalization bound for
any (ε, δ)-differentially private machine learning algorithm
as follows.

Theorem 1 (High-Probability Generalization Bound). Sup-
pose algorithmA is (ε, δ)-differentially private, the training
sample size (c1, · · · , c7 are some positive constants)

N ≥ max

{
c1
ε2

ln
( c2
e−c3εδ

)
,

c4
c5(1− c6e−ε)

ln c7e
−εδ

}
,

and the loss function ‖`‖∞ ≤ 1. Then, for any data distri-
bution D over data space Z , eq.(1) holds with

a =4ε, b =

2e−1.7εδ

ε
ln

(
2

ε

)
, ε ≤

1

5
;

a =1.2(1− 0.9e
−ε

), b =
18e−εδ

1− 0.9e−ε
ln

(
220

1− 0.9e−ε

)
, ε >

1

5
.

Theorem 1 demonstrates that a good privacy-preserving
ability implies a good generalizability. Thus, we can unify
the algorithm designing for enhancing privacy preservation
and for improving generalization.

3.1.1 Proof Sketch

We now give the proof sketch for Theorem 1 (the details
are deferred to Appendix A). The proofs have three stages:
(1) we first prove an on-average generalization bound for
multi-sample-set learning algorithms defined as below; (2)
we then obtain a high-probability generalization bound for
multi-sample-set algorithms; and (3) we eventually prove
Theorem 1 by reduction to absurdity.

Definition 3 (Multi-Sample-Set Learning Algorithms). Sup-
pose the training sample set S with size kN is separated to
k sub-sample-sets S1, . . . , Sk, each of which has the size of
N . In another word, S is formed by k sub-sample-sets as

S = (S1, . . . , Sk).

The hypothesis B(S) learned by multi-sample-set algorithm
B on dataset S is defined as follows,

B : Zk×N 7→ H × {1, . . . , k}, B(S) =
(
hB(S), iB(S)

)
.

To obtain the high-probability generalization bound for a
differentially private algorithm A on N examples, we sam-
ple KN examples and divide them into K sub-sample-sets.
A (2ε, δ)-differentially private multi-sample-set algorithm
B is constructed as (1) employing an (ε, δ)-differentially
private algorithm A to learn K hypotheses from the K sub-
sample-sets; and (2) performing an ε-differentially private
mechanism (e.g., exponential mechanism) to select the final
hypothesis and its index (see Sec A.2). The generalization



 bound of algorithm A is then obtained from the bound of
multi-sample-set algorithm B (see Lemma 1).

Stage 1: Prove an on-average generalization bound for
multi-sample-set learning algorithms.

We first prove the following on-average generalization
bound for multi-sample-set learning algorithms.

Theorem 2 (On-Average Multi-Sample-Set Generalization
Bound). Let multi-sample-set algorithm B : Zk×N 7→
H × {1, · · · , k} be (ε, δ)-differentially private and the loss
function ‖`‖∞ ≤ 1. Then, for any data distribution D over
data space Z , we have the following inequality,∣∣∣∣ E

S∼DN ,B(S)

[
GenSiB(S),hB(S)

]∣∣∣∣ ≤ e−εkδ + 1− e−ε. (3)

Stage 2: Prove a high-probability generalization bound
for multi-sample-set algorithms.

Markov bound (cf. [Mohri et al., 2018], Theorem C.1) is an
important concentration inequality in learning theory. Here,
we slightly modify the original version as follows,

Ex [h(x)] ≥ Ex
[
h(x)Ih(x)≥g(x)

]
≥ Ex

[
g(x)Ih(x)≥g(x)

]
.

Then, combining it with Theorem 2, we derive the following
high-probability generalization bound for multi-sample-set
algorithms.

Theorem 3 (High-Probability Multi-Sample-Set General-
ization Bound). Let all the notations be as Theorem 2. Then,
if ε ≤ 17

50 , for any k ≤ ε
1.7e−1.7εδ , we have

P
(

GenSiB(S)
,hB(S)

≤ ke−1.7εδ + 1.7ε
)
≥ 85ε

127
.

Otherwise, if ε > 17
50 , for any k ≤ 1−e−ε

10e−εδ ,

P
(
GenSiB(S)

,hB(S)
≤ ke−εδ + 1.1(1− e−ε)

)
≥ 1− e−ε

219
.

Stage 3: Prove Theorem 1 by Reduction to Absurdity.

We eventually prove Theorem 1 by reduction to absurdity.
Assume there exists an algorithm A which conflicts with
Theorem 1. We can then construct an algorithm B based on
the exponential mechanism which is defined as follows (cf.
[McSherry and Talwar, 2007]]).

Definition 4 (Exponential Mechanism). Suppose that S is
a sample set, I is an index set, ε is the privacy parameter,
and u : (S, r) 7→ R+ is a function with the sensitivity ∆u
defined by

∆u
∆
= max

i∈I
max

S,S′ adjacent
|u(S, i)− u(S′, i)|.

Then, the exponential mechanism E(S, u, I, ε) outputs an
element i ∈ I with probability proportional to exp( εu(S,i)

2∆u ).

Then, we can prove the following lemma.

Lemma 1. Suppose a positive integer N satisfies that N ≥
max{ 2

0.077ε2 ln
(

43
254e−1.7εδ

)
, 200

ln 0.9(1−0.9e−ε) ln 9e−εδ
48180 }. If

for an (ε, δ) differential privacy preserving algorithm A :
ZN → H, there is

P
(
GenS,A(S) ≤ a

)
<
b

2
, (4)

for a and b defined as Theorem 1. Then if ε < 1
5 , there exists

a multi-sample-set algorithmB : Zk×N → H×{1, · · · , k}
with (1.7ε, δ)-differential privacy, k = ε

e−1.7εδ , and

P
(
GenS̃iB(S̃)

,hB(S̃)
≤ ke−1.7εδ + 1.7× 1.7ε

)
<

85ε

127
. (5)

If ε ≥ 1
5 , there exists a multi-sample-set algorithm

B : Zk×N → H × {1, · · · , k} with (ε − ln(0.9), δ)-
differential privacy, k = 1−0.9e−ε

9e−εδ , and

P
(

GenS̃iB(S̃)
,hB(S̃)

≤ 0.9ke−εδ + 1.1(1− 0.9e−ε)

)
<

1− 0.9e−ε

219
. (6)

Therefore, for any algorithm A on which Theorem 1 fails
to hold, eq. (5) or eq.(6) in Lemma 1 will conflict with
Theorem 3, which completes the proof of Theorem 1.

Remark 1. Obtained bounds are all in the same form as
eq.(1), where multi-sample-set algorithms help significantly
decrease b with a small increase of a. In this way, we obtain
a tighter generalization bound.

3.1.2 Comparison with Existing Results

This section compares our results with the existing works.

Comparison of Theorem 1. There have been several high-
probability generalization bounds for (ε, δ)-differentially
private machine learning algorithms.

Dwork et al. [2015] proved that

P
[
GenS,A(S) < 4ε

]
> 1− 8δε.

Oneto et al. [2017] proved that

P
[
GenS,A(S) <

√
6R̂S(A(S))ε̂+ 6ε2 +

6

N

]
> 1− 3e−Nε

2

,

P
[
GenS,A(S) <

√
4V̂S(A(S))ε̂+

5N

N − 1

(
ε2 + 1/N

)]
> 1− 3e−Nε

2

,



 where ε̂ = ε +
√

1/N , and V̂S(A(S)) is the empirical
variance of `(A(S), ·):

V̂S(A(S)) = Covz∼S(`(A(S), z)).

Nissim and Stemmer [2015] proved that

P
[
|GenS,A(S) | < 13ε

]
> 1− 2δ

ε
log

(
2

ε

)
.

This is the existing tightest high-probability generalization
bound in the literature. However, this bound only stands for
binary classification problems with ε ≤ 1

10 . By contrast,
our high-probability generalization bound holds for any
machine learning algorithm and stays valid for any ε > 0.

Also, our bound is strictly tighter. All the bounds, including
ours, are in the same form as eq.(1). Apparently, a smaller a
and a smaller b imply a tighter generalization bound. Our
bound improves the current tightest result from two aspects:

• For ε ≤ 1
10 , our bounds tightens the term a from 13ε

to 4ε.

• For ε ≤ 1
10 , our bounds tightens the term b from

2δ
ε log

(
2
ε

)
to 2e−1.7εδ

ε log
(

2
ε

)
.

• Our bounds further cover the case when ε > 1
10 .

These improvements are significant. Abadi et al. [2016]
conducted experiments on the differential privacy in deep
learning. Their empirical results demonstrate that the factor
ε can be as large as 10.

Comparison of Theorem 2. There is only one related work
in the literature that presents an on-average generalization
bound for multi-sample-set algorithm. Nissim and Stemmer
[2015] proved that,∣∣∣∣ E

S∼DN ,B(S)

[
GenSiB(S),hB(S)

]∣∣∣∣ ≤ kδ + 2ε.

Our bound is tighter by a factor of eε

2 . According to the
empirical results by [Abadi et al., 2016], this factor can be as
large as e10 ≈ 20, 000. It is a significant multiplier for loss
function. Furthermore, the result by [Nissim and Stemmer,
2015] stands only for binary classification, while our result
applies to all differentially private learning algorithms.

3.2 HOW THE ITERATIVE NATURE
CONTRIBUTES?

Most machine learning algorithms are iterative, which may
degenerate the privacy-preserving ability along with itera-
tions. This section studies the degenerative nature of the pri-
vacy preservation in iterative machine learning algorithms
and its influence to the generalization.

We have the following composition theorem.

Theorem 4 (Composition Theorem I). Suppose an iterative
machine learning algorithm A has T steps: {Wi(S)}Ti=0,
where Wi is the learned hypothesis after the i-th iteration.
Suppose the i-th iterator

Mi : (Wi−1, S) 7→Wi

is (ε, δ)-differentially private. Then, the algorithm A is
(ε′, δ′)-differentially private, where ε′ = min {ε′1, ε′2, ε′3}
with

ε′1 =

T∑
i=1

εi,

ε′2 =

√√√√√2

T∑
i=1

ε2
i log

e+

√∑T
i=1 ε

2
i

δ̃


+

T∑
i=1

(eεi − 1) εi
eεi + 1

,

ε′3 =

T∑
i=1

(eεi − 1) εi
eεi + 1

+

√√√√2 log

(
1

δ̃

) T∑
i=1

ε2
i ,

and δ̃ is an arbitrary positive real constant.

Correspondingly, the factor δ′ is defined as the maximal
value of the following equation with respect to {αi}Ti=1 ∈ I ,

2−
T∏
i=1

(
1− eαi δi

1 + eεi

)
−

T∏
i=1

(
1− δi

1 + eεi

)
+ δ̃, (7)

where I = ∂{
∑T
i=1 αi = ε′, εi ≥ αi ≥ 0}, and δ̃ is the

same real constant mentioned above.

When all the iterations have the same privacy-preserving
ability, we can tighten the approximation of the factor δ′ as
the following corollary.

Corollary 1 (Composition Theorem II). When all the itera-
tions are (ε, δ)-differential private, δ′ is

δ′ =1−
(
1− eε δ

1 + eε

)⌈ ε′
ε

⌉(
1− δ

1 + eε

)T−⌈ ε′
ε

⌉

+ 1−
(
1− δ

1 + eε

)T
+ δ̃

=

(
T −

⌈
ε′

ε

⌉)
2δ

1 + eε
+

⌈
ε′

ε

⌉
δ + δ̃ +O

((
δ

1 + eε

)2
)
.

Here we make some explanation about the above corollary.
The maximum of δ′ is achieved when at most T −

⌈
ε′

ε

⌉
elements αi 6= 0. We note that

(1− x)n = 1− nx+O(x2).



 Then, the δ′ in Theorem 4 can be estimated as

δ′ =1−
(
1− eε δ

1 + eε

)⌈ ε′
ε

⌉(
1− δ

1 + eε

)T−⌈ ε′
ε

⌉

+ 1−
(
1− δ

1 + eε

)T
+ δ̃

≈
(
T −

⌈
ε′

ε

⌉)
2δ

1 + eε
+

⌈
ε′

ε

⌉
δ + δ̃.

When all the iterators Mi satisfy εi ≡ ε, we can further
tighten the estimation of δ′ for ε′3 in Theorem 4.

Corollary 2 (Composition Theorem III). Suppose the iter-
atorsMi are (ε, δi)-differentially private and all the other
conditions in Theorem 4 hold. Then, algorithm A is (ε′, δ′)-
differentially private, where ε′ = min{ε′1, ε′2, ε′3}, and

δ′ =e−
ε′+Tε

2

(
1

1 + eε

(
2Tε

Tε− ε′

))T (
Tε+ ε′

Tε− ε′

)− ε′+Tε
2ε

+ 2−
(
1− eε δ

1 + eε

)⌈ ε′
ε

⌉(
1− δ

1 + eε

)T−⌈ ε′
ε

⌉

−
(
1− δ

1 + eε

)T
.

Furthermore, for the case ε′ = ε′3, δ′ is strictly tighter than
that in Theorem 4.

The three composition theorems extend the developed rela-
tionship between generalization and privacy preservation to
iterative machine learning algorithms. At this point, we es-
tablish the theoretical foundation for the generalizability of
iterative differentially private machine learning algorithms.

3.2.1 Proof Sketch

We now sketch the proofs for Theorem 4 (for more details,
please refer to Appendix B). The proofs have four stages:
(1) we first approximate the KL-divergence between hy-
potheses learned on neighboring training sample sets; (2)
we then prove a composition bound for algorithms with step
i εi-differentially private ; (3) this composition theorem is
extended to for algorithms with step i (εi, δi)-differentially
private; and (4) we eventually tighten the result in (3) to ob-
tain Theorem 4. We also proved two additional composition
theorems as by-products. The two composition theorems
are weaker than Theorem 4 but play essential roles in the
proofs.

It is worth noting that the proofs of composition theorems
are significantly different from [Kairouz et al., 2017] which
calculate the composition combining ε and δ. This combi-
nation causes difficulties in obtaining tight estimation. In
contrast, our Theorem 4 and Corollary 2 separate the consid-
erations on ε and δ by coupling technique and momentum
method, which considerably improve the composition theo-
rem.

Stage 1: Approximate the KL-divergence between hy-
potheses learned on neighboring training sample sets.

It would be technically difficult to approach directly the
differential privacy of an iterative learning algorithm from
the differential privacy of every iteration. To relieve the
technical difficulty, we employ KL divergence as a bridge
in this paper. For any ε-differentially private learning algo-
rithm, we prove the following lemma to approximate the
KL-divergence between hypotheses learned on neighboring
training sample sets.

Lemma 2. If A is an ε-differentially private algorithm ,
then for every neighbor database pair S and S′, the KL
divergence between hypotheses A(S) and A(S′) satisfies
the following inequality,

DKL(A(S)‖A(S′)) ≤ εe
ε − 1

eε + 1
.

To the best of our knowledge, Lemma 2 is the current tightest
bound of KL divergence by differential privacy parameter
ε. There are two related results in the literature, which are
considerably looser than ours. Dwork et al. [2010] proved
an inequality of the KL divergence as follows,

DKL(A(S)‖A(S′)) ≤ ε(eε − 1).

Then, Dwork and Rothblum [2016] further improved it to

DKL(A(S)‖A(S′)) ≤ 1

2
ε(eε − 1). (8)

Compared with ours, eq. (8) is larger by a factor (1 + eε)/2,
which can be very large in practice.

Stage 2: Prove a weaker composition theorem where the
ith iteration is εi-differential private.

Based on Lemma 2, we can prove the following composition
theorem as a preparation theorem.

Theorem 5 (Composition Theorem IV). Suppose an
iterative machine learning algorithm A has T steps:
{Wi(S)}Ti=1. Specifically, we define the i-th iterator as fol-
lows,

Mi : (Wi−1(S), S) 7→Wi(S). (9)

Assume that W0 is the initial hypothesis (which does not
depend on S). If for any fixed Wi−1,Mi(Wi−1, S) is εi-
differentially private, then {Wi}Ti=0 is (ε′, δ′)-differentially
private that

ε′ =

√√√√2 log

(
1

δ′

)( T∑
i=1

ε2
i

)
+

T∑
i=1

εi
eεi − 1

eεi + 1
.

Stage 2: Prove a weaker composition theorem where the
ith iteration is (εi, δi)-differentially private. The follow-
ing technical lemma is adopted to derive the generalization
bound:



 Lemma 3 (cf. [Dwork and Roth, 2014], Theorem 3.17).
For any random variables Y and Z, we have that

Dδ
∞(Y ‖Z) ≤ ε, Dδ

∞(Z‖Y ) ≤ ε,

if and only if there exist random variables Y ′, Z ′ such that

∆(Y ‖Y ′) ≤ δ

eε + 1
, ∆(Z‖Z ′) ≤ δ

eε + 1
,

D∞(Y ′‖Z ′) ≤ ε, D∞(Z ′‖Y ′) ≤ ε.

Here Dδ
∞ is the δ-approximate max divergence, D∞ is the

max divergence, and ∆ is the statistical distance, and we
defer the formal definitions to Appendix B.1.

Intuitively, lemma 3 allows us to separate ε and δ for vari-
ables with δ max divergence ε and derive coupled variables
with max divergence ε. Based on Lemmas 3, we can prove
the following composition theorem whose estimate of ε′ is
somewhat looser than our main results.

Theorem 6 (Composition Theorem V). Let all the con-
ditions and notations in Theorem 5 hold except that the
ith step is (εi, δi) differentially private. Then, {Wi}Ti=0 is
(ε′, δ′)-differentially private where

ε′ =

√√√√2 log

(
1

δ̃

)( T∑
i=1

ε2i

)
+

T∑
i=1

εi
eεi − 1

eεi + 1
,

δ′ = max
{αi}Ti=1∈∂I

δ̃ + 2−
T∏
i=1

(
1− eαi δi

1 + eεi

)

−
T∏
i=1

(
1− δi

1 + eεi

)
,

and I = {
∑T
i=1 αi = ε′, αi ≥ 0}.

Stage 4: Prove Theorem 4.

By the same routine of deriving Theorem 6 together with
Theorem 3.5 in [Kairouz et al., 2017], we eventually extend
the weaker versions to Theorem 4.

3.2.2 Comparison with Existing Results

Our composition theorem is strictly tighter than the existing
results: a classic composition theorem is as follows (see
[Dwork and Roth, 2014], Theorem 3.20 and Corollary 3.21,
pp. 49-52),

ε′ =

T∑
i=1

εi(e
εi − 1) +

√√√√2 log

(
1

δ

) T∑
i=1

ε2
i ,

δ′ =δ̃ +

T∑
i=1

δi,

where δ̃ is an arbitrary positive real number, (ε′, δ′) is the
differential privacy of the whole algorithm, and (εi, δi) is
the differential privacy of the i-th iteration.

Currently, the tightest approximation is given by [Kairouz
et al., 2017] as follows,

ε′ = min {ε′1, ε′2, ε′3} ,
δ′ =1− (1− δ)T (1− δ̃),

where ε′1, ε′2, and ε′3 are the same as those in Theorem 4.
Therefore, their estimate of the ε′ is the same as ours, while
their δ′ is also larger than ours approximately by

δ
eε − 1

eε + 1

(
T −

⌈
ε′

ε

⌉)
.

The iteration number T is usually overwhelmingly large,
which guarantees our advantage is significant.

4 EXPERIMENTS

We conducted a systematic experiment to verify three rela-
tionships suggested by our theory: (1) a positive correlation
between privacy preservation and generalization; (2) a nega-
tive correlation between privacy preservation and training
time; and (3) a negative correlation between generalization
and training time. The empirical results are in full agreement
with the theoretical results.

4.1 IMPLEMENTATION DETAILS

Three benchmark image datasets, MNIST [LeCun, 1998],
CIFAR-10 and CIFAR-100 [Krizhevsky et al., 2009], are
used in our experiments. The separations of the training sets
and the test sets are the same as the official versions. For
MNIST, we trained one-hidden-layer MLP, in which the
number of the hidden neurons is 100. For CIFAR-10 and
CIFAR-100, we trained VGG-16 [Simonyan and Zisserman,
2014] and ResNet-18 [He et al., 2016].

SGD is employed to train the model. The batch size is set
as 128, the momentum factor is set as 0.9, and the weight
decay factor is set as 0.0005. For the experiments on MNIST,
every model is trained for 50 epochs. The learning rate is
initialized as 0.1 and decayed by 0.1 every 20 epochs. For
the experiments on CIFAR-10 and CIFAR-100, every model
is trained for 100 epochs. The learning rate is initialized as
0.1 and decays by 0.1 every 40 epochs.

Membership inference attack [Yeom et al., 2018, Shokri
et al., 2017] is performed to the model in every epoch in
order to evaluate the privacy-preserving ability. Usually,
a larger membership inference attack indicates a weaker
privacy-preserving ability. The implementation of member-
ship inference attack is from JD Explore Academy Trustwor-
thy AI Toolkit. We also calculate the generalization error (
the difference between training and test errors) of the model
in every epoch. Similarly, a larger generalization error indi-
cates a weaker generalizability.



 
Table 1: Spearman’s rank order correlation coefficient (SCC) and p value of: (1) membership inference attack accuracy and
generalization error; (2) membership inference attack accuracy and training time; and (3) generalization error and training
time.

MLP - MNIST VGG-16 - CIFAR-10 ResNet-18 - CIFAR-10 VGG-16 - CIFAR-100 ResNet-18 - CIFAR-100

SCC p SCC p SCC p SCC p SCC p

Privacy - Gen. Err. 0.92 1.2 × 10−21 0.92 1.8 × 10−41 0.80 1.1 × 10−23 1.00 6.4 × 10−107 0.82 4.2 × 10−25

Privacy - Time 0.96 1.7 × 10−27 0.98 9.9 × 10−73 0.97 1.5 × 10−64 0.99 5.0 × 10−91 0.98 8.8 × 10−72

Gen. Err. - Time 0.91 8.6 × 10−20 0.91 2.6 × 10−40 0.80 2.1 × 10−23 0.99 5.5 × 10−87 0.82 7.0 × 10−26

Algorithm 1 Iterative Gaussian Mechanism with Mini-
batch (IGMM)
Require: Sample S = {z1, ...zN}, Gaussian noise variance

σ, size of mini-batch τ , iteration steps T , learning rate

{η1, ...ηT }, update function g(z,W ), and its diameter D
4
=

maxW,z,z′ ‖g(z,W )− g(z′,W )‖.
1: Initialize W0 randomly.
2: For t = 1 to T do:
3: Uniformly sample a mini-batch Bt of size τ from S

without replacement;
4: Sample gt from σN (0, I);
5: Update

Wt ←Wt−1 − ηt
[
1
τ

∑
z∈Bt g(z,Wt−1) + gt

]
.

The collected (membership inference attack accuracy, train-
ing time) pairs, (generalization error, training time) pairs,
and (membership inference attack accuracy, generalization
error) pairs are divided into groups according to neural
network architectures and datasets. Spearman’s rank-order
correlation test [Spearman, 1987] is performed on every
group.

4.2 EMPIRICAL RESULTS

The Spearman’s rank-order correlation coefficients and the
p values are collected in Table 1. The p values are all smaller
than 0.05, which show the following three correlations are
statistically significant: (1) a positive correlation between
privacy preservation and generalization; (2) a negative cor-
relation between privacy preservation and training time;
and (3) a negative correlation between generalization and
training time. These results are in full agreement with our
theory.

5 APPLICATIONS

Our theories apply to a wide spectrum of machine learn-
ing algorithms. This paper implements them to the popu-
lar iterative Gaussian mechanisms with mini-batch (1) as
an example. Gaussian mechanism are widely adopted in
privacy-preserving machine learning. In this paper, we show
the application in agnostic federated learning.

We first formally describe iterative Gaussian mechanism
with mini-batch in Algorithm 4.1. We then apply Theorem
1 and Corollary 2 to estimate the differential privacy and
deliver a generalization bound for SGLD.

Theorem 7. IGMM described as Algorithm 1 is (ε′, δ′)-
differentially private, where

ε′ =

√
2T log

(
1

δ̃

)
ε̃2 + T ε̃

eε̃ − 1

eε̃ + 1
,

δ′ =2−
(
1− δ

1 + eε̃

)T
+ δ̃′

−
(
1− δeε̃

1 + eε̃

)⌈Nε′
τε̃

⌉(
1− δ

1 + eε̃

)T−⌈Nε′
τε̃

⌉
,

ε̃ is defined as

ε̃ = log

N − τ
N

+
τ

N
exp

√2Dσ 1
τ

√
log 1

δ
+ 1

τ2
D2

2σ2

 ,

and δ̃′ is given as

δ̃′ =e−
ε′+Tε̃

2

(
T ε̃+ ε′

T ε̃− ε′

)− ε′+Tε̃
2ε̃

(
1

1 + eε̃

(
2T ε̃

T ε̃− ε′

))T
.

Additionally, a generalization bound is delivered by com-
bining with Theorem 1.

Remark 2. The generalization bound in Theorem 7 does not
explicitly rely on the model size. One may argue the diameter
R of update function g implicitly relies on the model size.
However, in deep learning, g usually stays in a low rank
manifold. As an example, Yu et al. [2021] empirically show
that the linear space formed by gradients in deep learning
is of low dimension, largely independent of the model size.
This dismisses the possibility of introducing dependence on
model size by the gradient distance.

Agnostic federated learning is a special case of IGMM.
Therefore, by Theorem 7, we have the following asymptotic
high probability generalization bound for agnostic federated
learning in terms of client number C.

Corollary 3 (Asymptotic generalization bound for agnostic
federated learning). For agnostic federated learning algo-
rithm Afed with client set S with size C, the generalization
error is bounded as

P
(
|GenS,AfedS

| > Õ
(

1√
C

))
< Õ

(
1

C
3
2

)
. (10)



 Remark 3. The high probability generalization bound
eq.(10) also holds for SGLD with N the sample size.

As an over-parameterized model, deep learning has demon-
strated excellent generalizability, which is somehow beyond
the explanation of the existing statistical learning theory and
thus attracts the community’s interest [E et al., 2020, He and
Tao, 2020]. Recent advances include generalization bounds
via hypothesis complexity [Bartlett et al., 2019, Golowich
et al., 2018, Bartlett et al., 2017, Liang et al., 2019, Tu et al.,
2020], PAC-Bayesian framework [Neyshabur et al., 2018],
algorithmic stability [Hardt et al., 2016], and stochastic gra-
dient descent or its variant [Mandt et al., 2017, Mou et al.,
2018] on the loss surface [Kawaguchi, 2016, Yun et al.,
2019, He et al., 2020]. A major difficulty in explaining deep
learning’s excellent generalizability is that deep learning
models usually has prohibitively large parameter size which
make many generalization bounds vacuous.

Additionally, deep learning has become a promising player
in many real-world applications, including financial services
Fischer and Krauss [2018], healthcare Wang et al. [2012],
and biometric authentication Snelick et al. [2005], in which
the privacy-preserving ability is of vital importance. Several
works have also studied the privacy preservation of deep
learning and how to improve it further Abadi et al. [2016],
Arachchige et al. [2019].

This work establishes generalization bounds for iterative
learning algorithms via differential privacy, which do not
explicitly rely on the model size. Our results also shed light
to understanding the generalizability of deep learning from
the privacy-preserving view.

6 CONCLUSION

This paper studies the relationships between generalization
and privacy preservation in two steps. We first establish the
relationship between generalization and privacy preserva-
tion for any machine learning algorithm. Specifically, we
prove a high-probability bound for differentially private
learning algorithms based on a novel on-average general-
ization bound for multi-sample-set algorithms. Then, we
prove three composition theorems that calculate the (ε′, δ′)-
differential privacy of an iterative algorithm. By integrating
the two steps, we establish generalization guarantees for
iterative differentially private machine learning algorithms.
Compared with existing works, our theoretical results are
strictly tighter and apply to a wider application domain. We
then use them to the Gaussian mechanism.The obtained
generalization bounds do not explicitly rely on the model
size which would be prohibitively large in many modern
models, such deep neural networks. The empirical results
of MLP, VGG, and ResNet on the MNIST, CIFAR-10, and
CIFAR-100 datasets are in full agreement with our theory.
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