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Abstract

We propose probabilistic task modelling – a gen-
erative probabilistic model for collections of tasks
used in meta-learning. The proposed model com-
bines variational auto-encoding and latent Dirichlet
allocation to model each task as a mixture of Gaus-
sian distribution in an embedding space. Such mod-
elling provides an explicit representation of a task
through its task-theme mixture. We present an effi-
cient approximation inference technique based on
variational inference method for empirical Bayes
parameter estimation. We perform empirical evalu-
ations to validate the task uncertainty and task dis-
tance produced by the proposed method through
correlation diagrams of the prediction accuracy on
testing tasks. We also carry out experiments of task
selection in meta-learning to demonstrate how the
task relatedness inferred from the proposed model
help to facilitate meta-learning algorithms.

1 INTRODUCTION

The latest developments in machine learning have enabled
the field to solve increasingly complex classification prob-
lems. Such complexity require high capacity models, which
in turn need a massive amount of annotated data for training,
resulting in an arduous, costly and even infeasible annota-
tion process. This has, therefore, motivated the research
of novel learning approaches, generally known as transfer
learning, that exploit past experience (in the form of models
learned from other training tasks) to quickly learn a new
task using relatively small training sets.

Transfer-learning, and in particular, meta-learning, assumes
the existent of a task environment where training and testing
tasks are i.i.d. sampled from the same latent distribution.
By modelling such environment through meta-parameters
that are shared across all tasks, meta-learning can solve

an unseen task more accurately and efficiently by learning
how to solve many tasks generated from the same distribu-
tion, even if each task contains a limited number of training
examples. Meta-learning has, therefore, progressed stead-
ily with many remarkable state-of-the-art results in several
few-shot learning benchmarks [Vinyals et al., 2016, Snell
et al., 2017, Finn et al., 2017, Yoon et al., 2018, Rusu et al.,
2019, Allen et al., 2019]. However, current development of
meta-learning focuses on solving tasks without providing
understanding on how tasks are generated or correlated, po-
tentially leading to sub-optimal solutions. In fact, there is
a large variation of prediction performance made by vari-
ous meta-learning algorithms reported in [Dhillon et al.,
2020, Figure 1] or shown in Figure 1, suggesting that not
all testing tasks are equally related to training tasks. This
motivates our work to model and represent tasks in a latent
“task-theme” space. The new task representation allows fur-
ther downstream works, such as task similarity or active task
selection, to be developed to gain insights into, or even im-
prove, the prediction performance of different meta-learning
algorithms.

In this paper, we propose probabilistic task modelling
(PTM) – a graphical model that combines variational auto-
encoding (VAE) [Kingma and Welling, 2014] and Gaussian
latent Dirichlet allocation (LDA) [Das et al., 2015] – to
model tasks used in meta-learning. Note that PTM itself is
not a meta-learning method. With this modelling approach,
the dataset associated with each task can be modelled as a
mixture of finite Gaussian distributions, allowing to repres-
ent tasks in a latent “task-theme” simplex via its mixture
coefficient vector. Such representation provides a conveni-
ent way to quantitatively measure “task uncertainty” or task
relatedness, which can be utilised in active task selection
for meta-learning.

2 RELATED WORK

The proposed approach is closely related to Task2Vec
[Achille et al., 2019] when modelling tasks for meta-
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Figure 1: The results locally produced for MAML on 15,504
available 5-way 1-shot mini-ImageNet testing tasks vary
from 20 to 70 percent accuracy, suggesting that not all test-
ing tasks are equally related to training tasks.

learning. In Task2Vec, a task is represented by an embedding
computed from the Fisher information matrix associated
with the task-specific classifier. In PTM, a task is repres-
ented by the variational distribution of task-theme mixture,
which is a part of the graphical model describing the task
generation process. The two methods, therefore, differ at
the modelling mechanism: Task2Vec follows a deterministic
approach, while PTM is a probabilistic method. Such differ-
ence provides an advantage of PTM over Task2Vec, which
includes modelling uncertainty into the task representation.
In addition, PTM is more efficient than Task2Vec at infer-
ence when predicting task representation, since PTM only
needs a single forward pass, while Task2Vec requires to
re-train or fine-tune the task-specific classifier and calculate
the Fisher information matrix for the task that needs to be
presented.

Our work is related to task similarity estimation, which
has been intensively studied in the field of multi-task
learning. Some remarkable examples in this area include
task-clustering using k-nearest neighbours [Thrun and
O’Sullivan, 1996], or modelling common prior between
tasks as a mixture of distributions [Bakker and Heskes, 2003,
Xue et al., 2007]. Another approach is to formulate multi-
task learning as a convex optimisation problem either to
cluster tasks and utilise the clustering results to fast track
the learning [Jacob et al., 2009], or to learn task relationship
through task covariance matrices [Zhang and Yeung, 2012].
Other approaches provided theoretical guarantees when
learning the similarity or relationship between tasks [Shui
et al., 2019]. Recently, the taskonomy project [Zamir et al.,
2018] was conducted to carry out extensive experiments on
26 computer-vision tasks to empirically analyse the correl-
ation between those tasks. Other works [Tran et al., 2019,
Nguyen et al., 2020b] take a slightly different approach
by investigating the correlation of the label distributions

between the tasks of interest to measure task similarity. One
commonality among all studies above is their reliance on
task-specific classifiers which are used to quantify task re-
latedness. In contrast, our proposed method explicitly mod-
els tasks without the help of any task-specific classifier,
making it more efficient in training and prediction.

Our work is also connected to finite mixture mod-
els [Pritchard et al., 2000], such as the latent Dirichlet al-
location [Blei et al., 2003], which analyses and summarises
text data in topic modelling, or categorises natural scenes
in computer vision [Li and Perona, 2005]. LDA assumes
that each document within a given corpus can be represen-
ted as a mixture of finite categorical distributions, where
each categorical distribution is a latent topic shared across
all documents. Training an LDA model or its variants on a
large text corpus is challenging, so several approximate in-
ference techniques have been proposed, ranging from mean-
field variational inference (VI) [Blei et al., 2003], collapsed
Gibbs’ sampling [Griffiths and Steyvers, 2004] and col-
lapsed VI [Teh et al., 2007]. Furthermore, several online
inference methods have been developed to increase the train-
ing efficiency for large corpora [Canini et al., 2009, Hoffman
et al., 2010, Foulds et al., 2013]. Our work is slightly differ-
ent from the modelling of the conventional LDA, where we
do not use the data directly, but embed it into a latent space.
In short, our approach is a combination of VAE [Kingma
and Welling, 2014] and LDA to model the dataset associated
with a task. Our approach considers “word” as continuous
data, instead of the discrete data represented by a bag-of-
word vector generally used by LDA-based topic modelling
methods. The resultant model in the embedding latent space
is, therefore, similar to the Gaussian LDA [Das et al., 2015]
for word embedding in topic modelling.

3 PROBABILISTIC TASK MODELLING

To relate task modelling to topic modelling, we consider
a task as a document, and a data point as a word. Given
these analogies, we can use LDA [Blei et al., 2003] – a
popular topic model – to model tasks for meta-learning.
However, simply applying LDA for task modelling would
not scale well with high-dimensional data and large datasets.
We, therefore, propose to employ the VAE [Kingma and
Welling, 2014] to reduce the dimension of the data, and use
the inferred embeddings of data as words to model tasks.
Due to the nature of VAE, the latent variables are often
continuous, not discrete as the bag-of-words used in the
conventional LDA. We, therefore, replace the categorical
word-topic distributions in LDA by Gaussian task-theme1

distributions. Given these assumptions, each task can be
modelled as a mixture of K Gaussian task-themes, allow-
ing to represent tasks by their inferred task-theme mixture
vectors in the latent task-theme simplex as illustrated in Fig-

1“Task-theme” is inspired by Li and Perona [2005]
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Figure 2: An example of a task-theme simplex where each
task is represented by a 3-dimensional mixture vector.

ure 2. Hence, it is beneficial to utilise this representation for
further downstream tasks, such as measuring task similarity.

The graphical model of the proposed PTM is shown in
Figure 3, where there are T tasks, and each task consists of
N data points, denoted as x. To simplify the formulation
and analysis, N is assumed to be fixed across all tasks, but
the extension of varyingN is trivial and can be implemented
straightforwardly. Under these assumptions, a task can be
generated as follows:

• Initialise the Dirichlet prior for task-theme mixture:
{αk}Kk=1, where α ∈ R+

• Initialise means and covariance matrices of K Gaus-
sian task-themes {µk,Σk}Kk=1, where µk ∈ RD,
Σk ∈ RD×D is positive definite matrix, and D is the
dimension of the data embedding

• For task Ti in the collection of T tasks:

– Choose a task-theme mixture vector:
πi ∼ Dirichlet (π;α)

– For data point n-th of task Ti:
* Choose an task-theme assignment one-hot

vector: zin ∼ Categorical (z;πi)

* Choose an embedding of the data point:
uin ∼ N (u;µk,Σk), where: zink = 1

* Generate the data point from a decoder h para-
meterised by θ: xin = h(uin; θ).

To model tasks according to the task generation described
above, we need to infer the task-agnostic (or meta) paramet-
ers of interest, namely µ,Σ,α and θ. However, due to the
complexity of the graphical model shown in Figure 3, the
exact inference for the posterior p(µ,Σ,α, θ|x) is intract-
able, and therefore, the estimation must rely on approximate
inference. For simplicity, maximum likelihood estimation

π

α

z u x

µ Σ

θφ

n = 1 : N
i = 1 : T

k
=

1
:
K

Figure 3: The graphical model used in task modelling. The
solid arrows denote data generation, while the dashed arrows
stand for inference. The boxes are “plates” representing
replicates. The shading nodes denote observable variables,
while the white nodes denote latent variables.

(MLE) is used as the objective function:

max
µ,Σ,α,θ

ln p(x|µ,Σ,α, θ). (1)

Although MLE simplifies the learning for the meta-
parameters of interest, the log-likelihood in (1) is still diffi-
cult to evaluate for the optimisation. One workaround solu-
tion is to find its lower-bound, and maximise the lower-
bound instead of maximising the log-likelihood itself. This
approach is analogous to the variational inference, which
has been widely used to infer the latent parameters of VAE
and LDA models.

Since the proposed PTM is a combination of VAE and LDA,
the derivation for the lower-bound of the likelihood in (1)
can be divided into 2 steps, where the first step is analogous
to the lower bound of a VAE, and the second step is similar
to the plain LDA model.

In the first step, the latent variable u is introduced, so that
the log-likelihood ln p(x|µ,Σ,α, θ) can be bounded below
by Jensen’s inequality:

ln p(x|µ,Σ,α, θ) ≥ LVAE, (2)

where the lower-bound is defined as:

LVAE = Eq(u) [ln p (x|u, θ) + ln p (u|µ,Σ,α)− ln q(u)] ,
(3)

with q(u) being the variational distribution for the latent
variable u.

Following the conventional VI for VAE [Kingma and
Welling, 2014], the variational distribution for the data em-
bedding u is assumed to be a Gaussian distribution with
diagonal covariance matrix:

q(u) = N
(
u;m, (s)

2
I
)
, (4)



 where I represents an identity matrix.

In addition, the parameters m and s, which represent the
distribution encoding the data x, are modelled by a neural
network (also known as an encoder) f parameterised by φ:[

m s
]>

= f(x;φ). (5)

Hence, instead of maximising the marginal log-likelihood
in (1), the lower-bound in (3) is maximised, resulted in the
alternative objective:

max
µ,Σ,α,θ

max
φ

LVAE. (6)

One difficulty in maximising the lower-bound in (6) is
the evaluation for the embedding prior ln p (u|µ,Σ,α) in
Eq. (3). In vanilla VAE, the embedding prior is often mod-
elled as some standard distributions, such as Gaussian or
Beta, resulting in a tractable solution. In this paper, the prior
is modelled as a Gaussian mixture model, making the solu-
tion intractable. However, since this prior is the marginal
log-likelihood in the conventional LDA model, we can apply
techniques developed for LDA methods to approximate this
term. Here, we employ the VI approach in which the term
is bounded below by Jensen’s inequality:

ln p (u|µ,Σ,α) ≥ LLDA(u, q(z,π)), (7)

where:

LLDA (u, q(z,π)) = Eq(z,π) [ln p(u|z,µ,Σ)

+ ln p(z|π) + ln p(π|α)− ln q(z)− ln q(π)] , (8)

with q(z,π) being the variational distribution for z and π.
This corresponds to the second step in the derivation.

Similar to LDA [Blei et al., 2003], the variational distribu-
tion q(z,π) is assumed to be fully factorised and followed
the conjugate priors:

q(z,π) =

T∏
i=1

q(πi;γi)

N∏
n=1

q(zin; rin), (9)

where:

q(πi;γi) = Dirichlet (πi;γi) (10)
q(zin; rin) = Categorical (zin; rin) , (11)

with r and γ being the parameters of the variational distri-
bution q(z,π).

In practice, q(z,π) is obtained as the maximiser of the
lower-bound LLDA (u, q(z,π)) on the embedding data u.
It is, however, inapplicable in this case, since the data em-
bedding u is used twice: one to optimise q(z,π), and the
other is to optimise the objective in (6), which may result
in overfitting. To avoid this issue, we employ the empirical

Bayes approach relying on the train-test split method, where
one half of data in a task, denoted as u(t), is used to obtain
q(z,π), while the other half, denoted as u(v), is used for the
optimisation in (6). This approach is analogous to the empir-
ical Bayes meta-learning [Finn et al., 2017, Nguyen et al.,
2020a], where one part of data is used for task-adaptation
(often known as “inner-loop”), while the other part is used
to learn the meta-parameter (often known as “outer-loop”).

Given this modelling approach, the objective function can
be formally written as a bi-level optimisation:

max
µ,Σ,α,θ,φ

L
(
u(v), q∗ (z,π)

)
subject to:

q∗ (z,π) = arg max
q(z,π)

Eq(u(t);φ)

[
LLDA

(
u(t), q(z,π)

)]
,

(12)
where

L
(
u(v), q∗ (z,π)

)
= Eq(u(v);φ)

[
LLDA

(
u(v), q∗(z,π)

)
+ ln p

(
x(v)|u(v), θ

)
− ln q

(
u(v);φ

)]
.

(13)

Due to the assumptions made in Eqs. (4), (10) and (11), prior
conjugate can be applied to simplify the evaluation for all
the terms in (8) w.r.t. the variational distribution q(.). Details
of the evaluation can be referred to Appendix A. In addition,
the optimisation for the meta-parameters in (12) is based on
gradient ascent, and carried out in two steps, resulting in a
process analogous to the expectation-maximisation (EM)
algorithm. In the E-step (corresponding to the optimisation
for the lower-level in (12)), the task-specific variational-
parameters r and γ are iteratively updated, while holding
the meta-parameters µ,Σ,α, θ and φ fixed. In the M-step
(corresponding to the optimisation for the upper-level), the
meta-parameters are updated using the values of the task-
specific variational-parameters obtained in the E-step. Note
that the inference for the task-theme parameters µ and Σ are
similar to the estimation of Gaussian mixture model [Bishop,
2006, Chapter 9]. Please refer to Appendix B for more
details on the optimisation.

Conventionally, the iterative updates in the E-step and M-
step require a full pass through the entire collection of tasks.
This is, however, very slow and even infeasible since T is
often in the magnitude of millions. We, therefore, propose an
online VI inspired by the online learning for LDA [Hoffman
et al., 2010] to infer the meta-parameters. For each task Ti,
we perform the EM to obtain the “task-specific” parameters
(denoted by a tilde on top of variables) that are locally
optimal for that task. The “meta” parameters of interest are
then updated as a weighted average between their previous



 values and the “task-specific” values:

µ← (1− ρi)µ+ ρiµ̃

Σ← (1− ρi)Σ + ρiΣ̃

α← α− ρi α̃i︸︷︷︸
H−1g

, (14)

where ρi = (τ0 + i)−τ1 with τ0 ≥ 0 and τ1 ∈ (0.5, 1]
[Hoffman et al., 2010], g is the gradient of LLDA w.r.t. α,
and H is the Hessian matrix. The learning for the encoder
φ and the decoder θ follows the conventional learning by
stochastic gradient ascent. The complete learning algorithm
for the proposed probabilistic task modelling is shown in
Algorithm 1.

Also, instead of updating the meta-parameters as in (14)
when observing a single task, we use multiple or a mini-
batch of tasks to reduce the effect of measurement noise.
The mini-batch version requires a slight modification in
the formulation presented above, where we calculate the
average of all “task-specific” parameters for tasks in the
same mini-batch, and use that as the “task-specific” value
to update the corresponding “meta” parameters.

Although the “reconstruction” term ln p(x(v)|u(v), θ) in
(12) is used to model the likelihood of un-labelled data,
it can straightforwardly be extended to a labelled data pair
{x(v),y(v)} by introducing the parameter w of a classifier.
In that case, the “reconstruction” term can be expressed as:

ln p(x(v),y(v)|u(v), θ,w)

= ln p(y(v)|u(v),w)︸ ︷︷ ︸
negative classification loss

+ ln p(x(v)|u(v), θ)︸ ︷︷ ︸
negative reconstruction loss

. (15)

In general, w can be either a task-specific parameter gen-
erated from an additional meta-parameter shared across all
tasks – corresponding to empirical Bayes meta-learning
(e.g. using train-test split to learn hyper-parameters) al-
gorithms [Finn et al., 2017, Nguyen et al., 2020a], or
a meta-parameter itself – corresponding to metric meta-
learning [Vinyals et al., 2016, Snell et al., 2017]. For sim-
plicity, we will use the latter approach relying on the proto-
typical network [Snell et al., 2017] with Euclidean distance
on the data embedding u, to calculate the classification loss
on labelled data. This reduces the need to introduce an addi-
tional parameter w into our modelling.

TASK REPRESENTATION

Given the inferred meta-parameters, including the task-
themes {µk,Σk}Kk=1, the Dirichlet prior {αl}Ll=1, the en-
coder φ and the decoder θ, we can embed the data of a task
into a latent space, and calculate its variational Dirichlet pos-
terior of the task-theme mixing coefficients q(π;γi). The
obtained distribution can be used represent the correspond-
ing task in the latent task-theme simplex as illustrated in

Algorithm 1 Online probabilistic task modelling

1: procedure TRAINING
2: Initialise LDA parameters: {µk,Σk, αk}Kk=1

3: Initialise encoder φ and decoder θ
4: for each mini-batch of Tmini tasks do
5: for i = 1 : Tmini do
6: Split data into {x(t)

i ,y
(t)
i } and {x(v)

i ,y
(v)
i }

7: m
(t)
i , s

(t)
i ← f(x

(t)
i ;φ)

8: m
(v)
i , s

(v)
i ← f(x

(v)
i ;φ)

9: γ, r← E-STEP(N (u;m
(t)
i , (s

(t)
i )2I))

10: Calculate L
(
u
(v)
i , q∗i (z,π)

)
. Eq. (13)

11: Calculate “local” task-themes µ̃i, Σ̃i, α̃i
12: end for
13: L = 1

T

∑T
i=1 L

(
u
(v)
i , q∗i (z,π)

)
14: µ,Σ,α← online_LDA

(
µ̃1:T , Σ̃1:T , α̃1:T

)
15: θ, φ← SGD

(
−L
)

. gradient ascent
16: end for
17: return µ,Σ,α, θ, φ
18: end procedure

19: procedure E-STEP(N (u;m, s2I))
20: Initialise r,γ
21: repeat
22: calculate the un-normalised rink . Eq. (25)
23: normalise rin such that

∑K
k=1 rink = 1

24: calculate γik . Eq. (29)
25: until 1

K |change in γ| < threshold
26: return γ, r
27: end procedure

Figure 2. This new representation of tasks has two advant-
ages comparing to the recently proposed task representa-
tion Task2Vec [Achille et al., 2019]: (i) it explicitly models
and represents tasks without the need of any pre-trained
networks to use as a “probe” network, and (ii) it uses a
probability distribution, instead of a vector as in Task2Vec,
allowing to include modelling uncertainty when represent-
ing tasks. Given the probabilistic nature of PTM, we can use
the entropy of the inferred task-theme mixture distribution
q(π;γi) as a measure of task uncertainty. In section 4.1, we
empirically show that this measure correlates to the general-
isation or test performance.

In addition, the representation produced by PTM can be
used to quantitatively analyse the similarity or distance
between two tasks i and j through a divergence between
q(π;γi) and q(π;γj). Commonly, symmetric distances,
such as Jensen-Shannon divergence, Hellinger distance, or
earth’s mover distance are employed to calculate the di-
vergence between distributions. However, it is argued that
similarity should be represented as an asymmetric meas-
ure [Tversky, 1977]. This is reasonable in the context of



 transfer learning, since knowledge gained from learning a
difficult task might significantly facilitate the learning of an
easy task, but the reverse might not always have the same
level of effectiveness. In light of asymmetric distance, we
decide to use Kullback-Leibler (KL) divergence, denoted
as DKL[.‖.], to measure task distance. As DKL [P‖Q] is
defined as the information lost when using a code optimised
for Q to encode the samples of P , we, therefore, calculate
DKL [q(π;γT+1)‖q(π;γi)], where i ∈ {1, . . . , T}, to as-
sess how the training task Ti differs from the learning of the
novel task TT+1.

4 EXPERIMENTS

In this section, we empirically validate the two properties
of PTM – task uncertainty and task distance – through task
distance matrix and correlation diagrams. We also show
two applications of the proposed approach used in active
task selection for inductive and transductive life-long meta-
learning. The experiments are based on the n-way k-shot
tasks formed from Omniglot [Lake et al., 2015] and mini-
ImageNet [Vinyals et al., 2016] – the two widely used
datasets to evaluate the performance of meta-learning al-
gorithms.

The Omniglot dataset consists of 1623 different handwritten
characters from 50 different alphabets, where each character
was drawn in black and white by 20 different people. Instead
of using random train-test split that mixes all characters, the
original split [Lake et al., 2015] is used to yield finer-grained
classification tasks. In addition to the task forming based
on randomly mixing characters of many alphabets, the two-
level hierarchy of alphabets and characters are utilised to
increase the difficulty of the character classification. Note
that no data augmentations, such as rotating images by mul-
tiples of 90 degrees, is used throughout the experiments.
Also, all images are down-sampled to 64-by-64 pixel2 to
simplify the image reconstruct in the decoder.

The mini-ImageNet dataset comprises a small version of
ImageNet, which contains 100 classes taken from ImageNet,
and each class has 600 colour images. We follow the com-
mon train-test split that uses 64 classes for training, 16
classes for validation, and 20 classes for testing [Ravi and
Larochelle, 2017]. Similar to Omniglot, all images are also
in 64-by-64 pixel2.

The encoder used in the experiments consists of 4 convolu-
tional modules, where each module has a convolutional layer
with 4-by-4 filters and 2-by-2 stride, followed by a batch
normalisation and a leaky rectified linear activation function
with a slope of 0.01. The output of the last convolutional
layer is flattened and connected to a fully connected layer
to output the desired dimension for the latent variable u.
The decoder is designed similarly, except that the convolu-
tional operator is replaced by the corresponding transposed

0

5

Figure 4: The matrix of log KL distances between Omniglot
tasks shows that tasks that are generated from the same al-
phabet are closer together, denoted as the dark green blocks
along the diagonal. The matrix is asymmetric due to the
asymmetry of the KL divergence used as the task distance.

convolution. For the Omniglot dataset, the number of filters
within each convolutional layer of the encoder is 8, 16, 32,
and 64, respectively, and the dimension of u is 64. For mini-
ImageNet dataset, these numbers are 32, 64, 128 and 256,
and the dimension of u is 128. The reconstruction loss fol-
lows the negative log-likelihood of the continuous Bernoulli
distribution [Loaiza-Ganem and Cunningham, 2019], which
is often known as binary cross-entropy, while the classifica-
tion loss is based on the prototypical network used in metric
learning. The training subset of each task, u

(t)
i , is used to

calculate the class prototypes, and the classification loss is
based on the soft-max function of the distances between
the encoding of each input image to those prototypes [Snell
et al., 2017]. The optimiser used is Adam with the step
size of 2× 10−4 to optimise the parameters of the encoder
and decoder after every mini-batch consisting of 20 tasks.
For the LDA part, a total of K = 8 task-themes is used.
The Dirichlet prior is assumed to be symmetric with a con-
centration α = 1.1 across both datasets2. The parameters
of the learning rate used in the online LDA are ρ0 = 106

and ρ1 = 0.5. A total of 106 episodes are used to train
PTM on both datasets. We note that setting α > 1 enforces
every task to be modelled as a mixture of many task-themes,
avoiding the task-themes collapsing into a single task-theme
during training. The phenomenon of task-theme collapse
when α < 1 is not observed in LDA, but in PTM due to
the integration of VAE. At the beginning of training, the
encoder is inadequate, producing mediocre embedding fea-
tures. The resulting features, combined with α < 1, makes a
task more likely to be represented by a single task-theme. By
learning solely from that task-theme, the encoder is pushed
to bias further toward to that task-theme, making only one
task-theme distribution updated, while leaving others un-
changed. When α > 1, all the task-themes contribute to the
representation of a task, so they can be learnt along with the
encoder.

2https://github.com/cnguyen10/probabilistic_task_modelling

https://github.com/cnguyen10/probabilistic_task_modelling
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Figure 5: Correlation diagrams between prediction accuracy made by MAML on 100 5-way 1-shot testing tasks versus: (a)
and (b) entropy of the inferred task-theme mixture distributions, and (c) and (d) the KL distances from testing to training
tasks. The results show that largest the task entropy or distances, the worse the testing performance. The blue dots are
the prediction made the MAML and PTM, the solid line is the mean of Bayesian Ridge regression, and the shaded areas
correspond to ±1 standard deviation around the mean.

4.1 TASK DISTANCE MATRIX AND
CORRELATION DIAGRAMS

Task distance matrix is used as one of the tools to qualitat-
ively validate the prediction made by PTM. In particular, the
hypothesis is that the PTM would predict small distances for
tasks that are close together. Since the “labels” specifying
the closedness of tasks are unknown, we utilise the hierarch-
ical structure of Omniglot dataset to form tasks. Each task is
generated by firstly sampling an alphabet, and then choosing
characters in that alphabet. Under this strategy, tasks formed
from the same alphabet would have small distances com-
paring to tasks from different alphabets. Figure 4 shows the
task distances between 50 testing tasks of Omniglot dataset,
where each block of 5 tasks on rows and columns of the task
distance matrix corresponds to a group of tasks sampled
from the same alphabet. The result, especially the square
5-task-by-5-task blocks along the diagonal, agrees well with
the hypothesis. Note that the distance matrix shown in Fig-
ure 4 is asymmetric due to the asymmetric nature of the KL
divergence used to measure task distance.

We use a correlation diagram between prediction accuracy
made by MAML and the task entropy produced by PTM
as another verification. Since the task entropy denotes the
uncertainty when modelling a task, we hypothesise that it
proportionally relates to the difficulty when learning that
task. To construct the correlation diagram, we firstly train
a meta-learning model based on MAML using the training
tasks of the two datasets, and evaluating the performance
on 100 random testing tasks. Secondly, we calculate the
task entropy for those 100 testing tasks. Finally, we plot the
prediction accuracy and task entropy in Figures 5a and 5b.
The results on both datasets show that the higher the task un-

certainty, the worse the test performance. This observation,
therefore, agrees with our hypothesis about task entropy.

We conduct another correlation diagram between training-
testing task distance and the test performance to verify fur-
ther the proposed PTM. Our hypothesis is the inverse pro-
portion between training-testing task distance and prediction
accuracy. A similar experiment as in task uncertainty is car-
ried out with a modification in which the task uncertainty is
replaced by the average KL divergence between all training
tasks to each testing task. Due to the extremely large number
of training tasks, e.g. more than 1012 unique 5-way tasks
can be generated from both the two datasets, the calculation
of the distance measure is infeasible. To make the training
and testing tasks manageable, we randomly generate 10, 000
tasks for training, and 100 tasks for testing. This results in
1, 000, 000 distances, which can be calculated in parallel
with multiple computers. A testing task can be represented
in the correlation diagram through its prediction accuracy
and the average KL distance to training tasks, which is
defined as:

DKL(γT+1) =
1

T

T∑
i=1

DKL[q(π;γT+1)‖q(π;γi)].

The correlation diagrams for both datasets are then plotted
in Figures 5c and 5d. The results agree well with our hypo-
thesis, in which the further a testing task is from the training
tasks, the worse the prediction accuracy. This enables us
to use the new representation produced by PTM to analyse
task similarity.
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Figure 6: Exponential weighted moving average (EWMA) of prediction accuracy made by MAML following the lifelong
learning for 100 random 5-way 1-shot tasks sampled from mini-ImageNet testing set: (a) inductive setting, and (b)
transductive setting. The EWMA weight is set to 0.98 to smooth the noisy signal. (c) Prediction accuracy made by models
trained on different task selection approaches on all 5-way 1-shot testing tasks generated from mini-ImageNet. The error
bars correspond to 95 percent confident interval.

4.2 LIFELONG FEW-SHOT META-LEARNING

To further evaluate PTM, we conduct experiments following
the lifelong learning framework [Ruvolo and Eaton, 2013]
with slight modification where the supervised tasks are re-
placed by 5-way 1-shot learning episodes. More precisely,
the setting consists of a meta-learning model and a pool
of Tpool tasks. At each time step, a task selected from the
pool is used to update the meta-learning model, and dis-
carded from the pool. A new task is then added to the pool
to maintain Tpool tasks available for learning. The criterion
for selecting a task to update the meta-learning model will
depend on the objective of interest. Two common objectives
often observed in practice are:

• Induction: the selected training task is expected to
encourage the meta-learning model to be able to rapidly
adapt to any future task,

• Transduction: the selected training task is targeted
toward one or many specific testing tasks.

In the induction setting, the performance of the meta-
learning model trained on tasks selected by PTM is com-
pared with three baselines: Task2Vec [Achille et al., 2019],
the “worst-case” approach [Collins et al., 2020] and random
selection. For the PTM, the selection criteria is based on
the task entropy specified in section 3, where the training
task with highest entropy is chosen for the learning. For
Task2Vec, tasks with large embedding norm are reported as
difficult to learn. Hence, we pick the one with the largest
L1 norm produced by Task2Vec as the training task. Origin-
ally, Task2Vec requires fine-tuning a pre-trained network
(known as probe network) on labelled data of a task. This

fine-tuning step is, however, infeasible for few-shot learning
due to the insufficient number of labelled data. We address
this issue by training a MAML-based network to use as a
probe network. When given few-shot data of a training task,
the MAML-based probe network perform gradient update
to adapt to that task. The task-specific embedding can, there-
fore, be calculated using the adapted probe network. We
follow the Monte Carlo approach specified in the public
code of Task2Vec to calculate the corresponding task em-
bedding. For the “worst-case” approach, the training task
that results in the highest loss for the current meta-learning
model is selected. Due to this nature, the “worst-case” ap-
proach requires to evaluate all losses for each task in the
pool at every time step, leading to an extensive computation
and might not scale well when the number of tasks in the
pool is large. For simplicity, we use MAML to train the
meta-learning model of interest for each selection strategy.

The transduction setting follows a similar setup as the induc-
tion case, but the testing tasks, including the labelled and
unlabelled data, are known during training. For PTM, the
average KL distances between all testing tasks to each train-
ing task in the task pool are calculated, and the training task
with smallest average distance is selected. For Task2Vec,
the proposed cosine distance between normalised task em-
beddings is used to calculate the average distance between
all testing tasks to each training task [Achille et al., 2019].
Similar to PTM, the training task with the smallest distance
is prioritised for the learning. For the “worst-case” approach,
the entropy of the prediction ŷ on C-way testing tasks is



 used as the measure:

ST+1 = −
C∑
c=1

ŷc ln ŷc,

and the task that contributed to the highest entropy at predic-
tion is chosen [MacKay, 1992]. The “worst-case” approach,
therefore, requires Tpool trials at every time step. In each
trial, the current meta-model is adapted to each training
task in the pool, and then the average prediction entropy on
all testing tasks is calculated. This results in an extremely
extensive computation.

Four MAML-based meta-learning models are initialised
identically and trained on the tasks selected from a pool
of Tpool = 200 tasks according to the four criteria men-
tioned above. Figures 6a and 6b show the testing results
on 100 random mini-ImageNet tasks after every 500 time
steps. Note that the plotted results are smoothed by the ex-
ponential weighted moving average with a weight of 0.98
to ease the visualisation. In general, PTM, Task2Vec and
“worst-case” can generalise better than random task selec-
tion. In addition, the model trained with tasks chosen by
PTM performs slightly better than Task2Vec and the “worst-
case” approach in both settings. This observation might be
explained based on the designated purpose of Task2Vec and
the “worst-case” approach. Task2Vec requires a sufficient
number of labelled data to fine-tune its probe network to
calculate task embedding. Hence, it might not work well in
few-shot learning. For the “worst-case”, tasks are selected
according to a measure based on the current meta-model
without taking task relatedness into account. PTM, how-
ever, has a weakness in active selection since the approach
only focuses on task uncertainty or task similarity without
considering the current state of the meta-learning model.
Nevertheless, PTM still provides a good selection criterion
comparing to Task2Vec and the “worst-case” approaches.
Note that although the active task selection is able to select
the best task within the pool, there might be the case where
all remaining tasks in the pool are uninformative, result-
ing in overfitting as observed in Figure 6a. However, for
simplicity, no additional mechanism is integrated to decide
whether to learn from the selected task, or simply discarded
from the pool. We believe that adding L2 regularisation or
applying early stopping based on a validation set of tasks
will help with this overfitting issue.

To further compare, we implement two additional
meta-learning algorithms: Prototypical Networks [Snell
et al., 2017] and Amortised Bayesian meta-learning
(ABML) [Ravi and Beatson, 2019] and show results for
the induction setting on all available testing 5-way 1-shot
tasks of mini-ImageNet in Figure 6c. Again, the prediction
accuracy made by the model trained on tasks selected by
PTM outperforms other baselines, especially the random
one by a large margin.

5 CONCLUSION

We propose a generative approach based on variational auto-
encoding and LDA adopted in topic modelling to model
tasks used in meta-learning. Under this modelling approach,
the dataset associated with a task can be expressed as a mix-
ture model of finite Gaussian distributions, where each task
differs at the mixture coefficients. An online VI method is
presented to infer the parameters of the Gaussian task-theme
distributions. The obtained model allows us to represent a
task by its variational distribution of mixture coefficient in
a latent task-theme simplex, enabling the quantification of
either the task uncertainty or task similarity for active task
selection.
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